相似三角形测高
- 格式:pdf
- 大小:1.22 MB
- 文档页数:45
4.6利用相似三角形测高度教学设计1.问题:相似三角形的判定方法有哪些?2.胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一”,古希腊数学家,天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度,你能根据图示说出他测量金字塔的原理吗?每个星期一早晨学校都会举行升旗仪式,同学活动课题:利用相似三角形的有关知识测量旗杆的高度.活动方式:分组活动、全班交流研讨.活动工具:小镜子、标杆、皮尺等测量工具.方法1:利用阳光下的影子选一名同学直立在旗杆旁边,在同一时刻下测出该同学和旗杆的影子长,并测量出该同学的身高,根据上面的数据,你能求出旗杆的高度吗?解:∵太阳的光线是平行的,∴AE∥CB,∴∠AEB=∠CBD,∵人与旗杆是垂直于地面的,∴∠ABE=∠CDB,∴△ABE∽△CDB,∴ABCD =BEDB,即CD=AB∙BDBE代入测量数据即可求出旗杆CD的高度.归纳总结:测高方法一:利用阳光下的影子测量不能到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决.测量数据:身高AC、影长BC、旗杆影长EF.物1高:物2高 = 影1长:影2长方法2:利用标杆观测者适当调整自己的位置,使旗杆顶端、标杆顶端、自己的眼睛恰好在一条直线上。
根据测量数据,你能求出旗杆的高度吗?过眼睛所在点D作旗杆BC的垂线交旗杆BC于G,交标杆EF于H.可得△DHF∽△DGC∴FHCG =DHDG∴CG=FH∙DHDH∴BC =GC+GB=GC+AD归纳总结:构造相似:△AME∽△ANC.找比例:AM:AN=EM:CN需要测量的数据:人与标杆的距离AM人与旗杆的距离AN标杆的高度EF方法3:利用镜子的反射如图,每个小组选一名同学作为观测者,在观测者与旗杆之间的地面上平放一面镜子,在镜子上做一个标记,观测者看着镜子来回移动,直至看到旗杆顶端在镜子中的像与镜子上的标记重合。
测量所需的数据,根据所测的结果,你能求出旗杆的高度吗?说明你的理由。
利用相似三角形测高的三种方法
1.形似定理法:这个方法是利用相似三角形的三边成比例的性质来求
出物体与仪器距离(x)及物体的高度(h)的。
假设有一个类似于图中的
场景,物体AB的高度为h,相机CD离地面的距离为x,相机镜头视角下
的物体高度为y。
通过三角形相似关系可得:AD/CD=AB/BC,即AD=(CD/BC)*AB=x/h*AB。
所以物体与相机的距离为x=AD*BC/AB=h*BC/AB。
而物体的高度为
h=y*(AD+CD)/CD=y*BC/CD。
2.变换法:这个方法是通过将相机移动至两个不同的位置,同时拍摄
同一物体的两个照片来求出物体的高度。
如图,相机从C位置拍摄照片时,物体的高度为h1,相机从C’位置拍摄同一物体时,物体的高度为h2。
根据相似三角形原理,可得:h1/(x1+d)=h2/(x2+d),其中d为相机
的移动距离。
所以,物体的高度可以表示为h2=h1*(x2+d)/(x1+d)。
3. 斜向测量法:这个方法是利用相似三角形的夹角相等的原理来测
量物体高度。
如图,相机以斜向的角度(α)拍摄物体的照片,由相似三
角形的夹角相等可得:h/L=ta nα,即物体的高度为h=L*tanα。
其中,L
为相机离物体的距离。
这三种方法都是利用相似三角形的性质来测量物体高度的,其中形似
定理法和变换法需要测量相机距离、相机移动距离等参数,斜向测量法则
需要知道相机与物体的夹角。
所以在不同的场景下,选择不同的方法来测
量物体高度,能有效提高测量的精度。
利用相似三角形测高在日常测高工作中,我们经常会遇到需要测量某些高度的情况,比如建筑物的高度、电线杆的高度等等。
这时候,我们可以利用相似三角形的原理来进行测量,从而得到准确的高度数据。
下面,我们来详细介绍一下怎样利用相似三角形测高。
相似三角形的原理在几何学中,如果两个三角形的对应角度相等,那么这两个三角形就是相似三角形。
如果两个相似三角形的一个对应角度分别相等,那么它们的边长之比也相等。
具体的公式如下:AB/DE = BC/EF = AC/DF其中,AB、BC、AC分别为大三角形ABC的三条边长,DE、EF、DF分别为小三角形DEF的三条边长。
利用这个公式,我们可以很方便地计算出未知高度的值。
利用相似三角形测高的步骤在实际工作中,利用相似三角形测高的步骤主要包括以下几个方面:1.确定测量位置:首先要根据目标的高度和周围环境的条件,确定一个适合的测量位置。
最好选择平整、无遮挡、无杂物的地方,以确保测量的准确性。
2.测量三角形边长:在合适的位置摆放设备,如测距仪、测角仪、自动水平仪等,测量出大三角形ABC的三个边长(AB、BC、AC),并记录下来。
3.建立相似三角形:根据测量所得的数据,可以计算出大三角形ABC的三个角度,从而可以建立小三角形DEF。
在实际测量中,可以利用测量设备来测量小三角形的两条边长(DE、EF)。
4.计算未知高度:利用上述公式,可以计算出未知高度DF的值,从而得到目标的高度。
需要注意的是,在实际测量中,还需要考虑误差的影响因素,比如气象条件、设备精度等等,以尽可能提高测量的准确性。
利用相似三角形法测量高度,是一种简单而有效的方法,适用于许多领域的测量工作。
在实际使用过程中,需要认真把握每个步骤,尽可能减少误差的影响,并结合实际条件和测量要求,选择合理的设备和测量方法。
相似三角形
测高
影子落在水平面上
•某班同学要测量学校国旗旗杆的高度,在同一时刻,量得某一同学的身高是1.5米,影子长是1米,旗杆影子长是8米,则旗杆的高度是
多少?
要点提示:
1.太阳光线默认平行
2.同一时刻,两个物体的高度和
水平地面上的影长的比例是相
等的,即物1:影1=物2:影2
•如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长是1.8米,窗户下沿到地面的距离BC=1米,EC=1.2米,那么窗户的顶端到地面AC是多少米?
影子一部分落在水平面上,另一部分落在墙上
•如图,教学楼前有一根旗杆,在阳光下,它的影子一部分落在了地面上,另一部分落在了教学楼的墙上,经测量,地面上的影子长2.7米.
墙上的影子是1.2米.同一时刻,测得垂直于地面的1米长的竹竿的
影子长0.9米.问旗杆的高度是多少米?
要点提示:
照在垂直墙面上的影子没有被
拉长,对应原物体高度
分析方法:
影子一部分落在水平面上,另一部分落在斜坡上
•如图,小明准备测量电线杆AB的高度,发现电线杆的影子落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成
30°角,且此时测得1米的杆影长为2米,求电线杆的高度.(结果保
留根号)
要点提示:
把斜坡上的影子转化为垂直地面的影
子和水平地面的影子(借助三角函
数),其中垂直地面的影子对应原物
体高度,没有被拉长。
水平地面的影
子被拉长,拉长比例与地面影子相同
分析方法:
影子一部分落在水平面上,另一部分落在台阶上
•如图,有一朝西下降的阶梯,阳光从正西边照过来,在距离阶梯6米处有一根柱子,其影子的前端恰好到达阶梯的第三阶。
此外,树立一根长70cm的杆子,测量其影子的长度为175cm,又知阶梯各阶的高度与宽度均为50cm,则柱子的高度为多少?
要点提示:
把台阶上的影子转化为垂直地面和平
行地面两部分影子。
其中垂直地面的
影子长度与对应柱子原长度,没有被
拉伸;平行地面的影子被拉伸,拉伸
比例与地面影子部分相同
由灯求影由影求灯
•晚上,一个身高1.6米的人站在路灯下,发现自己的影子刚好是4块地砖的长(地砖是边长为0.5米的正方形).当他沿着影子的方向走了4块地砖时,发现自己的影子刚好是5块地砖的长.根据他的发现,你能不能计算路灯的高度?
要点提示:
灯光光线看成是四射的,而且同
一物体的投影的大小是随着灯
的远近变化的.
•如图,路灯P距离地面8米,身高1.6米的小丽从距离路灯的底部(点O)20米的A处,沿AO所在的直线行走14米到达B时,人影长度怎样改变?改变了多少?
双灯双影
•一个人在两个路灯之间行走,那么他前后的两个影子的长度有什么关系什么?如图,人的身高AB=a,路灯CD=EF=b,两个路灯的间距为m,BM、BN表示前后的两个影子
要点提示:
两个影子的和为定值
中心灯影
•(2003年河北省中考题)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面形成阴影的示意图.已知桌面的直径为1.2米,桌面距离地面1米若灯泡距离地面3米,则地面上阴影部分的面积为( )
要点提示:
灯在圆桌的正上方,所以圆桌的
影子也是圆形.由于圆桌和影子
是平行的,利用图中的相似三角
形可求解
房屋采光问题
•图为住宅区内的两幢楼,它们的高AB=CD=30米,两楼间的距离AC=24米,现需了解甲楼对乙楼的采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(结果保留根号)
要点提示:
太阳的光线是直线传播的,经
过甲楼点B的光线经延长对
应到乙楼上的点到地面的距
离及为影子
镜子反射
•如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当小玲与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米。
请你帮助小玲计算出教学大楼的高度
要点提示:
以镜子为入射点,入射角等
于反射角,产生相似三角形
牛刀小试
D
B
B
A
C
D
B。