磁共振DWI的应用.
- 格式:ppt
- 大小:8.82 MB
- 文档页数:15
dwi弥散梯度
弥散加权成像(DWI)是一种磁共振成像(MRI)技术,用于测量组织中水分子的扩散。
水分子在组织中的扩散受多种因素的影响,包括组织的结构、细胞类型和疾病状态。
DWI可用于诊断多种疾病,包括脑梗死、中风、白质病变、脑肿瘤等。
DWI原理是利用磁场梯度来改变水分子在组织中的扩散方向。
当水分子受到磁场梯度的影响时,它们会沿着磁场梯度方向扩散。
随着水分子扩散的距离增加,其信号强度会逐渐减弱。
这一现象称为扩散磁化率。
DWI图像通常以表观扩散系数(ADC)值表示。
ADC值越低,水分子扩散越慢。
因此,DWI图像上高ADC值的区域对应于水分子扩散较快的区域,而低ADC值的区域对应于水分子扩散较慢的区域。
DWI图像可用于诊断多种疾病。
例如,在脑梗死的早期,脑组织内的水分子扩散受限,DWI图像上会显示出高ADC值的区域。
随着病情的发展,脑组织内的水分子扩散速度会逐渐恢复,DWI图像上高ADC值的区域会逐渐消失。
DWI还可用于诊断白质病变。
白质病变是指脑白质中的结构损伤。
DWI图像上白质病变区域的ADC值通常较低。
DWI/PWI在脑梗死缺血半暗带量化评定中的应用目的评价磁共振弥散加权成像(DWI)和灌注加权成像(PWI)在界定超早期脑梗死缺血半暗带中的应用。
方法25例发病时间在6h以内的超早期脑梗死患者行MRI检查,包括DWI和PWI,测量分析梗死中心区、缺血半暗带(IP)及对侧镜像区扩张变化和血流灌注,计算ADC值。
结果超早期大面积脑梗死患者PWI上显示的脑灌注延长区域与DWI上显示的高信号急性脑梗死区域不匹配,PWI显示的病灶范围大于DWI显示;DWI定量分析显示,与梗死中心区比较,IP、梗死中心对侧镜像区ADC值均明显增高,有显著性差异(P <0.01);IP区rADC值高于梗死中心区,两者比较有显著性差异(P<0.05);PWI显示大面积梗死患者脑组织血流灌注明显减低,腔隙性脑梗死患者未见明显的灌注减低区。
结论DWI与PWI的联合检查可准确诊断超早期脑梗死并预测IP。
标签:脑梗死;缺血性半暗带(IP);DWI;PWI脑梗死是一种临床常见病、多发病,严重威胁人民的生命健康[1],其在发病后6h之内,被定义为脑梗死超急性期。
脑梗死的早期诊断是及早治疗降低死亡率和提高患者愈后生活质量的关键。
目前,磁共振(magnetic resonance imaging,MRI)检查可为临床提供可靠的治疗依据,尤其是弥散加权成像(diffusion weighted imaging,DWI)和灌注加权成像(perfusion weighted imaging,PWI)联合技术,以PWI-DWI不匹配区代表的缺血半暗带(ischemic penumbra,IP)评估超早期脑梗死,成为脑梗死早期诊断和治疗的重要手段[2]。
本研究对纳入的25例超早期脑梗死患者行DWI和PWI检查,通过联合分析量化评定IP,为治疗脑梗死提供诊断依据。
1 资料与方法1.1 临床资料收集2010年6月~2011年12月我院超早期脑梗死患者25例,其中男17例,女8例,年龄44~78岁,平均54.5岁。
dwi医学名词解释
Dwi是医学上的缩写,代表"Diffusion Weighted Imaging",
即扩散加权成像。
在医学影像学中,DWI是一种利用水分子在组织
中的随机运动来生成图像的成像技术。
它通过测量水分子在组织中
的自由扩散,可以提供关于组织微结构和功能的信息。
DWI通常用
于检测和诊断中风、脑部肿瘤和其他神经系统疾病。
在临床实践中,DWI常常与MRI(磁共振成像)结合使用,可以提供高对比度和高分
辨率的图像,有助于医生进行准确诊断和治疗规划。
从技术角度来看,DWI利用了磁共振成像中的梯度脉冲序列,
通过测量水分子在梯度磁场中的运动来生成图像。
由于不同类型的
组织对水分子的扩散有不同的特征,DWI可以显示出组织的微观结
构和病变情况,对于早期发现病变和评估治疗效果具有重要意义。
此外,DWI还可以结合其他成像技术,如ADC(Apparent Diffusion Coefficient,表观扩散系数)成像,来提供更全面的信息。
ADC成像可以衡量组织中水分子扩散的速度和方向,从而进一
步帮助医生进行疾病诊断和评估。
总的来说,DWI作为一种重要的医学成像技术,对于神经系统
疾病的诊断和治疗起着至关重要的作用,它的应用不断拓展和深化,为临床医学带来了许多益处。
dwi名词解释
DWI是磁共振检查中的一种特殊扫描序列,中文名称为弥散加权成像。
它利用正常组织和病理组织之间水扩散程度和方向的差别来成像,因此,DWI 可以用于区分正常组织和病变组织。
在临床应用中,DWI主要用于诊断急性脑梗死,其敏感性为94%,特异性为100%。
此外,DWI还可以用于鉴别蛛网膜囊肿与表皮样囊肿、硬膜下积脓与积液、脓肿与肿瘤坏死等。
在颅内其他病变如肿瘤、感染、外伤和脱髓鞘等的诊断、鉴别诊断和评价中,DWI也能提供有价值的信息。
以上内容仅供参考,建议咨询专业医生获取更准确的信息。
dwi的原理及应用价值1. dwi的概述Diffusion weighted imaging(DWI)是一种用于检测水分子在体内扩散状态的成像技术。
它通过测量水分子扩散速率来提供关于组织微结构和功能的信息。
DWI 主要基于磁共振成像技术,通过对梯度强度进行环境控制,可以观察到水分子在组织中的自由扩散和限制扩散。
因此,DWI在医学领域的应用非常广泛,特别是在神经学、肿瘤学和心血管学等领域。
2. dwi的原理DWI的原理基于水分子的自由扩散和限制扩散。
在DWI图像中,水分子的自由扩散通过高强度信号表示,而限制扩散则通过低强度信号表示。
这种扩散现象与组织中的微结构有关,例如细胞膜、纤维束等,因此可以提供有关组织结构和功能的定量信息。
DWI图像的获取主要通过梯度强度的变化来控制,通常使用两个梯度脉冲进行测量。
第一个梯度脉冲用于标记水分子的起始位置,第二个梯度脉冲用于标记水分子的终点位置。
在获得了一系列梯度强度的图像之后,可以使用比较复杂的数学模型来计算水分子扩散的速率和方向。
3. dwi的应用价值3.1 神经学领域DWI在神经学领域的应用非常重要。
它可以用来检测和定位脑部损伤,如缺血性和出血性卒中、脑肿瘤等。
通过观察DWI图像中的水分子扩散情况,可以帮助医生判断患者的病情和制定相应的治疗方案。
此外,DWI还可以用于研究大脑功能连接。
通过观察不同脑区域间的水分子扩散情况,可以了解大脑的连接情况,并研究认知功能和神经系统疾病的发生机制。
3.2 肿瘤学领域DWI在肿瘤学领域有广泛的应用。
通过观察DWI图像中肿瘤周围的水分子扩散情况,可以帮助医生评估肿瘤的恶性程度和预测患者的预后。
此外,DWI还可以用于指导肿瘤的治疗计划,如放疗和手术。
3.3 心血管学领域在心血管学领域,DWI可以用于评估心肌梗死和心肌炎等心脏疾病。
通过观察DWI图像中心肌区域的水分子扩散情况,可以评估心肌的缺血和纤维化程度,并帮助医生制定相应的治疗方案。
磁共振弥散加权成像(DWI)在腹、盆部疾病检查中的应用探讨目的:描述磁共振弥散加权成像(DWI)在腹、盆部疾病诊检查中的应用,探讨DWI的应用价值。
方法:使用飞利浦Achieva 1.5T 超导MR机扫描,选择短时屏气(short breath holds)方法,采用快速腹、盆部DWI序列(SENSE技术的快速弥散加权EPI序列)。
结果:386例患者常规MRI序列腹、盆部扫描发现腹、盆部肿瘤179例,其中恶性肿瘤66例,有确切淋巴结肿大的23例,而在磁共振弥散加权成像中发现有确切淋巴结肿大的41例。
结论:磁共振医生及临床医生需要将DWI图像和其他常规序列图像进行仔细对照分析,只有这样才能作出较为准确的最后诊断结果,从而达到尽量避免漏误诊发生的风险。
标签:磁共振弥散加权成像(DWI);腹、盆部疾病;应用价值磁共振弥散加权成像简称DWI。
DWI最初用于对于头部急性,特别是超急性脑梗死的诊断。
后来,不少专家学者把DWI应用于体部,尝试着对体部的一些疾病进行分析,主要是肿瘤性疾病。
其是建立在一种理论假设的条件下:正常细胞有一种密度依赖性的生长抑制(density-dependent inhibition of growth)的生物学性质,而部分肿瘤由于失去了这种生物学性质,会导致肿瘤的细胞和细胞之间结合比常规组织紧密,所以使用弥散序列来扫描时,会出现比正常组织弥散受限的情况,在DWI上表现为高信号[1-2]。
1 资料与方法1.1 一般资料2009年10月-2011年9月,共检查患者386例,男225例,女161例,年龄38~81岁,平均59岁。
1.2 方法使用飞利浦公司的Achieva 1.5T超导MR机,采用快速DWI成像序列(SENSE技术的快速弥散加权EPI序列),进行腹、盆部磁共振常规序列及弥散加权成像扫描,8通道相控表面线圈,加呼吸门控,层厚5 mm,其中弥散加权成像选择短时屏气(short breath holds)方法。
简述弥散加权成像技术的临床应用
弥散加权成像(DWI)是一种基于磁共振成像(MRI)的技术,用于检测组织内水分子的扩散情况。
它在临床上有广泛的应用,包括但不限于以下几个方面:
1. 急性脑卒中的诊断:DWI 对急性脑卒中,尤其是急性脑梗死的诊断具有很高的敏感性和特异性。
在急性脑梗死发生后的数分钟到数小时内,DWI 上可出现高信号,而在常规 MRI 上可能没有明显的异常。
2. 肿瘤的诊断和鉴别诊断:DWI 可以帮助区分良性和恶性肿瘤,以及肿瘤的分级。
恶性肿瘤通常具有较高的细胞密度和较低的水分子扩
散,因此在 DWI 上呈现高信号。
3. 脓肿和炎症的诊断:脓肿和炎症组织由于细胞外水分增加,水分子扩散受限,在 DWI 上也表现为高信号。
4. 外伤性脑损伤的诊断:DWI 可以检测出脑挫裂伤、弥漫性轴索损伤等外伤性脑损伤引起的水分子扩散受限。
5. 神经系统变性疾病的诊断:某些神经系统变性疾病,如多发性硬化、肌萎缩侧索硬化等,可导致水分子扩散异常,DWI 有助于发现这些异常。
6. 腹部疾病的诊断:DWI 在肝脏、脾脏、胰腺等腹部器官的疾病诊断中也有一定的应用价值,可以帮助区分实性肿瘤和囊性肿瘤、脓肿等。
总之,DWI 作为一种无创性的影像学检查技术,在许多疾病的诊断、治疗监测和预后评估中都具有重要的临床应用价值。
一、 DWI 的概念 1.定义:弥散又称扩大,是指份子从四周环境的热能中获取运动能量而使份子发生的一连串的、小的、随机的位移现象并互相碰撞,也称份子的热运动或者布朗运动。
2. DWI 技术就是检测扩大运动的方法之一,由于普通人体MR 成像的对象是质子,主要是水份子中的质子,因此 DWI 技术事实上是通过检测人体组织中水份子扩大运动受限制的方向和程度等信息间接反映组织微观结构的改变。
3. 生物组织内的水份子的扩大分为三大类:细胞外扩大,细胞内扩大,跨膜扩大,且扩大运动受到组织结构、细胞内细胞器和组织大份子的影响。
4. 影响水份子弥散的因素:膜结构的阻挡,大份子蛋白物质的吸附,微血管内流淌血液的影响〔?〕。
5. DWI 中的水份子:1〕无创探测活体组织中水份子扩大的惟一方法 2〕信号来源于组织中的自由水 3〕结合水尽管运动受限,但仍不能产生信号 4〕不同组织对自由水扩大限制程度不同 5〕产生 DWI 对比 6〕检测组织中自由水限制性扩大的程度 6. 常规 DWI ,主要对细胞外自由水运动敏感 T2WI 基础上,施加扩大梯度,组织信号衰减 1〕自由水扩大越自由 =信号丢失多, DWI 信号越低 2〕自由水扩大越受限 =信号丢失少,DWI 信号越高 7. 在匀称介质中,任何方向的弥散系数都相等,这种弥散称为各向同性扩大〔eg.脑脊液〕;在非匀称介质中,各方向的弥散系数不等,这种弥散称为各向异性扩大〔eg.脑白质纤维素〕。
各向异性扩大在人体组织中是普遍存在的,其中最典型的是脑白质神经纤维束。
水份子在神经纤维长轴方向上扩大运动相对自由,而在垂直于神经纤维长轴的方向上,水份子的扩大运动将明显受到细胞膜和髓鞘的限制。
二、 DWI 的原理 1.以 SE-EPI 序列来介绍 DWI 的基本原理。
射频脉冲使体素内质子的相位一致,射频脉冲关闭后,由于组织的 T2 弛 XX 和主磁场不匀称将造成质子渐渐失相位,从而造成宏观横向磁化矢量的衰减。
弥散加权成像(DWI):从原理到临床前⾔磁共振成像(MRI)是神经科疾病最重要的检查⼿段之⼀,对神经科疾病的临床诊疗有着深远⽽持续的影响。
MRI序列繁多,每个序列都能侧重反映组织间某种特性的差别(所谓的侧重即是MRI中经常说的“加权”的意思,⽐如最常⽤的T1加权成像(T1WI)侧重反映组织间的T1弛豫时间对⽐,T2加权成像(T2WI)侧重反映组织间的T2弛豫时间对⽐)。
弥散加权成像(diffusion weighted image,DWI)则是侧重反映组织间⽔分⼦弥散情况的对⽐,是⽬前颅脑MR成像最常⽤的序列之⼀,也可以说是神经科医⽣“最喜欢”的序列之⼀,其成像速度快,对很多疾病的诊断都能起到⾮常重要的作⽤。
本⽂将以神经系统疾病为例,简单阐述DWI形成的原理、阅⽚注意事项以及常见的临床应⽤,希望对各位读者特别是临床医⽣和MR初学者有所助益。
⼀、什么是弥散?什么是弥散受限?弥散(diffusion)是⼀种物理现象,指的是分⼦(MRI中主要指⽔分⼦)随机杂乱⽆章的运动。
正常脑脊液中的⽔分⼦状态接近⾃由⽔,可以⾃由运动⽽⽆所限制,⽆弥散受限(图1)。
⼀些特殊的病理⽣理过程会影响⽔分⼦这种⾃由运动(⽐如细胞毒性⽔肿),则称之为弥散受限(图2)。
⼀种组织是否有弥散受限可以通过DWI序列检测出来,会在DWI和ADC图中有相应的信号改变(灰⽩对⽐度改变)。
弥散受限在DWI表现为⾼信号,在ADC图中表现为低信号。
在熟知⼀些疾病的病理⽣理过程和弥散受限常见的成因的前提下,DWI和ADC图的信号改变就能帮助我们做出某些疾病的倾向性诊断。
图1:圆形代表⽔分⼦,箭头⽅向和长度表⽰运动⽅向和速度⼤⼩,⾃由⽔中,⽔分⼦运动杂乱⽆章。
图2:弥散受限。
某些原因(图中杂乱的线条表⽰)导致了⽔分⼦运动⽅向和速度的限制(箭头长度⼩于图1,表⽰速度减低)。
这种弥散受限可以通过DWI探测出来。
⼆、DWI序列是如何成像的,DWI和ADC图各有什么意义?⾸先,要明确⼀点的是,DWI序列并不是单纯的反映⽔分⼦弥散信息的序列,因为序列的特殊性,他始终都有不同程度的T2权重,为什么这么说呢?这与其成像技术有关。
DWI序列的原理及应用1. DWI序列简介DWI(Diffusion-Weighted Imaging)序列是一种采用磁共振成像(MRI)技术检测分子扩散的方法。
它利用水分子的扩散运动提供有关生物组织微观结构和组织区域功能活动的信息。
DWI序列可以通过测量水分子在组织中扩散的程度来定量评估组织的微观结构和水分子的流动状态。
2. DWI序列的原理DWI序列的原理是利用梯度磁场脉冲对水分子进行标记,通过测量该标记水分子在空间中的移动情况进行成像。
在DWI序列中,采用了一组梯度脉冲,将水分子沿不同方向推动,然后通过成像技术测量水分子的扩散运动。
根据不同的梯度方向,可以获取一系列的DWI图像。
3. DWI序列的应用DWI序列在医学影像学中有着广泛的应用。
以下是一些常见的应用领域:3.1 脑部成像DWI序列可用于评估脑部组织的健康状况。
通过测量水分子在脑组织中的扩散情况,可以检测到脑缺血、脑梗塞等疾病。
此外,DWI序列还可以用于评估肿瘤的侵袭性、脑肿瘤的诊断和治疗等。
3.2 肝脏成像DWI序列可以用于评估肝脏组织的健康状态。
由于肝脏组织中存在着各种病理变化,如肝癌、肝纤维化等,通过测量水分子在肝脏组织中的扩散情况,可以提供有关这些病理变化的信息。
利用DWI序列还可以评估肝脏移植术后的功能状态。
3.3 前列腺成像DWI序列在前列腺成像中也有重要的应用。
前列腺癌是男性常见的恶性肿瘤之一,采用DWI序列可以提供有关前列腺癌的定量信息,辅助医生进行诊断和治疗。
3.4 乳腺成像DWI序列在乳腺成像中的应用越来越受到重视。
乳腺癌是女性最常见的恶性肿瘤之一,利用DWI序列可以提供乳腺肿瘤的定量信息,有助于早期发现和诊断。
3.5 过程监控DWI序列广泛应用于过程监控领域。
例如,在肿瘤治疗过程中,可以通过DWI序列评估治疗效果;在脑卒中患者的治疗过程中,可以评估患者的神经恢复情况。
4. DWI序列的优势和局限性4.1 优势•DWI序列对于检测组织的微观结构和功能状态具有高度敏感性,并且成像速度快。