高一数学必修二 第二章复习
- 格式:ppt
- 大小:586.00 KB
- 文档页数:17
高一数学必修二复习知识点笔记1.高一数学必修二复习知识点笔记篇一向量的计算1.加法交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2.减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0加减变换律:a+(-b)=a-b3.数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
(该公式证明如下:|a·b|=|a|·|b|·|cosα|因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)2.高一数学必修二复习知识点笔记篇二圆的性质有哪些1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等。
圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。
这个给定的点称为圆的圆心。
作为定值的距离称为圆的半径。
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。
圆的直径有无数条;圆的对称轴有无数条。
圆的直径是半径的2倍,圆的半径是直径的一半。
用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。
连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,半径的长度就是圆规两个角之间的距离。
通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
3.高一数学必修二复习知识点笔记篇三三角函数性质、图像及其变换:(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?(2)三角函数图像及其几何性质:(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.4.高一数学必修二复习知识点笔记篇四反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
高一数学必修2第二章教案(完整版)LT(必修二)高中数学第二章教案22.1.1 平面二、教学重点、难点重点:1.平面的概念及表示;2.平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.观察并思考以下问题:1.长方体由哪些基本元素构成? 答:点、线、面.2.观察长方体的面,说说它的特点?答:是平的.指出:长方体的面给我们以平面的印象;生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印345点B在平面α外,记作:Bα∉想一想:点和平面的位置关系有几种?4.平面的基本性质思考:如果直线与平面有一个公共点P,直线是否在平面内?如果直线与平面有两个公共点呢? 要让学生充分发表自己的见解.观察理解:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上.得出结论:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(教师引导学生阅读教材P42前几行相关内容,并加以解析)67符号表示为A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等…… 引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面.符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α使A ∈α、B ∈α、C ∈α 公理2作用:确定一个平面的依据. 补充3个推论:推论1:经过一条直线与直线外一点,有且只有一个平面.推论2:经过两条平行直线,有且只有一个平面.推论3:经过两条相交直线,有且只有一个平面.教师用正(长)方形模型,让学生理解两个平面的交线的含义.引导学生阅读P42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:P∈α∩β=>α∩β=L,且P ∈L公理3作用:判定两个平面是否相交的8依据2.1.2空间中直线与直线之间的位置关系二、教学重、难点:1.重点: (1)空间中两条直线的位置关系的判定;(2)理解并掌握公理4.2.难点: 理解异面直线的概念、画法.四、教学过程:(一)复习引入1. 前面我们已学习了平面的概念及其9基本性质.回顾一下,怎样确定一个平面呢?(公理3及其三个推论)2 .在一个平面内,两直线有哪几种位置关系呢?在空间中呢?(二)新课推进1.空间中两条直线的位置关系以学生身边的实例引出空间两条直线位置关系问题共面直线相交:同一平面内,有且只有一个公共点平行:同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点102.异面直线(1)概念:不同在任何一个平面内的两条直线.(2)判断:下列各图中直线l 与m 是异面直线吗?αlm lmαβαl ml αβmlmαβlmαβ让学生直观判断异面直线,既加深了对概念的理解,又可引出异面直线的画法,还为下面的辨析作好铺垫.(3)画法:用一个或两个平面衬托(4)辨析①空间中没有公共点的两条直线是异面直线.②分别在两个不同平面内的两条直线是异面直线.αlmαlmlmαβl mαβ③不同在某一平面内的两条直线是异面直线.④平面内的一条直线和平面外的一条直线是异面直线.⑤既不相交,又不平行的两条直线是异面直线 .(5)结合实例小结判断异面直线的关键 ① 例1:在正方体1111ABCD A B C D 中,哪些棱所在的直线与1BA 成异面直线? ②合作探究如右图所示是一个正方体的展开图,如果将它还原成正方体,那么AB 、CD 、EF 、GH 这四条线段所在的直线是异面直线的有几对?ABDCGEHF让学生根据异面直线的定义判断在几何体上的具有异面直线位置关系的两条直线.培养学生的空间想象能力,加深对异面直线概念的理解.③判断异面直线的关键:既不相交,又不平行.3.公理4的教学⑴思考:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线平行。
第二章解析几何初步§1直线与直线的方程1.1直线的倾斜角和斜率(教师用书独具)●三维目标1.知识与技能(1)理解直线的倾斜角和斜率的概念.(2)掌握过两点的直线斜率的计算公式.2.过程与方法通过一系列直线的不同位置的学习,培养学生的探究精神.3.情感、态度与价值观通过几何问题用代数问题来处理的思维,培养学生的数形结合思想.●重点难点重点:倾斜角、斜率的概念,过两点的直线斜率的计算公式.难点:直线倾斜角与它的斜率之间的关系.直线的倾斜角、斜率都是用来刻画直线倾斜程度的,它们本质上是一致的,倾斜角α与斜率k之间存在k=tan α(α≠90°)的关系,可以通过改变直线倾斜角来进一步认识斜率,从而化解难点.(教师用书独具)●教学建议教学时结合具体图形,学生容易了解确定直线位置的几何要素可以是一个点与直线方向,观察教材上的图2-1,2-2要确定直线条中某一条直线还需要给出一个角,即引出倾斜角,进一步引出斜率,进而探究斜率与倾斜角的关系.●教学流程创设问题情境,提出问题⇒引导学生回答问题,认识直线的斜率和倾斜角⇒通过例1及变式训练,使学生掌握直线倾斜角的求法⇒通过例2及互动探究,使学生掌握直线的斜率的求法⇒通过例3及变式训练,使学生掌握直线的倾斜角和斜率的综合问题⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈校正课标解读 1.理解直线的倾斜角和斜率的概念(重点). 2.掌握过两点的直线斜率的计算公式(重点).直线的倾斜角和斜率【问题导思】1.已知直线上一个点,能确定一条直线吗? 2.当直线的方向确定后,直线的位置确定吗?3.直线l 1,l 2分别是平面直角坐标系中一、三象限角平分线和二、四象限角平分线,它们的倾斜程度一样吗?【提示】 1.不能.2.不确定.3.不一样.1.直线的确定在平面直角坐标系中,确定直线位置的几何条件是:已知直线上的一个点和这条直线的方向.2.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角,通常用α表示.(2)范围:0°≤α<180°. 3.直线的斜率直线倾斜角α的正切值叫作直线的斜率,即k ={ tan α,α≠90°,不存在,α=90°. 4.倾斜角、斜率及直线特点之间的联系倾斜角α 直线特点 斜率k 的变化0° 垂直于y 轴 k =00°<α<90° 由左向右上升 随着倾斜角在0°→90°间逐渐增大,直线的斜率k也逐渐增大,且恒为正值α=90° 垂直于x 轴 k 不存在90°<α<180°由左向右下降随着倾斜角在90°→180°间逐渐增大,直线的斜率k 也逐渐增大,且恒为负值 5.过两点的直线斜率的计算公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.求直线的倾斜角 设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B.α-135°C.135°-αD.当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°【思路探究】倾斜角的取值范围0°≤α<135°α+45°135°≤α<180°α-135°【自主解答】由倾斜角的范围知只有当0°≤α+45°<180°,即0°≤α<135°时,l1的倾斜角才是α+45°;而0°≤α<180°,所以当135°≤α<180°时,l1的倾斜角为α-135°,如图所示,故选D.【答案】 D1.研究直线的倾斜角,必须明确倾斜角α的范围是0°≤α<180°,否则将造成角度范围的扩大,产生不符合范围的角度.如对α不分类,选项A将出现大于等于180°的角;选项B、C将出现小于0°的角.2.此类问题应紧扣倾斜角的范围和倾斜角概念中的三个关键条件:①直线向上的方向;②x轴的正方向;③逆时针方向旋转.有时利用数形结合的思想方法求解.图2-1-1中α是直线l的倾斜角吗?试用α表示图中各条直线l的倾斜角.图2-1-1【解】设直线l的倾斜角为β,图①中α是直线l的倾斜角,β=α;图②中α不是直线l的倾斜角,β=180°-α;图③中α不是直线l的倾斜角,β=α;图④中α不是直线l的倾斜角,β=90°+α.求直线的斜率(1)直线过两点A(1,3)、B(2,7),求直线的斜率;(2)过原点且斜率为1的直线l绕原点逆时针方向旋转90°到达l′位置,求直线l′的倾斜率.【思路探究】(1)利用过两点的直线的斜率公式求得.(2)利用斜率的定义求.【自主解答】(1)因为两点的横坐标不相等,所以直线的斜率存在,根据直线斜率公式得k =7-32-1=4.(2)因为直线l 的斜率k =1,所以直线l 的倾斜角为45°,所以直线l ′的倾斜角为45°+90°=135°,所以直线l ′的斜率k ′=tan 135°=-1.1.熟记斜率公式是解答本题的关键.2.求直线的斜率有两种思路一是公式,二是定义.当两点的横坐标相等时,过这两个点的直线与x 轴垂直,其斜率不存在,不能用斜率公式求解,因此,用斜率公式求斜率时,要先判断斜率是否存在.将本题中的两点改为(1,1),(-1,-2)其余不变. 【解】 k =-2-1-1-1=32.直线的倾斜角、斜率的综合应用 已知点A (2,-3),B (-3,-2),直线l 过点P (3,1),且与线段AB 相交,求直线l 的斜率的取值范围.【思路探究】 欲使直线l 与线段AB 相交,则直线l 的斜率与直线PA ,PB 的斜率有必然的关系,通过画图可知.【自主解答】 设直线l 的斜率为k ,当l 与线段AB 相交时,k PB ≤k ≤k PA , 又∵k PA =1+33-2=4,k PB =1+23+3=12,∴12≤k ≤4, 即直线l 的斜率的取值范围为12,433,3-12,3).1.2直线的方程第1课时直线方程的点斜式(教师用书独具)●三维目标1.知识与技能(1)掌握直线方程的点斜式.(2)了解斜截式与一次函数的关系.2.过程与方法通过直线点斜式方程的学习,培养学生的探索精神.3.情感、态度与价值观培养学生用代数思维解决几何问题,提高数学的学习兴趣.●重点难点重点:直线方程的点斜式.难点:直线方程的应用.给定点P(x0,y0)和斜率k后,直线就唯一确定了,直线的方程,就是直线上任意一点的坐标(x,y)满足的关系式.(教师用书独具)●教学建议本节是在学习了直线的倾斜角和斜率之后,进行直线方程的学习,因此本节课宜采用探究式课堂模式,即在教学过程中,在教师的启发引导下,以学生独立自主为前提,两点斜率公式为基本探究问题,引出直线方程的点斜式,让学生在“活动”中学习,在“主动”中发展、提高.●教学流程创设问题情境,提出问题⇒通过引导学生回答问题,认识掌握直线方程的点斜式⇒通过例1及互动探究,使学生掌握利用点斜式求直线方程⇒通过例2及变式训练,使学生掌握利用斜截式求直线方程⇒通过例3及变式训练,使学生点斜式、斜截式的综合应用⇒归纳整理,进行课堂小结整体认识所学知识⇒完成当堂双基达标巩固所学知识并进行反馈、矫正课标解读1.掌握直线方程的点斜式(重点).2.了解直线在y轴截距的概念(易混点).3.了解斜截式与一次函数的关系(难点).直线方程的点斜式【问题导思】若直线经过点P(x0,y0),且斜率为k,则直线上任意一点的坐标满足什么关系?【提示】y-y0=k(x-x0).1.直线的方程如果一个方程满足以下两点,就把这个方程称为直线l的方程:(1)直线l上任一点的坐标(x,y)都满足这个方程;(2)满足该方程的每一个数对(x,y)所对应的点都在直线l上.2.直线方程的点斜式和斜截式利用点斜式求直线方程根据条件写出下列直线的方程,并画出图形.(1)经过点A(-1,4),斜率k=-3;(2)经过坐标原点,倾斜角为45°;(3)经过点B(3,-5),倾斜角为90°;(4)经过点C(2,8),D(-3,-2).【思路探究】解答本题可先分析每条直线的斜率是否存在,然后选择相应形式求解.【自主解答】(1)y-4=-3,即y=-3x+1,图形如图(1)所示.(2)k=tan 45°=1,∴y-0=x-0,即y=x.图形如图(2)所示.(3)斜率k不存在,∴直线方程为x=3.图形如图(3)所示.(4)k =8-(-2)2-(-3)=2,∴y -8=2(x -2),即y =2x +4.图形如图(4)所示.1.求直线的斜率是解题的关键,利用“两点确定一条直线”作图.2.利用点斜式求直线方程的步骤:①在直线上找一点,并确定其坐标(x 0,y 0);②判断斜率是否存在,若存在求出斜率;③利用点斜式写出方程(斜率不存在时,方程为x =x 0).本例第(4)问中“C (2,8)”改为“C (m,8)”,试写出满足条件的直线方程. 【解】 当m =-3时,斜率不存在,直线方程为x =-3; 当m ≠-3时,k =8-(-2)m -(-3)=10m +3,∴y -(-2)=10m +3,即y =10m +3x +24-2m m +3.利用斜截式求直线方程 (1)写出斜率为2,在y 轴上截距是3的直线方程的斜截式.(2)已知直线l 的方程是2x +y -1=0,求直线的斜率k ,在y 轴上的截距b ,以及与y 轴交点P 的坐标.【思路探究】 利用斜截式写直线的方程须先确定斜率和截距,再利用斜截式写出直线方程.【自主解答】 (1)∵直线的斜率为2,在y 轴上截距是3, ∴直线方程的斜截式为y =2x +3.(2)把直线l 的方程2x +y -1=0,化为斜截式为y =-2x +1, ∴k =-2,b =1,点P 的坐标为(0,1).1.已知直线斜率或直线与y 轴有交点坐标时,常用斜截式写出直线方程.2.利用斜截式求直线方程时,要先判断直线斜率是否存在.当直线斜率不存在时,直线无法用斜截式方程表示,在y 轴上也没有截距.写出斜率为2,在y 轴上截距为m 的直线方程,并求m 为何值时,直线过点(1,1)? 【解】 由题意知,直线方程为y =2x +m .把点(1,1)代入得1=2×1+m , ∴m =-1.点斜式、斜截式方程的综合应用 已知直线l :5ax -5y -a +3=0,求证:不论a 取何值,直线l 总经过第一象限. 【思路探究】 可以把直线l 的方程变形为点斜式或斜截式,根据其特点证明.【自主解答】 法一 将直线方程变形为y -35=a (x -15),它表示经过点A (15,35),斜率为a 的直线.∵点A (15,35)在第一象限.∴直线l 必过第一象限.法二 将直线方程变形为y =ax +3-a5,当a >0时,不论a 取何值,直线一定经过第一象限;当a =0时,y =35,直线显然过第一象限;当a <0时,3-a5>0,直线一定经过第一象限.综上,直线5ax -5y -a +3=0一定过第一象限.1.法一是变形为点斜式,法二是变形为斜截式.2.解决此类问题关键是将方程转化为点斜式或斜截式来处理.不论m 为何值,直线mx -y +2m +1=0恒过定点( )A .(1,12) B .(-2,1)C .(2,-1)D .(-1,-12)【解析】 ∵直线方程可化为y -1=m , ∴直线恒过定点(-2,1).【答案】B忽视对字母的分类讨论致误求过两点(m,2),(3,4)的直线方程. 【错解】 ∵k =4-23-m =23-m,∴直线方程为y-4=23-m(x-3).【错因分析】未考虑m与3的关系导致错误的出现.【防范措施】当m=3时斜率不存在,故应该讨论m与3的关系.【正解】当m=3时,直线斜率不存在,∴直线方程为x=3,当m≠3时,k=23-m,∴直线方程为y-4=23-m(x-3).1.对于利用点斜式求直线方程,首先应先求出直线的斜率,再代入公式求解.2.对于利用斜截式求直线方程,不仅求斜率,还要求截距.1.过点P(-2,0),斜率为3的直线方程是()A.y=3x-2B.y=3x+2C.y=3(x-2) D.y=3(x+2)【解析】由点斜式可得y-0=3(x+2),即y=3(x+2).【答案】 D2.直线y=2x-3的斜率和在y轴上的截距分别等于()A.2,2 B.-3,-3C.-3,2 D.2,-3【解析】由斜截式方程形式可知,k=2,b=-3.【答案】 D3.倾斜角为150°,在y轴上截距为6的直线方程是________.【解析】∵倾斜角为150°,∴斜率k=tan 150°=-33,又知直线在y轴上截距为6,∴y=-33x+6.【答案】y=-33x+64.已知直线的斜率为2,与x轴交点横坐标为-1,求直线方程.【解】∵直线过(-1,0),k=2,由点斜式得y=2 ∴y=2x+2.一、选择题1.过点(4,-2),倾斜角为150°的直线方程为( )A .y -2=-33(x +4)B .y -(-2)=-33(x -4)C .y -(-2)=33(x -4)D .y -2=33(x +4)【解析】 k =tan 150°=-33,∴y -(-2)=-33(x -4).【答案】 B2.方程y =kx +1k表示的直线可能是( )【解析】 斜率为k ,且k ≠0,在y 轴上的截距为1k.当k >0时,1k >0;当k <0时,1k<0,从而选B.【答案】 B3.直线l 过点(-1,-1),(2,5)两点,点(1 005,b )在l 上,则b 的值为( ) A .2 009 B .2 010 C .2 011 D .2 012【解析】 ∵直线斜率k =5-(-1)2-(-1)=2,∴直线点斜式方程为y -5=2(x -2), ∴y =2x +1,令x =1 005,∴b =2 011. 【答案】 C4.方程y =k (x +4)表示( ) A .过点(-4,0)的所有直线 B .过点(4,0)的一切直线C .过点(-4,0)且不垂直于x 轴的一切直线D .过点(-4,0)且除去x 轴的一切直线【解析】 显然y =k (x +4)中斜率存在,因此不包含过点(-4,0)且斜率不存在即垂直于x 轴的直线.【答案】 C 5.(2013·佛山高一检测)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1【解析】 当a =0时,不满足条件,当a ≠0时,令x =0,y =a +2, 令y =0,x =2+aa .由已知得a +2=2+aa .∴(a +2)(1-1a )=0.∴a =-2或a =1.【答案】 D 二、填空题 6.(2013·平江高一检测)直线-x +3y -6=0的倾斜角是________,在y 轴上的截距是________.【解析】 y =33x +23,∴tan α=33,∴α=π6,在y 轴上的截轴为2 3.【答案】 π6,2 37.直线y =x +m 过点(m ,-1),则其在y 轴上的截距是________.【解析】 y =x +m 过点(m ,-1),∴-1=m +m ,即m =-12,从而在y 轴上的截距为-12. 【答案】 -128.直线l 的倾斜角为45°,且过点(4,-1),则这条直线被坐标轴所截得的线段长是________.【解析】 由已知得直线方程 y +1=tan 45°(x -4), 即y =x -5.当x =0,y =-5,当y =0,x =5. ∴被坐标轴所截得的线段长|AB |=52+52=5 2.【答案】 5 2 三、解答题9.写出下列直线的方程.(1)斜率是3,在y 轴上的截轴是-2. (2)倾斜角是30°,过点(2,1).【解】 (1)根据斜截式得直线方程为y =3x -2. (2)k =tan 30°=33. ∴直线方程为y -1=33(x -2),∴y =33x -233+1. 10.直线x -y +1=0上一点P (3,m ),把已知直线绕点P 逆时针方向旋转15°后得直线l ,求直线l 的方程.【解】 把点P (3,m )的坐标代入方程x -y +1=0可得3-m +1=0,∴m=4,即P(3,4).又∵已知直线方程可化为y=x+1,∴k=1=tan 45°,即倾斜角为45°.如图,易知已知直线绕点P 逆时针方向旋转15°, 所得直线的倾斜角为60°, ∴k =tan 60°=3,∴所求直线方程为y -4=3(x -3).11.经过点A (-2,2)并且和两个坐标轴围成的三角形的面积是1的直线方程. 【解】 设直线为y -2=k (x +2),交x 轴于点(-2k-2,0),交y 轴于点(0,2k +2),S =12×|2k +2|×|2k +2|=1,|4+2k +2k |=1, 得2k 2+3k +2=0或2k 2+5k +2=0,解得k =-12或k =-2,∴x +2y -2=0或2x +y +2=0为所求.(教师用书独具)如图所示,已知△ABC 中,A (1,1),B (5,1),∠A =60°,点C 在直线AB 上方. 求:(1)线段AB 的方程;(2)AC 所在直线的方程及在y 轴上的截距.【思路探究】 结合倾斜角和斜率的关系或斜率公式,得所求直线的斜率,从而求解. 【自主解答】 (1)由A (1,1),B (5,1),得AB ∥x 轴, ∴k AB =0,∴线段AB 的方程为y =1(1≤x ≤5). (2)k AC =tan 60°=3,∴直线AC 的方程为y -1=3(x -1),整理得y =3x +1-3,令x =0得y =1-3, ∴在y 轴上的截距为1- 3.1.斜截式方程的应用前提是直线的斜率存在,当k=0时,y=b表示与x轴平行的直线,当b=0时,y=kx表示过原点的直线.2.截距不同于日常生活中的距离,截矩是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.已知直线y=-33x+5的倾斜角是直线l的倾斜角的5倍,求分别满足下列条件的直线l的方程.(1)过点P(3,-4);(2)在y轴上截距为3.【解】由直线y=-33x+5,得k=-33,即tan α=-33,∴α=150°,故所求直线l的倾斜角为30°,斜率k′=33.(1)∵l过点P(3,-4),则由点斜式方程得:y+4=33(x-3),即y=33x-3-4. (2)∵l在y轴上截距为3,则由斜截式方程得:y=33x+3.第2课时直线方程的两点式和一般式(教师用书独具)●三维目标1.知识与技能(1)掌握直线方程的几种形式及它们之间的相互转化.(2)了解直线与二元一次方程的对应关系.2.过程与方法让学生在应用旧知识的探究过程中获得新的结论,并通过新的知识的比较、分析、应用获得新知识的特点.3.情感、态度与价值观(1)认识事物之间的普遍联系与相互转化.(2)培养学生用联系的观点看问题.●重点难点重点:直线方程的两点式和一般式.难点:利用直线方程的各种形式求直线方程.两点式其实就是点斜式的变形,值得注意的是两点式方程y-y1y2-y1=x-x1x2-x1中的条件x1≠x2,y1≠y2,使得它既不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线.(教师用书独具)●教学建议本节课的教学内容为直线方程的两点式和一般式,在此之前,学生已掌握了直线方程的点斜式、斜截式,在本节教学时,通过师生探讨,得出直线的两点式和一般式方程,通过直线的两点式方程向截距式方程的过渡训练,让学生体会由一般到特殊的处理方法,让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.●教学流程创设问题情境,提出问题⇒引导学生回答问题,理解直线方程的两点式、一般式⇒通过例1及互动探究使学生掌握灵活运用题目条件求直线方程⇒通过例2及变式训练使学生掌握一般式方程与其他方程的互化⇒通过例3及变式训练使学生掌握一般式方程的应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正课标解读1.掌握直线方程的几种形式及它们之间的相互转化(重点).2.了解在直角坐标系中平面上的直线与关于x,y的二元一次方程的对应关系(难点).直线方程的两点式【问题导思】已知A(x1,y1),B(x2,y2),如何求AB的直线方程?【提示】k AB=y2-y1x2-x1由点斜式方程得y-y1=y2-y1x2-x1(x-x1).1.两点式:设A(x1,y1),B(x2,y2)(其中x1≠x2,y1≠y2)是直线l上的两点,则l的两点式为y-y1y2-y1=x-x1 x2-x1.2.截距式:若直线l过A(a,0),B(0,b),(ab≠0),则直线l的两点式方程可化为xa+yb=1的形式,这种形式的方程叫作直线方程的截距式.其中a为直线在x轴上的截距,b为直线在y轴上的截距.直线方程的一般式【问题导思】以上所学的直线方程的几种形式能整理成关于x、y的二元一次方程的整式形式吗?【提示】能.直线方程的一般式关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)表示的是一条直线,我们把它叫作直线方程的一般式.直线方程的两点式和截距式 求满足下列条件的直线方程: (1)过点A (-2,3),B (4,-1);(2)在x 轴、y 轴上的截距分别为4,-5; (3)过点P (2,3),且在两坐标轴上的截距相等.【思路探究】 (1)要根据不同的要求选择适当的方程形式;(2)“截距”相等要注意分过原点和不过原点这两种情况.【自主解答】 (1)由两点式得y -3-1-3=x +24+2化简得2x +3y -5=0.(2)由截距式,得x 4+y-5=1化简为5x -4y -20=0.(3)当直线过原点时,所求直线方程为3x -2y =0.当直线不过原点时,设直线方程为x a +ya =1,∵直线过P (2,3) , ∴2+3a =1,∴a =5, 直线方程为x +y -5=0,所以所求直线方程为3x -2y =0或x +y -5=0.1.本题(3)中易漏掉截距都为0情况.2.直线方程有多种形式,在求解时应根据题目的条件选择合适的形式,但要注意方程各种形式的适用范围.将本例(1)中的A 改(-2,m ),求直线方程. 【解】 当m =-1时直线方程为y =-1, 当m ≠-1时,由两点式得y -m -1-m =x -4-2-4,∴y =m +16x +m -13.直线方程的一般式 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6,根据下列条件分别确定m 的值;(1)l 在x 轴上的截距是-3;(2)l 的斜率是-1.【思路探究】 可根据所求的结论把一般式转化为其他形式. 【自主解答】 (1)由题意可得⎩⎨⎧m 2-2m -3≠0, ①2m -6m 2-2m -3=-3, ② 由①得:m ≠-1且m ≠3, 由②得:m =3或m =-53.∴m =-53.(2)由题意得⎩⎨⎧2m 2+m -1≠0, ③-m 2-2m -32m 2+m -1=-1. ④ 由③得:m ≠-1且m ≠12,由④得:m =-1或m =-2.∴m =-2.1.本题的易错点是(1)中漏掉m 2-2m -3≠0,(2)中漏掉2m 2+m -1≠0.2.把直线方程的一般式Ax +By +C =0(A 、B 不同时为0)化成其他形式时,要注意式子成立的条件,特别是当B =0时,直线的斜率不存在,这时方程不能化成点斜式或斜截式的形式.根据下列条件分别写出直线的方程,并化为一般式方程: (1)斜率为2,且经过点A (1,-1).(2)斜率为12,在y 轴上的截距为1.【解】 (1)y -(-1)=2(x -1),即2x -y -3=0.(2)y =12x +1,即x -2y +2=0.直线方程的应用 已知直线l :5ax -5y -a +3=0.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围.【思路探究】 解答本题可先把一般式方程化为点斜式方程,然后再由直线过定点(15,35),说明直线l 恒过第一象限.对于求a 的取值范围可借助图形,利用“数形结合思想”求得.【自主解答】 (1)将直线l 的方程整理为y -35=a (x -15),∴l 的斜率为a ,且过定点A (15,35),而点A (15,35)在第一象限, 故l 过第一象限.(2)如图,直线OA的斜率k=35-015-0=3,∵l不经过第二象限,∴a≥3.1.直线过定点(15,35)是解决本题的关键. 2.针对这个类型的题目,灵活地把一般式Ax +By +C =0(A ,B 不同时为0)进行变形是解决这类问题的关键.在求参量取值范围时,巧妙地利用数形结合思想,会使问题简单明了.若直线(m -1)x -y -2m +1=0不经过第一象限,则实数m 的取值范围是________.【解析】 {m -1<0,1-2m <0,∴12<m <1. 【答案】 (12,1)分类讨论思想在直线方程问题中的应用(12分)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.【思路点拨】 对截距相等一定要考虑都为0,都不为0,若不为0求出截距让其相等.【规范解答】 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,当然相等.2分∴当a =2时满足条件,此时方程为3x +y =0.当a =-1时,直线为平行于x 轴的直线,在x 轴上无截距,不合题意.4分当a ≠-1且a ≠2时,由a -2a +1=a -2, 即a +1=1.∴当a =0时,直线在x 轴、y 轴上的截距都为-2,此时方程为x +y +2=0.7分综上所述,当a =2时,l 在两坐标轴上的截距相等,方程为3x +y =0;当a =0时,l 在两坐标轴上的截距相等,方程为x +y +2=0.8分(2)将l 的方程转化为y =-(a +1)x +a -2,∴{ -(a +1)>0,a -2≤0,或{-(a +1)=0,a -2≤0.10分∴a ≤-1.∴a 的取值范围为(-∞,-1x -(-35)-2,2-1,1-12,120,2 C .-3,3-33,33-33,33(x -1)2+y 2-1 B .(13,34 D .512,+∞)【思路点拨】 根据图形的特点求解.【解析】 先作出已知曲线y =1+4-x 2的图形,再根据直线y =k (x -2)+4过定点(2,4). 如图所示,曲线是以(0,1)为圆心,r =2为半径的半圆,直线表示过定点(2,4)的动直线.由图形中关系可求得k PC =512. 【答案】 D点P (x ,y )在以A (-3,1),B (-1,0),C (-2,0)为顶点的△ABC 的内部运动(不包含边界),则y -2x -1的取值范围是( ) A .12,114,1 D .(14,1)【解析】 令k =y -2x -1,则k 可以看成过点D (1,2)和(x ,y )的直线斜率,显然k AD 是最小值,k BD 是最大值.由于不包含边界,所以k ∈(14,1). 【答案】 D。
高一数学必修二复习知识点梳理1.高一数学必修二复习知识点梳理篇一正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=p*r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 2.高一数学必修二复习知识点梳理篇二空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行2、平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。
与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。
它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。
但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。
⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。
特别地,当b=0时,y是x的正⽐例函数。
即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。
因此,作⼀次函数的图像只需知道2点,并连成直线即可。
【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。
2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。
3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。
4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。
5. 二次函数与根式、指数、对数的应用。
第二章:三角函数1. 角度制与弧度制的转换。
2. 弧度制下的任意角的三角函数值的计算。
3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。
4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。
5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。
第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。
2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。
3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。
4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。
第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。
2. 数列的运算:数列的加减乘除等。
3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。
4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。
5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。
第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。
2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。
3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。
高一数学必修2第一章与第二章期末复习题9、如图是正三棱锥(底面边为4,高为4),则它的三视图是( ) 高一数学必修?第一章与第二章期末练习题一、选择题1、下列说法中正确的是( )A、三点确定一个平面B、空间四点中如果有三点共线,则这四点共面B C、三条直线两两相交,则这三条直线共面 D、两条直线确定一个平面 A2、下列命题中,正确的是( )A、有两个面互相平行,其余各面都是等腰梯形所围成的几何体叫做棱台;B、有一个面是多边形,其余各面都是三角形所围成的几何体是棱锥;C、三棱锥的侧面或底面不可能是直角三角形;D、三棱锥又叫四面体。
D 3、梯形(如图)是一水平放置的平面图形的直观图(斜二测), ABCDABCDC 11112// 若?轴,?轴,, ADAByxABCD,,211111111AB1 1 310、给出下列四个命题: ,则平面图形的面积是( ) AD,1ABCD(1)垂直于同一条直线的两条直线平行;(2)垂直于同一条直线的两个平面平行; 11DOC1 1 1 (3)垂直于同一平面的两条直线平行; (4)垂直于同一平面的两平面平行。
A、5 B、10 C、 D、 52102其中正确命题的个数为A、1B、2C、3D、4 4、两条异面直线在同一平面的正投影不可能是( )11、已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A、两条平行直线 B、两条相交直线 C、一个点和一条直线 D、两个点 0 000 B、150 C、180 D、240 A、1205、在棱长为1的正方体中,由A在表面到达的最短行程为( ) ABCDABCD,C1111112、能保证直线与平面平行的条件是( ) a, A、B、 C、 D、3 522A、?B、? ab,,,,,,b,,,aabb6、正六棱台的两底面的边长分别为和2,高为,则它的体积为( ) aaaC、?,?,?D、? b,,,,,,l,caaacabl21333733333 A、 B、 C、 D、 aa73aa二、填空题 22213、已知球的一个截面的面积为,且此截面到球心的距离为4,则该球的表面积为_________。
高一数学必修二第二章知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学必修二第二章知识点归纳每学完一个单元,要建立本单元的知识框架,将本章的主要思路、推理方法及运用技巧等转变成自己的实际技能,也要善于归纳总结知识间的联系。
高一数学必修二复习提纲好的学习方法当然重要,最重要的是能够找到适合自己的,比如你想学好数学,那么只要做好复习提纲就行了,下面小编给大家分享一些高一数学必修二复习提纲,希望能够帮助大家,欢迎阅读!高一数学必修二复习提纲1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;学数学的用处第一,实际生活中数学学得好可以帮助你在工作上解决工程类或财务类的技术问题。