传送带问题专题讲解
- 格式:doc
- 大小:596.50 KB
- 文档页数:9
牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。
此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。
“传送带”模型问题专题分析一.模型特点:1.水平传送带情景一物块可能运动情况:(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v02倾斜传送带。
情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速二.思路方法:(1)水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断。
进一步分析物体的运动情况,物体的速度与传送带速度相等的时刻摩擦力发生突变。
(2)倾斜传送带问题:求解关键在于认真分析物体与传送带的相对运动情况。
进一步分析物体所受摩擦力的情况及运动情况。
当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变。
例1.如图所示,水平传送带以5m/s的恒定速度运动,传送带长l=2.5m,今在其左端A处将一工件轻轻放在上面,工件被带动,传送到右端B处,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A 运动到右端B?(g取10m/s2)答案:1s2.(多选)(2017·锦州模拟)如图所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度vA=4m/s,到达B端的瞬时速度设为vB。
下列说法中正确的是()A.若传送带不动,vB=3m/sB.若传送带逆时针匀速转动,vB一定等于3m/sC.若传送带顺时针匀速转动,vB一定等于3m/sD.若传送带顺时针匀速转动,vB有可能等于3m/s【解析】选A、B、D总结:(一)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
传送带类问题的专题一、传送带的分类1.按放置方向分水平、倾斜两种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
二、传送带模型的一般解法1.确定研究对象;2.受力分析和运动分析,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;若斜面与物体间的动摩擦因数μ与斜面倾角正切值θ的关系为:①μ>tanθ时,物体与传送带共速后,一起运动②μ<tanθ时,物体与传送带共速后,物体加速下滑,加速度在此时会发生突变3.分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
基础题型:注意:物体在水平传送带上的运动情况,是一直加速?还是先加速在匀速?如何判断?到b点后是加速还是匀速运动?若有加速度,是初速度为零的匀加速,还是初速度不为零的匀加速?1.如图所示的传送皮带,其水平部分a b=2m,bc=4m,bc与水平面的夹角α=37°,一小物体A与传送皮带的滑动摩擦系数μ=0.25,皮带沿图示方向运动,速率为2m/s。
若把物体A轻轻放到a点处,它将被皮带送到c点,且物体A一直没有脱离皮带。
求物体A从a点被传送到c点所用的时间。
注意:划痕是物体与传送带的相对位移,而不是物体的位移。
(不包括划痕有重叠的情况)2.一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
3.在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。
随后它们保持相对静止,行李随传送带一起前进。
设传送带匀速前进的速度为0.25m/s,把质量为5kg的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6m/s2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?综合题型:注意:传送带与物体的做功问题,就是它们之间的摩擦力做功问题。
传送带问题专题讲解知识特点传送带上随行物受力复杂,运动情况复杂,功能转换关系复杂。
基本方法解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。
1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。
当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。
2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。
3、对功能转换关系进行分析,弄清能量的转换关系,明白摩擦力的做功情况,特别是物体与传送带间的相对位移。
一、 基础练习【示例1】一水平传送带长度为20m ,以2m /s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?【讨论】1、在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?2、若物体质量m=2Kg ,在物体和传送带达到共同速度的过程中传送带对物体所做的功,因摩擦而产生的热量分别是多少?情景变换一、当传送带不做匀速运动时【示例2】一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
情景变换二、当传送带倾斜时【示例3】如图所示倾斜的传送带以一定的速度逆时针运转,现将一物体轻放在传送带的顶端,此后物体在向下运动的过程中。
( ) A 物体可能一直向下做匀加速运动,加速度不变 B.物体可能一直向下做匀速直线运动 C.物体可能一直向下做匀加速运动,运动过程中加速度改变 D.物体可能先向下做加速运动,后做匀速运动V情景变换三、与功和能知识的联系 【示例4】、如图所示,电动机带着绷紧的传送带始终保持v0=2m/s 的速度运行,传送带与水平面间的夹角为30︒,现把一个质量为m=10kg 的工件轻放在传送带上,传送到h=2m 的平台上,已知工件与传送带之间的动摩擦因数为μ=3/2,除此之外,不计其它损耗。
初中传送带问题归纳总结在初中物理学习中,我们学习了许多与力、运动相关的知识。
其中,传送带问题是一个常见且重要的实际问题。
通过研究与探索传送带问题,我们能够进一步理解力、运动以及其应用。
本文将对初中传送带问题进行归纳总结,帮助同学们深入了解这一概念。
一、传送带的基本概念和作用传送带是一种可以传送物体的设备,通常由带状物体和驱动装置组成。
传送带的作用是在物体之间传递动能,实现物体的输送或搬运。
通过调整传送带的速度和方向,我们可以控制物体的运动。
二、传送带问题的分类1. 速度问题:传送带的速度决定了物体在传送带上的运动速度,该问题要求我们根据给定的速度关系计算物体在传送带上的速度或运动时间。
2. 背靠传送带问题:物体背向传送带运动,通过对传送带和物体的相对速度和方向进行分析,我们可以推导出物体相对于地面的速度以及运动的时间和距离。
3. 传送带长度问题:当传送带长度有限时,该问题要求我们根据给定条件计算在传送带上进行运动的物体所需的时间和速度。
三、解决传送带问题的方法和步骤1. 确定已知量和目标量:通过仔细分析问题,我们需要明确已知的物理量和需要求解的目标量。
2. 建立物理模型:根据已知条件,我们可以建立与传送带问题相关的物理模型,包括传送带的速度、物体的速度以及物体与传送带的相对运动关系。
3. 运用物理原理:根据物理定律和公式,运用运动学知识进行分析和计算,推导出与问题相关的方程式。
4. 解方程求解:根据得到的方程式,进行代数运算和计算,求解出目标量的数值。
5. 检查和解释结果:检查计算结果是否合理,并对结果进行解释和评价。
四、常见传送带问题的应用案例1. 工业生产线:传送带被广泛应用于各类工业生产线上,用于物料的输送和装配,通过合理调控传送带的速度和方向,实现自动化生产。
2. 邮政快递:传送带在快递分拣中起到了重要作用,能够将包裹从一个地方传输到另一个地方,提高效率和准确性。
3. 商场收银台:商场收银台通常使用传送带将商品从顾客手中传送到收银员面前,方便商品的清点和结算。
传送带经典例题透析类型一、传送带的动力学问题——分析计算物体在传送带上的运动情况这类问题通常有两种情况,其一是物体在水平传送带上运动,其二是物体在倾斜的传送带上运动。
解决这类问题共同的方法是:分析初始条件→相对运动情况→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变,然后根据牛顿第二定律和运动学公式计算。
1、物体在水平传送带上的运动情况的计算例1、如图所示,水平放置的传送带以速度v=2m/s向右运行,现将一小物体轻轻地放在传送带A端,物体与传送带间的动摩擦因数μ=0.2,若A端与B端相距4 m,则物体由A 运动到B的时间和物体到达B端时的速度是:()A.2.5 s,2m/s B.1s,2m/sC.2.5s,4m/s D.1s,4/s举一反三【变式】水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查。
如图所示为一水平传送带装置示意图,绷紧的传送带AB始终保持v=1m/s 的恒定速率运行。
一质量为m=4kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。
设行李与传送带间的动摩擦因数μ=0.1,AB间的距离=2m,g取10 m/ s2。
(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处。
求行李从A处传送到B处的最短时间和传送带对应的最小运行速率。
2、物体在倾斜传送带上运动的计算例2、如图所示,传送带与地面的倾角θ=37°,从A端到B端的长度为16m,传送带以v0=10m/s的速度沿逆时针方向转动。
在传送带上端A处无初速地放置一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为μ=0.5,求物体从A端运动到B端所需的时间是多少?(sin37°=0.6,cos37°=0.8)类型二:物体在传送带上的相对运动问题理解物体在传送带上的相对运动问题具有一定的难度,只要掌握了分析和计算的方法,问题便迎刃而解,解决此类问题的方法就是:分析物体和传送带相对于地的运动情况——分别求出物体和传送带对地的位移——求出这两个位移的矢量差。
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
物理课程讲义学科:物理专题:传送带问题主要考点梳理1、知识点关于静摩擦力与滑动摩擦力在静态与动态分析中的方法和对比。
2、重点与难点分析(1)如何理解相对运动与相对运动趋势中的阻碍作用;(2)将受力分析和状态过程紧密地结合在一起;(3)板块模型中的独立分析与板块的空间关联。
金题精讲题一题面:水平方向的传送带以v=2m/s的速度匀速运转,A、B两端间距10m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B 端所用的时间。
题二题面:如图所示,在竖直平面有一个光滑的圆弧轨道MN,其下端(即N端)与表面粗糙的水平传送带左端相切,轨道N端与传送带左端的距离可忽略不计。
当传送带不动时,将一质量为m的小物块(可视为质点)从光滑轨道上的P位置由静止释放,小物块以速度v 1滑上传送带,从它到达传送带左端开始计时,经过时间t1,小物块落到水平地面的Q点;若传送带以恒定速率v2沿逆时针方向运行,仍将小物块从光滑轨道上的P位置由静止释放,同样从小物块到达传送带左端开始计时,经过时间t2,小物块落至水平地面。
关于小物块上述的运动,下列说法中正确的是()A. 当传送带运动时,小物块离开传送带时的速度不变B. 当传送带运动时,小物块离开传送带时的速度变大C. 当传送带运动时,小物块离开传送带时的速度变小D. 小物块在传送带上滑行的时间不变题三题面:如图所示,一水平方向足够长的传送带以恒定速率v1=6m/s沿顺时针方向转动,传送带的右端有一个与传送带等高的光滑水平面,一物体以恒定的速率v2=4m/s沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速率为v3,物体与传送带间的摩擦因数为0.2。
则下列说法正确的是()A. v3=4m/sB. v3=6m/sC. 滑块离水平面的左端A点的最远距离是4mD. 滑块在传送带往返运动的时间是3s题四题面:如图所示,传送带与水平面的夹角θ=37°,传送带以10m/s的速度转动。
动力学中的九类常见问题传送带【模型精讲】1.水平传送带问题情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v 0>v 时,可能一直减速,也可能先减速再匀速(2)v 0<v 时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v 0>v 返回时速度为v ,当v 0<v 返回时速度为v 0解题关键:关键在于对传送带上的物块所受的摩擦力进行正确的分析判断。
(1)若物块的速度与传送带的速度方向相同,且v 物<v 带,则传送带对物块的摩擦力为动力,物块做加速运动。
(2)若物块的速度与传送带的速度方向相同,且v 物>v 带,则传送带对物块的摩擦力为阻力,物块做减速运动。
(3)若物块的速度与传送带的速度方向相反,传送带对物块的摩擦力为阻力,物块做减速运动;当物块的速度减为零后,传送带对物块的摩擦力为动力,物块做反向加速运动。
(4)若v 物=v 带,看物块有没有加速或减速的趋势,若物块有加速的趋势,则传送带对物块的摩擦力为阻力;若物块有减速的趋势,则传送带对物块的摩擦力为动力。
2.倾斜传送带问题情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a 1加速后再以a 2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a 1加速后再以a 2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能先减速,再反向加速,最后匀速(5)可能一直减速 求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
如果受到滑动摩擦力作用应进一步确定滑动摩擦力的大小和方向,然后根据物体的受力情况确定物体的运动情况。
当物体速度与传送带速度相同时,物体所受的摩擦力的方向有可能发生突变。
传送带问题专题讲解知识特点传送带上随行物受力复杂,运动情况复杂,功能转换关系复杂。
基本方法解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。
1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。
当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。
2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。
3、对功能转换关系进行分析,弄清能量的转换关系,明白摩擦力的做功情况,特别是物体与传送带间的相对位移。
一、 基础练习【示例1】一水平传送带长度为20m ,以2m /s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?【讨论】1、在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?2、若物体质量m=2Kg ,在物体和传送带达到共同速度的过程中传送带对物体所做的功,因摩擦而产生的热量分别是多少?情景变换一、当传送带不做匀速运动时【示例2】一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
情景变换二、当传送带倾斜时【示例3】如图所示倾斜的传送带以一定的速度逆时针运转,现将一物体轻放在传送带的顶端,此后物体在向下运动的过程中。
( ) A 物体可能一直向下做匀加速运动,加速度不变 B.物体可能一直向下做匀速直线运动 C.物体可能一直向下做匀加速运动,运动过程中加速度改变 D.物体可能先向下做加速运动,后做匀速运动V情景变换三、与功和能知识的联系 【示例4】、如图所示,电动机带着绷紧的传送带始终保持v 0=2m/s 的速度运行,传送带与水平面间的夹角为30︒,现把一个质量为m=10kg 的工件轻放在传送带上,传送到h=2m 的平台上,已知工件与传送带之间的动摩擦因数为μ=3/2,除此之外,不计其它损耗。
则在皮带传送工件的过程中,产生内能及电动机消耗的电能各是多少?(g=10m/s 2)情景变换四、与动量知识的联系 【示例5】、如图所示,水平传送带AB 足够长,质量为M =1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动(传送带的速度恒定),木块与传送带的摩擦因数μ=05.,当木块运动到最左端A 点时,一颗质量为m =20g 的子弹,以v 0=300m/s 的水平向右的速度,正对射入木块并穿出,穿出速度v =50m/s ,设子弹射穿木块的时间极短,(g 取10m/s 2)求: (1)木块遭射击后远离A 的最大距离; (2)木块遭击后在传送带上向左运动所经历的时间。
二、巩固练习1、水平传输装置如图所示,在载物台左端给物块一个初速度。
当它通过如图方向转动的传输带所用时间t 1。
当皮带轮改为与图示相反的方向传输时,通过传输带的时间为t 2。
当皮带轮不转动时,通过传输带的时间为t 3,下列说法中正确的是:( ) A .t 1一定小于t 2;B .t 2> t 3> t 1;C .可能有t 3=t 2=t 1;D .一定有t 1=t 2< t 3。
2、质量为m 的物体从离传送带高为H 处沿光滑圆弧轨道下滑,水平进入长为L 的静止的传送带落在水平地面的Q 点,已知物体与传送带间的动摩擦因数为μ,则当传送带转动时,物体仍以上述方式滑下,将落在Q 点的左边还是右边?B图2图2图2图2—203、如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?4、如图2—4所示,传送带与地面成夹角θ=37°,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A →B 的长度L=50m ,则物体从A 到B 需要的时间为多少?5、如图2—19所示,静止的传送带上有一木块正在匀速下滑,当传送带突然向下开动时,木块滑到底部所需时间t 与传送带始终静止不动所需时间t 0相比是( ) A.t=t 0 B.t<t 0C.t>t 0 D.A、B两种情况都有可能6、将一粉笔头轻放在2m/s 的恒定速度运动的水平传送带上后,传送带上留下一条长为4m的划线;若使该传送带做匀减速运动(加速度为1.5m/s 2)并且在传送带上做匀减速的同时,将另一个粉笔头放在传送带上,该粉笔头在传送带上留下多长划痕?(g 取10m/s 2)7、如图2—13所示,倾角为37º的传送带以4m/s 的速度沿图示方向匀速运动。
已知传送带的上、下两端间的距离为L =7m 。
现将一质量m=0.4kg 的小木块放到传送带的顶端,使它从静止开始沿传送带下滑,已知木块与传送带间的动摩擦因数为μ=0.25,取g =10m/s 2。
求木块滑到底的过程中,摩擦力对木块做的功以及生的热各是多少?8、如图2—20所示,足够长水平传送带以2m/s 的速度匀速运行。
现将一质量为2kg 的物体轻放在传送带上,物体与传送带间的动摩擦因数为0.2。
若不计电动机自身消耗,则将物体传送的过程中 ( )A .摩擦力对物体做的功为4JB .摩擦力对物体做的功为-4JC .电动机做的功为8JD .电动机做功的功率为8W9、图14为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A,B两端相距3m,另一台倾斜,传送带与地面的倾角,C, D两端相距4. 45m,B, C相距很近。
水平传送以5m/s的速度沿顺时针方向转动,现将质量为10kg的一袋大米无初速度地放在A段,它随传送带到达B端后,速度大小不变地传到倾斜送带的C点,米袋与两传送带间的动摩擦因数均为0. 5,g取10m/s2,sin37˚=0. 6,cos37˚=0. 8(1)若CD部分传送带不运转,求米袋沿传送带在CD上所能上升的最大距离;(2)若倾斜部分CD以4m/s的速率顺时针方向转动,求米袋从C运动到D所用的时间。
10、如图所示为车站使用的水平传送带的模型,它的水平传送带的长度为L=8m,传送带的皮带轮的半径均为R=0.2m,传送带的上部距地面的高度为h=0.45m,现有一个旅行包(视为质点)以v0=10m/s的初速度水平地滑上水平传送带.已知旅行包与皮带之间的动摩擦因数为μ=0.6.g取10m/s2.试讨论下列问题:(1)若传送带静止,旅行包滑到B端时,人若没有及时取下,旅行包将从B端滑落.则包的落地点距B端的水平距离为多少?(2)设皮带轮顺时针匀速转动,并设水平传送带长度仍为8m,旅行包滑上传送带的初速度恒为10m/s.当皮带轮的角速度ω值在什么范围内,旅行包落地点距B端的水平距离始终为(1)中所求的水平距离?若皮带轮的角速度ω1=40 rad/s,旅行包落地点距B端的水平距离又是多少?(3)设皮带轮以不同的角速度顺时针匀速转动,画出旅行包落地点距B端的水平距离s随皮带轮的角速度ω变化的图象.参考答案【示例1】解:物体加速度a=μg=1m/s 2,经t 1=va=2s 与传送带相对静止,所发生的位移S 1=12 at 12=2m,然后和传送带一起匀速运动经t 2=l-s 1v=9s ,所以共需时间t=t 1+t 2=11s 【讨论】1、S 1=12vt 1=2m ,S 2=vt 1=4m ,Δs=s 2-s 1=2m【讨论】2、W 1=μmgs 1=12mv 2=4J ,Q=μmg Δs=4J【示例2】【解析】方法一: 根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a 0。
根据牛顿运动定律,可得 g a μ= 设经历时间t ,传送带由静止开始加速到速度等于v 0,煤块则由静止加速到v ,有t a v 00= t a v =由于a <a 0,故v <v 0,煤块继续受到滑动摩擦力的作用。
再经过时间t ',煤块的速度由v 增加到v 0,有 ´0t a v v +=此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹。
设在煤块的速度从0增加到v 0的整个过程中,传送带和煤块移动的距离分别为s 0和s ,有´210200t v t a s += 202v s a = 传送带上留下的黑色痕迹的长度 s s l -=0 由以上各式得 2000()2v a g l a gμμ-=【小结】本方法的思路是整体分析两物体的运动情况,分别对两个物体的全过程求位移。
方法二:第一阶段:传送带由静止开始加速到速度v 0,设经历时间为t ,煤块加速到v ,有v t a 00= ① v gt at μ== ② 传送带和煤块的位移分别为s 1和s 2, 20121t a s =③ 2222121gt at s μ== ④ 第二阶段:煤块继续加速到v 0,设经历时间为t ',有 v 0v gt μ'=+ ⑤传送带和煤块的位移分别为s 3和s 4 ,有30s v t '= ⑥ 2412s vt gt μ''=+ ⑦ 传送带上留下的黑色痕迹的长度 4231s s s s l --+=由以上各式得 2000()2v a g l a gμμ-=【小结】本方法的思路是分两段分析两物体的运动情况,分别对两个物体的两个阶段求位移,最后再找相对位移关系。
方法三:传送带加速到v 0 ,有 00v a t = ① 传送带相对煤块的速度 0()v a g t μ=- ②传送带加速过程中,传送带相对煤块的位移【相对初速度为零,相对加速度是()g a μ-0】()20121t g a l μ-=Ot 2t 1tv 0 v 图2—6传送带匀速过程中,传送带相对煤块的位移【相对初速度为()g a μ-0t ,相对加速度是g μ】()g2t 22 02μμg a l -=整个过程中传送带相对煤块的位移即痕迹长度 ()()g2t 212200μμμg a t g a l -+-= ③由以上各式得 2000()2v a g l a gμμ-=【小结】本方法的思路是用相对速度和相对加速度求解。