理论力学(矢量运算基本知识)PPT精选文档
- 格式:ppt
- 大小:504.00 KB
- 文档页数:16
7-5 以矢量表示角速度和角加速度·以矢积表示点的速度和加速度一、角速度矢绕定轴转动刚体的角速度可以用矢量表示。
1.角速度矢的大小角速度矢ω的大小等于角速度的绝对值,即td d ϕω==ω (7-16) 2.角速度矢的指向角速度矢ω沿轴线,它的指向表示刚体转动的方向;如果从角速度矢的末端向始端看,则所观察到的刚体作逆时针向转动,如图7-10a 所示;或按照右手螺旋规则确定:右手的四指代表转动的方向,姆指代表角速度矢ω的指向,如图7-10b 所示。
(a ) (b )图7-10至于角速度矢的起点,可在轴线上任意选取,也就是说,角速度矢是滑动矢。
如取转轴为z 轴,它的正方向用单位矢k 的方向表示(图7-11)。
于是刚体绕定轴转动的角速度矢可写成k ω=ω (7-17)式中ω是角速度的代数值,它等于ϕ。
(a ) (b )图7-11二、角加速度矢同样,刚体绕定轴转动的角加速度可以用一个沿坐标轴线的滑动矢量表示:k ε=ε (7-18)式中ε是角加速度的代数值,它等于ω或ϕ 。
于是 )(d dd d k k ωωtt ==ε (7-19)即角加速度ε是角速度矢ω对时间的一阶导数。
根据上述角速度和角加速度的矢量表示法,刚体内任一点的速度可以用矢积 表示。
三、速度的矢量积表示如在轴线上任选一点O 为原点,点M 的矢径以r 表示,如图7-12所示。
图7-12那么,点M 的速度可以用角速度矢与它的矢径的矢量积来表示,即r v ⨯=ω (7-20)为了证明这一点,需证明矢积r ⨯ω确实表示点M 的大小和方向。
根据矢积的定义知,r ⨯ω仍是一个矢量,它的大小是v r r =⋅=⋅=⨯R ωωωθsin式中θ是角速度矢ω与矢径r 的夹角。
于是证明了矢积r ⨯ω的大小等于速度的大小。
矢积r ⨯ω的方向垂直于ω和r 所组成的平面(即图7-12中三角形OMO 1平面),从矢量v 的末端向始端看,则见ω按逆时针转向转过角θ与r 重合,由图容易看出,矢积r ⨯ω的方向正好与点M 的方向相同。