高一数学知识点汇总大全
- 格式:docx
- 大小:51.67 KB
- 文档页数:10
高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。
总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。
高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
高一数学全年知识点汇总【高一数学全年知识点汇总】一、数与代数1. 整数与有理数的运算2. 分数的四则运算3. 实数集与数轴4. 代数式与方程式的变形与运算5. 一元一次方程与一元一次不等式6. 二次根式与二次方程与二次不等式7. 图形坐标与平面向量二、函数与方程1. 函数与映射2. 一次函数与一次函数方程3. 二次函数与二次函数方程4. 指数函数与指数方程5. 对数函数与对数方程6. 幂函数与幂方程7. 三角函数与三角方程8. 组合函数与比例函数9. 分式函数与分式方程10. 复合函数与反函数三、几何与三角学1. 平行线与比例线段2. 直角三角形与勾股定理3. 三角形的面积与海伦公式4. 相似三角形与比例法则5. 三角形的正弦定理与余弦定理6. 解三角形的各种条件7. 多边形的面积与周长8. 圆与圆的性质四、解析几何与向量1. 向量的基本概念与表示2. 向量的运算与线性相关性3. 空间直线与平面的向量方程4. 平面与直线的夹角与距离5. 平面曲线与圆锥曲线的方程6. 平行四边形与矩形的性质7. 线线平行与垂直的判定8. 向量积与量积的应用五、概率与统计1. 事件与概率2. 随机事件及其概率3. 统计数据的整理与分析4. 概率的加法与乘法定理5. 频率分布与统计图表6. 抽样调查与统计推断7. 正态分布与标准正态分布8. 统计实例的应用与分析六、数学思想方法与解题技巧1. 数学证明与推理方法2. 巧妙分析与递推思想3. 方程解题思路与技巧4. 几何图形构造与推理方法5. 综合题的拆解与求解以上为高一数学全年知识点的汇总,覆盖了各个重要知识点和概念。
希望同学们在备考过程中能够充分理解和掌握这些知识,灵活运用于实际问题的解决中。
通过不断的练习和巩固,相信大家可以在数学学科上取得优异的成绩!。
高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。
解一元二次方程的方法有因式分解、配方法、公式法等。
1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。
1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。
1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。
1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。
1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。
1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。
1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。
1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。
1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。
二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。
2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。
高一数学知识点全部归纳一、集合1. 集合的概念:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
2. 集合中元素的特性:确定性、互异性、无序性。
3. 集合的表示方法:列举法、描述法、图示法。
4. 集合间的关系:子集、真子集、相等。
5. 集合的运算:交集、并集、补集。
二、函数1. 函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B的一个函数。
2. 函数的三要素:定义域、值域、对应法则。
3. 函数的表示方法:解析法、列表法、图象法。
4. 函数的单调性:设函数 f(x)的定义域为 I,如果对于定义域I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁ x₂时,都有 f(x₁) f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
5. 函数的奇偶性:设函数 f(x)的定义域为 D,如果对于定义域D 内任意一个 x,都有x∈D,且 f(x) = f(x)(或 f(x) = f(x)),那么函数 f(x)就叫做奇函数(或偶函数)。
三、指数函数和对数函数1. 指数函数:一般地,函数 y = a^x(a > 0 且a ≠ 1)叫做指数函数。
指数函数的图象和性质:当 a > 1 时,函数在 R 上单调递增;当 0 a 1 时,函数在 R 上单调递减。
2. 对数函数:一般地,如果 a^x = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x = logₐN。
函数 y = logₐx (a > 0 且a ≠ 1)叫做对数函数。
对数函数的图象和性质:当 a > 1 时,函数在(0, +∞) 上单调递增;当 0 a 1 时,函数在(0, +∞) 上单调递减。
高一数学必修知识点总结15篇高一数学必修知识点总结1高一数学集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上的山元素的互异性如:由HY的字母组成的集合{H,A,P,Y}元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3。
集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:枚举和描述。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x(R|x—3>2},{x|x—3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=—5}高一数学必修知识点总结2集合间的基本关系1.子集,A包含于B,记为:,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B,记作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。
A是C的子集,同时A也是C 的真子集。
2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)3、不含任何元素的集合叫做空集,记为Φ。
Φ是任何集合的子集。
4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。
如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。
示例:集合中有子集。
(13年高考第4题,简单)练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。
高一数学知识点归纳一、集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成的集合,用N={0,1,2,3,·s}表示(注意:人教版中0∈N)。
- 元素与集合的关系:如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
如A = {1,2,3}。
- 描述法:用集合所含元素的共同特征表示集合。
形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述x的条件。
例如{xx是大于2的整数}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记为A⊆ B。
如果A⊆ B且A≠ B,则A是B的真子集,记为A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集:不含任何元素的集合,记为varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)x∈ A}叫做函数的值域。
2. 函数的表示法。
- 解析法:用数学表达式表示两个变量之间的对应关系,如y = 2x+1。
- 图象法:用图象表示两个变量之间的对应关系。
- 列表法:列出表格来表示两个变量之间的对应关系,如函数y=x^2,当x = - 2,-1,0,1,2时,对应的y值分别为4,1,0,1,4,可以列成表格。
最全高一数学知识点总结归纳高一数学知识点总结(一)1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
高一数学全部知识点1.数与式•自然数、整数、有理数、实数、复数的概念和性质•数轴与绝对值•等式、方程、不等式的基本概念•映射、函数及函数表示法2.函数与图像•函数的定义、定义域、值域、图像和性质•常见函数的图像特征:常函数、一次函数、二次函数、绝对值函数、指数函数、对数函数、幂函数、三角函数等•函数的运算和复合3.直线和圆•直线的斜率和方程•直线的相关性质和判定方法:平行、垂直、重合•圆的定义、圆心、半径、圆的方程•直线与圆的位置关系:相切、相离、相交4.三角函数•弧度制与角度制的转换•三角函数的概念和性质:正弦、余弦、正切、余切、割、余割•三角函数的图像、周期性和性质•三角函数的运算:加法、差法、倍角、半角公式5.平面向量•向量的概念、模长和方向角•向量的基本运算:加法、数乘、数量积、向量积•向量的共线和垂直关系•平面向量的应用:向量的投影、向量的夹角、平面向量的推导公式6.数列与数列的极限•数列的概念和性质•等差数列和等比数列:通项公式、前n项和公式•数列的极限概念和性质•常见数列的求和公式:等差数列求和、等比数列求和、等差数列求和公式、等比数列求和公式7.数与函数•幂函数、指数函数和对数函数:定义、图像、性质和运算•二次函数:定义、图像、性质和运算•理解指数函数和对数函数的反函数关系8.三角比与三角函数图像的特征•三角比的概念和性质:正弦、余弦、正切、余切、割、余割•三角函数图像的性质:振幅、周期、相位差、图像的平移和伸缩•三角函数的变换公式:倍角、半角、和差、积化和差9.立体几何基础•空间几何基本概念:点、直线、平面等•空间几何图形的性质和判断方法•立体几何的基本概念:体积、面积、曲面积•平行线与平面的关系:平面的平行、垂直和倾斜关系10.空间向量•空间向量的概念和性质•空间向量的坐标表示法和线性运算•空间向量的数量积和向量积•平面与空间的位置关系:平面与平面的位置关系、直线与平面的位置关系、直线和直线的位置关系11.导数•导数的定义和性质•基本初等函数的导数•导数的运算:和、差、积、商、复合函数和参数函数的导数•导数的应用:函数的凹凸性、函数的最值和曲线的切线方程12.数列的概念和表示方法•数列的概念和性质•数列的递推公式和通项公式•等差数列和等比数列的判定方法和求和公式•数列极限的概念和极限性质13.概率与统计•随机事件的概念和性质•频率与概率的关系•排列与组合的概念和计算方法•统计的基本概念和统计方法以上是高一数学的全部知识点,希望对你的学习有所帮助。
高一数学知识点总结大全(非常全面)高一数学知识点汇总1函数的有关概念注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要根据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)假如函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 一样函数的判断方法:①表达式一样(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射高一数学知识点汇总2集合(1)含n个元素的集合的子集数为2n,真子集数为2n-1;非空真子集的数为2n-2;(2)注意:讨论的时候不要遗忘了的情况。
(3)第二局部函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析^p 法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、间隔、绝对值的意义等);⑧利用函数有界性;⑨导数法。
高一数学知识总结必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
注意:B反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
◆有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法5、二次函数根的问题——一题多解 &指数函数y=a^xa^a*a^b=a^a+b(a>0,a 、b 属于Q) (a^a)^b=a^ab(a>0,a 、b 属于Q) (ab)^a=a^a*b^a(a>0,a 、b 属于Q) 指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高一数学最全知识点数学是一门重要的学科,也是高中学习的核心科目之一。
在高一学习数学时,了解和掌握数学的基本知识点是非常重要的。
本文将介绍高一数学的知识点,帮助同学们能够全面了解和掌握这些内容。
1. 代数与函数1.1 集合与命题1.2 集合的运算与关系1.3 代数基本运算1.4 函数的概念与性质1.5 初等函数的图像与性质2. 数列与数列的表示与求和2.1 等差数列2.2 等比数列2.3 递推数列2.4 数列的表示与求和公式3. 直线与圆3.1 点、线、面及其相互位置关系 3.2 直线与平面的交点3.3 圆的概念与性质3.4 直线和圆的位置关系3.5 切线与切点4. 平面向量4.1 向量的概念与表示4.2 向量的线性运算4.3 向量的数量积与投影4.4 平面向量的模与方向角5. 三角函数5.1 角度的概念与度量5.2 三角函数的基本关系5.3 三角函数的周期性与奇偶性5.4 三角函数的图像与性质5.5 三角函数的运算公式6. 几何证明6.1 基本的几何公理和定理6.2 图形的性质与判定6.3 几何证明的方法与技巧6.4 平行线与三角形的性质6.5 圆的性质与判定7. 数学推理与证明7.1 命题、命题联结词与命题的等价关系 7.2 数学命题的证明方法7.3 数学归纳法的应用7.4 数学定理的应用与扩展7.5 近似计算与数值求解8. 三角恒等式与二次函数8.1 三角恒等式的基本知识8.2 三角恒等式的证明与应用8.3 二次函数的概念与性质8.4 二次函数的图像与方程9. 平面几何与空间几何9.1 平面几何中的相关概念与性质 9.2 平面解析几何与应用9.3 空间几何中的相关概念与性质 9.4 空间解析几何与应用10. 数学建模与应用10.1 数学模型的建立与求解10.2 应用题解决的思路与方法10.3 实际问题的数学描述与分析10.4 数学在科学和工程中的应用以上是高一数学的最全知识点,希望同学们能够认真学习和掌握这些内容,为日后的学习打下坚实的数学基础。
高一数学知识点归纳一、集合与函数的概念1. 集合的基本概念- 集合的定义- 集合的表示方法:列举法、描述法- 集合之间的关系:子集、并集、交集、补集2. 函数的定义与性质- 函数的定义:从集合A到集合B的映射- 函数的表示方法:公式法、图像法、表格法 - 函数的基本概念:定义域、值域、映射规则3. 函数的运算- 函数的加法、减法、乘法、除法- 复合函数- 反函数4. 常见函数类型- 一次函数、二次函数- 指数函数、对数函数- 三角函数:正弦、余弦、正切二、数列1. 数列的概念- 数列的定义- 数列的表示方法:递推关系、通项公式2. 等差数列与等比数列- 等差数列的通项公式、求和公式- 等比数列的通项公式、求和公式3. 数列的性质与应用- 数列的极限- 数列的单调性- 数列的应用题三、解析几何1. 平面直角坐标系- 点的坐标- 距离公式、中点公式- 直线的方程:点斜式、两点式、一般式2. 圆的方程- 标准圆的方程- 圆的一般方程- 圆与直线、圆与圆的位置关系3. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 空间几何体的体积与表面积四、三角函数1. 三角函数的定义- 正弦、余弦、正切函数的定义- 三角函数的图像与性质2. 三角恒等变换- 同角三角函数的关系- 三角函数的和差公式- 二倍角公式、半角公式3. 解三角形- 正弦定理、余弦定理- 三角形的面积公式五、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 事件的关系与运算:并、交、补2. 概率的计算- 条件概率、独立事件的概率- 全概率公式、贝叶斯公式3. 统计初步- 数据的收集与整理:频数、频率- 统计量:平均数、中位数、众数- 方差、标准差的概念与计算六、数学归纳法1. 数学归纳法的原理- 归纳法的基本步骤:奠基步骤、归纳步骤 - 归纳法的应用2. 证明方法- 直接证明- 反证法以上是高一数学的主要知识点归纳,每个部分都需要通过大量的练习题来加深理解和应用。
高一数学知识点总结(7篇)高一数学学问点总结篇1立体几何初步1、柱、锥、台、球的构造特征(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的局部。
分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等。
表示:用各顶点字母,如五棱台几何特征:①上下底面是相像的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面绽开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面绽开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面绽开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
高一数学所有知识点总结大全一、代数(Algebra)1.数的性质与运算法则1.1 有理数和无理数1.2 数轴及实数的划分1.3 数的绝对值1.4 基本整式的概念与运算1.5 同底数幂运算1.6 指数幂运算法则1.7 根式的概念与运算2.一元一次方程与不等式2.1 一元一次方程与解的概念2.2 一元一次方程的基本解法2.3 一元一次方程的应用2.4 一元一次不等式与解的概念2.5 一元一次不等式的解集表示及性质 2.6 一元一次不等式的解法与应用3.二次根式和一元二次方程3.1 二次根式的概念与性质3.2 二次根式化简与运算3.3 一元二次方程与解的概念3.4 一元二次方程求根公式3.5 一元二次方程的解的性质与判别式 3.6 一元二次方程的解法及应用4.函数及其应用4.1 函数的基本概念与性质4.2 一次函数与线性函数4.3 幂函数与指数函数4.4 正比例函数与反比例函数4.5 函数图像的绘制与性质4.6 函数与方程的联系与应用5.二次函数5.1 二次函数的概念与性质5.2 二次函数图像的特征与性质5.3 二次函数的顶点、零点与对称轴5.4 二次函数的最值与区间5.5 二次函数的图像平移、翻折与伸缩5.6 二次函数与实际问题的模型建立与解决二、几何(Geometry)1.平面几何基本概念1.1 点、直线和平面的基本概念1.2 线段、角和三角形的基本概念1.3 多边形、圆及其相关概念2.图形的性质2.1 垂直、平行及夹角性质2.2 三角形内角和性质2.3 三角形的边和角的关系2.4 四边形的性质与分类2.5 平行四边形、矩形与正方形的性质 2.6 直角三角形和等腰三角形的性质 2.7 圆的性质3.平面几何的证明3.1 常用证明方法与基本推理3.2 三角形性质的证明3.3 平行四边形和矩形的性质证明3.4 圆的性质与定理证明4.空间几何与立体图形4.1 空间几何基本概念4.2 直线、平面与空间图形的关系4.3 二面角与立体图形的计算4.4 体积与表面积的计算4.5 空间几何问题的应用与解决三、概率与统计(Probability and Statistics)1.概率的基本概念和计算1.1 概率的定义与性质1.2 初等概率计算1.3 加法法则和乘法法则1.4 事件的独立性2.统计的基本概念和数据分析2.1 统计的定义与性质2.2 数据的收集与整理2.3 频数表与频率分布表2.4 统计图表的绘制与分析2.5 平均数与范围的计算3.分布律与概率分布3.1 离散型随机变量的概念与分布律3.2 连续型随机变量的概念与概率密度函数3.3 二项分布与正态分布的性质和计算以上为高一数学的所有知识点总结大全,涵盖了代数、几何、概率与统计等各个方面。
高一数学知识点所有最全版一、函数与方程函数的概念及其性质一次函数二次函数的概念与性质二次函数的图像与性质二次函数的应用指数函数与对数函数幂函数与分式函数三角函数及其应用不等式及其解法方程与不等式的应用问题二、解析几何平面直角坐标系向量及其运算平面向量的数量积和向量积平面直线与圆的方程三、三角函数与立体几何三角函数的概念三角函数的基本关系与公式三角函数的图像与性质三角函数的应用立体几何基础概念平面与直线的位置关系圆与球的位置关系平行线与平面的位置关系四、数列与数学归纳法数列的概念及其性质等差数列与等比数列递推数列与通项公式数列的应用数学归纳法及其应用五、概率论与统计事件与概率条件概率与乘法公式全概率公式与贝叶斯定理随机变量与概率分布常见离散概率分布常见连续概率分布统计与抽样六、导数与微分导数的概念与性质导数运算法则与求导公式驻点与极值问题微分与近似计算函数的递增递减与凹凸性函数的图像与渐近线七、积分与定积分不定积分及其基本性质定积分及其性质换元法与分部积分法定积分的应用以上是高一阶段数学的知识点的概述,涵盖了函数与方程、解析几何、三角函数与立体几何、数列与数学归纳法、概率论与统计、导数与微分、积分与定积分等内容。
对于每一个知识点,我们都可以详细地进行讲解,包括其概念、性质、公式以及应用等方面的内容。
在学习这些数学知识点时,我们需要关注以下几个方面:1. 确定基本概念:对于每一个知识点,我们要确保自己理解了其中的基本概念,比如函数的定义、三角函数的周期性等。
2. 学会掌握基本性质:了解各种数学对象的基本性质对于深入理解和应用知识点非常重要,比如函数的奇偶性、导数的几何意义等。
3. 掌握基本公式和定理:熟练掌握各个知识点中的基本公式和定理是解题的关键,比如三角函数的基本关系公式、导数的运算法则等。
4. 多做题,多练习:通过大量的练习题来提高对知识点的理解和应用能力,同时也可以巩固记忆和提高解题的速度。
高一数学知识点归纳总结高一数学知识点归纳总结(一)一、函数1.函数的定义:对于每一个自变量,函数都给出唯一的因变量值。
2.函数的表示:y=f(x),x为自变量,y为因变量,f(x)为函数。
3.函数的性质:定义域、值域、单调性、奇偶性、周期性、对称性。
4.常见数学函数:指数函数、对数函数、三角函数、反三角函数、幂函数、根式函数。
5.函数的图像:函数的图像是函数在平面直角坐标系上的表示,反映了函数自变量和因变量之间的函数关系。
6.函数的运算:加减、乘除、复合运算。
7.函数的极限:当自变量接近某一特定值时,函数趋于一个确定的极限。
8.导数与微分:导数是函数变化率的极限值,微分是函数的一个微小变化量。
9.应用:求函数的最值、拐点、渐近线、曲率等,还可以用于物理、经济、工程学等领域中的问题求解。
二、集合与命题1.集合的概念:由若干个元素构成的整体。
2.基本集合运算:并集、交集、差集、补集。
3.集合的性质:子集、相等、空集、全集、互斥、互补。
4.命题:是可以用真假判断的陈述句,并且只有真假两种可能。
5.命题的逻辑运算:否定、合取、析取、蕴含。
6.命题的等价关系与充分必要条件。
7.谓词与量词:谓词是具有“真假”性质的函数,量词包括全称量词和存在量词,它们用于指定谓词中的变量范围。
三、平面与立体几何1.欧氏几何:以欧氏公理为基础的几何学,研究点、线、面的性质以及它们之间的关系。
2.平面几何:研究平面上点、线、面及其相互关系的几何学。
3.直线和圆的性质:如平行线公理、垂线定理、相交线夹角定理、圆的周长、面积等。
4.三角形和四边形的性质:如勾股定理、海伦公式、三角形周长公式、正方形、矩形、平行四边形、菱形的周长、面积等。
5.立体几何:研究空间中点、线、面、体及其相互关系的几何学。
6.球的性质:如球的体积、表面积等。
7.多面体的性质:如正四面体、正六面体、正八面体等体积、表面积等。
四、数列与数学归纳法1.数列的概念:按一定顺序排列的一列数。
高一数学知识点总结大全(非常全面)高一数学知识点总结大全(非常全面)一、数与式1. 自然数和整数自然数是用来表示计数的数字,整数则包括正整数、零和负整数。
2. 有理数和无理数有理数包括整数和分数,能够表示为两个整数的比。
无理数是无限不循环小数,如π和根号2。
3. 数的相反数和绝对值相反数指两个数值的和为零的数。
绝对值是一个数到零的距离,总是非负数。
4. 数的运算数的运算分为四种基本运算:加法、减法、乘法和除法。
要注意运算法则与优先级。
5. 代数式的加减乘除代数式包括有数和字母构成的项,可以进行加减乘除运算,要注意合并同类项和项的系数。
6. 多项式多项式是由若干项相加(减)得到的,其中每一项都是数的乘积。
二、函数与方程1. 函数及其表示法函数是一个集合,它把一个集合的元素(自变量)对应到另一个集合的元素(函数值)。
2. 函数的性质函数的性质包括定义域、值域、单调性、奇偶性等。
3. 方程及其解方程是指等号连接的两个代数式,方程的解满足使等号成立的条件。
4. 一元一次方程一元一次方程是指未知数的最高次数为一的方程,可以通过加减消元或代入法来求解。
5. 一元一次不等式一元一次不等式是指未知数的最高次数为一的不等式,可以通过图像法或代数法来求解。
6. 一元二次方程一元二次方程是指未知数的最高次数为二的方程,可以通过配方法、公式法或因式分解法来求解。
三、平面几何1. 点、线、面的基本概念点是几何图形中最基本的元素,线由无穷多个点组成,面由无穷多个线组成。
2. 直线、射线、线段的关系直线是无边界的,射线有一个起点但没有终点,线段有两个端点。
3. 角的概念和相关性质角是由两条射线共享一个端点构成的图形,可以根据角的大小分为锐角、直角、钝角等。
4. 平行线和垂直线平行线在同一个平面上不相交,垂直线两两相交且角度为90度。
5. 三角形及其性质三角形是由三条线段连接而成的图形,包括等腰三角形、等边三角形等。
6. 圆的概念及其性质圆是由平面上所有与一个确定点的距离相等的点组成的图形,包括半径、直径、弧等。
高一数学总知识点一、集合1. 集合的定义和基本运算2. 集合间的关系和运算法则3. 集合的表示方法和常用符号4. 集合的分类和特殊集合二、函数与方程1. 函数的定义和表示方法2. 函数的性质和分类3. 函数的运算和图像4. 一元一次方程和一元一次不等式5. 二次函数和二次方程三、数列与数学归纳法1. 数列的概念和常见类型2. 数列的通项公式和递推公式3. 数列的性质和运算规律4. 数学归纳法的基本思想和应用四、平面几何1. 点、线、面的基本概念2. 点和线的位置关系3. 垂直与平行的判定定理和运用4. 三角形的性质和分类5. 三角形的面积和周长计算6. 圆的基本性质和相关公式7. 圆和直线的位置关系五、空间几何1. 空间中的点、直线和平面2. 空间几何体的名称和性质3. 空间几何体的表面积和体积计算4. 空间几何体的切割和投影六、概率与统计1. 随机事件和概率的基本概念2. 概率的计算和性质3. 统计图表的制作和分析4. 数据的描述和分布特征七、解析几何1. 坐标系和平面直角坐标系2. 点和向量的表示和运算3. 直线和曲线的方程和性质八、导数与微分1. 导数的定义和基本公式2. 导数的几何意义和应用3. 函数的增减性和极值问题4. 微分的定义和计算九、指数与对数1. 指数和对数的基本概念2. 指数和对数的性质和运算规律3. 指数函数和对数函数的图像和性质4. 指数方程和对数方程的求解以上是高一数学的总知识点,通过系统学习和掌握这些知识,将能够打好数学基础,顺利应对高中数学学习的挑战。
希望同学们能够认真学习,不断提高自己的数学水平。
高一数学知识点汇总大全(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学知识点汇总大全学习任何一门知识点都要学会对该知识点进行总结,这样可以检查学生对知识的真正掌握程度以及方便学生日后的复习。
下面给大家带来一些高一数学知识点,希望对大家有所帮助。
目录高一数学知识点汇总高一数学知识点高一数学知识点大全高一数学知识点汇总合集高一数学知识点汇总函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯通过上面的高一数学必修1知识点总结,同学们已经梳理了一遍高一数学必修1的知识点,也加深了对该知识的更深了解,相信同学们一定能学好这部分知识点,也希望同学们以后的学习中多做总结。
返回目录高一数学知识点集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2)注意:讨论的时候不要遗忘了的情况。
(3)第二部分函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵是奇函数;⑶是偶函数;⑷奇函数在原点有定义,则;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;返回目录高一数学知识点大全1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.3.等差中项如果A=(a+b)/2,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_).(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项).注意:一个推导利用倒序相加法推导等差数列的前n项和公式:Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn=n(a1+an)/2两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.返回目录高一数学知识点汇总合集两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。
特殊地,a,b∈R时,a+bi=0a=0,b=0.复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
复数相等特别提醒:一般地,两个复数只能说相等或不相等,而不能比较大小。
如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
解复数相等问题的方法步骤:(1)把给的复数化成复数的标准形式;(2)根据复数相等的充要条件解之。
高中数学知识点总结理科归纳5定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a 为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
返回目录高一数学知识点汇总大全终于写完毕了,希望能够帮助到大家,谢谢!。