+
当=时,
=
=
−
=
= ;
.
+
故当= − 时,数列{}成等比数列,
其首项为,公比为 ;
当 ≠ −时,数列{}不是等比数列.
典例变型
1.(变条件,变结论)将例题中的条件“=+”变为“ = ,
∗
+ = -+, ( ∈ )”.
这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是
2 , 4 , 8 , 16 , 32 , 64 , 128 , ⋯.⑤
4.某人存入银行元,存期为5年,年利率为,那么按照复利,他5年内每年末得到的本利
和分别是
+ , + , + , + , + .⑥
, , …;
(2) 2 , 4 , 8 , 32 , 64 , 128 ;
1
1
= , =
不是等比数列
(3) , − , , − , … ;
= , = −
(4) 4 , 00 , 4 , 00 , ….
不是等比数列
思考:有既是等差数列又是等比数列的数列吗?
学科核心素养:
1.通过等比数列的通项公式及等比中项的学习及应用,体现了数学运算素养.
2.借助等比数列的判定与证明,培养逻辑推理素养.
探究新知
1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:
, , , ⋯ , ;
①
, , , ⋯ , ; ②
∴ − =, =.
(2)∵ = · − =, =, =,