考点10 数列求和
- 格式:doc
- 大小:196.00 KB
- 文档页数:3
6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。
数列求和公式七个方法数列求和是数学中的一个重要概念,常用于计算数列中各项之和。
数列求和公式有多种方法,下面将介绍七种常见的求和公式方法。
方法一:等差数列求和公式等差数列是指数列中每一项与前一项之差都相等的数列。
等差数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等差数列求和公式为Sn=n(a1+an)/2,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法二:等比数列求和公式等比数列是指数列中每一项与前一项之比都相等的数列。
等比数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等比数列求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法三:斐波那契数列求和公式斐波那契数列是指数列中每一项都是前两项之和的数列。
斐波那契数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
斐波那契数列求和公式为Sn=f(n+2)-1,其中Sn表示数列的和,f表示斐波那契数列。
方法四:调和数列求和公式调和数列是指数列中每一项的倒数是一个调和级数的一项。
调和数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
调和数列求和公式为Sn=1+1/2+1/3+...+1/n,即Sn=Hn,其中Hn表示调和级数的n项和。
方法五:等差数列求和差分公式通过差分公式,我们可以得到等差数列的求和公式。
差分公式是指数列中相邻两项之差等于同一个常数d。
等差数列求和差分公式为Sn=[(a1+an)/2]n,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法六:等比数列求和差分公式通过差分公式,我们可以得到等比数列的求和公式。
差分公式是指数列中相邻两项之比等于同一个常数q。
等比数列求和差分公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法七:等差数列求和公式(倍差法)倍差法是一种基于等差数列的求和方法。
数列求和方法总结数列是数学中常见的一个概念,它由一系列按特定规律排列的数所组成。
在数列中,常常需要求和,即将数列中的所有元素相加得到一个总和。
求和是数列中的一个重要问题,有着多种方法和技巧,本文将对数列求和方法进行总结。
首先,我们来介绍一些常见的数列求和公式。
1.等差数列求和公式:对于等差数列an = a1 + (n-1)d,其中a1为首项,n为项数,d为公差,可以使用以下公式求和:Sn = (a1 + an) * n / 2其中Sn表示前n项和。
2.等比数列求和公式:对于等比数列an = a1 * r^(n-1),其中a1为首项,n为项数,r为公比,可以使用以下公式求和:Sn=a1*(1-r^n)/(1-r)其中Sn表示前n项和。
3.调和数列求和公式:调和数列是指an = 1/n,其中n为正整数。
调和数列没有一个简单的求和公式,但它满足以下性质:Sn=1+1/2+1/3+...+1/nSn = ln(n) + γ + O(1/n)接下来,我们将介绍一些常见的数列求和方法。
1.逐项相加法:这是最简单的求和方法,即将数列中的每一项逐个相加得到和。
例如,对于数列1,2,3,4,5,可以逐项相加得到152.折半相加法:这是一种针对特定数列的求和方法。
对于一些具有对称性质的数列,可以将数列折半后再进行求和。
例如,对于数列1,2,3,4,5,可以将其折半为1,5,3,再相加得到93.和差法:这是一种将数列拆分为两个子数列,并利用数列之间的关系求和的方法。
例如,对于等差数列1,2,3,4,5,可以将其拆分为两个等差数列1,3,5和2,4,并利用等差数列求和公式求和后再相加。
4.差分法:对于一些特定数列,其前后项之间存在一定的差值关系。
通过求得这种差值关系,我们可以将数列转化为差分数列,并利用差分数列的性质进行求和。
例如,对于数列1,4,9,16,25,可以发现相邻项之间的差值为3,5,7,可以将其转化为差分数列3,5,7,并利用等差数列求和公式求和后再进行相加。
专题十一 数列求和的常用方法一、公式法①等差数列求和公式;②等比数列求和公式;③常用公式:)1(211+==∑=n n k S nk n ,)12)(1(6112++==∑=n n n k S nk n ,213)]1(21[+==∑=n n k S nk n二、.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.三、分组求和法:将数列分成可以求和的几组。
四.裂项相消法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. ①111(1)1n n n n =-++ ②1111(k)k k n n n n =-++()③1111[](1)(2)2(1)(1)(2)n n n n n n n =--++++;④n n n n a n -+=++=111五.错位相减法:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法,这是仿照推导等比数列前n 项和公式的方法.六.倒序相加法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法. 七、通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。
【课前热身】1、数列2, ,21,,814,413,2121-+n n 的前n 项之和为n n n+112122⎡⎤+-⎢⎥⎣⎦()() 2、设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 = 1 ;3、数列1,(1+2),(1+2+22),…,(1+2+22+…+n-12),…的前n 项和等于n+12-2-n4、 已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为n3n 3+() 典型例题:例1、(1)求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(2)求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 解:(1)设S n =89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++则S n =22222sin 89sin 88sin 87sin 2sin 1+++⋅⋅⋅++ ∴2S n =89,故S n =892(2)设T n =01n-13(21)(21)nn n n n C C n C n C ++⋅⋅⋅+-++,则T n =n-110(21)(21)3n n n n n n C n C C C ++-+⋅⋅⋅++∴2T n =01n-1n(22)n n n n n C C C C ⎡⎤+++⋅⋅⋅++⎣⎦=n(22)2n +⋅ ∴nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++注:本例是运用倒序相加法求和。
数列求和的知识点总结一、数列求和的基本概念1. 数列的定义数列是按照一定的规律排列的一组数,数列中的每个数被称为该数列的项。
数列一般用{}表示,其中n是数列的下标,表示数列的第n个项。
2. 数列的性质(1)有限项数列和无限项数列数列的项的个数有限时,称为有限项数列,否则称为无限项数列。
(2)等差数列和等比数列等差数列是指数列中相邻两项之间的差是常数的数列,其通项公式为an=a1+(n-1)d。
等比数列是指数列中相邻两项之间的比是常数的数列,其通项公式为an=a1*q^(n-1)。
3. 数列求和的基本概念数列求和指的是将数列的各项相加的操作,可以分为有限项求和和无限项求和。
有限项数列的求和可以用公式进行计算,而无限项数列的求和需要通过取极限的方法进行求解。
二、数列求和的常用公式1. 等差数列求和公式在等差数列an=a1+(n-1)d中,前n项和Sn的计算公式为Sn=n/2*(a1+an)。
2. 等比数列求和公式在等比数列an=a1*q^(n-1)中,前n项和Sn的计算公式为Sn=a1*(q^n-1)/(q-1)。
3. 平方和与立方和公式在数列1,2,3,4,...,n中,平方和S(n^2)=n*(n+1)*(2n+1)/6,立方和S(n^3)=[n*(n+1)/2]^2。
4. 斐波那契数列求和公式斐波那契数列是指数列的每一项是前两项之和的数列,其前n项和Sn的计算公式为Sn=F(n+2)-1,其中F(n)表示斐波那契数列中的第n项。
5. 其他数列求和公式在一些特殊的数列中,如等差中项数列、调和数列等,也可以根据数列的特性推导出对应的求和公式。
三、数列求和的运算方法1. 直接求和法在有限项数列的求和中,可以直接将数列的各项相加得到结果。
这种方法适用于项数较少或者数列的规律明显的情况。
2. 差分法对于一些复杂的数列,可以通过差分的方法将其转化为等差数列或等比数列,然后利用相应的求和公式进行求解。
3. 递推法递推法是指通过给定的递推关系求解数列的前n项和,常用于斐波那契数列等递归定义的数列。
数列求和公式七个方法数列求和是数学中常见的问题之一、下面将介绍七种常用的数列求和方法,包括等差数列求和、等比数列求和、等差数列二次项求和、递归数列求和、斐波那契数列求和、等差数列部分项求和、正弦数列求和。
一、等差数列求和:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
从首项到第n项的和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)其中,n为项数,a1为首项,an为末项,Sn为和。
二、等比数列求和:等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
从首项到第n项的和Sn可以通过以下公式计算:Sn=a1(q^n-1)/(q-1)其中,n为项数,a1为首项,q为公比,Sn为和。
三、等差数列二次项求和:对于等差数列的二次项和,可以通过对等差数列求和公式进行二次求和得到。
Sn=(n/6)*(2a1+(n-1)d)(a1+(n-1)d+d)其中,n为项数,a1为首项,d为公差,Sn为和。
四、递归数列求和:递归数列是一种特殊的数列,其中每一项都是前一项的函数。
递归数列的求和可以通过编写一个递归函数来实现。
例如,对于斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1可以编写一个递归函数,将前两个项相加,并递归调用函数来求和。
五、斐波那契数列求和:斐波那契数列是一种特殊的递归数列,其中前两个项为1,从第三项开始每一项都是前两项的和。
斐波那契数列求和可以通过编写一个循环来实现,累加每一项的值。
六、等差数列部分项求和:对于等差数列的部分项求和,可以通过求解两个和的差来实现。
设Sn为从第m项到第n项的和,Sm为从第1项到第m-1项的和,Sn 可以通过以下公式计算:Sn = Sn - Sm = (n-m+1)(a1 + an) / 2其中,m和n为项数,a1为首项,an为末项。
七、正弦数列求和:正弦数列是一种特殊的数列,其中每一项的值由正弦函数确定。
数列求和1■求数列的前n项和的方法(1)公式法①等差数列的前n项和公式②等比数列的前n项和公式(2)分组求和法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(5)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广2.常见的裂项公式111(1)=)n(n+1)nn+1.“、11(11)(2)(2n—1)(2n+1)2(2n—12n+1丿⑶卅寸丽-扣高频考点一分组转化法求和例1、已知数列{a}的前n项和S=兰尹,nG N*.nn2(1)求数列{a}的通项公式;n(2)设b=2a+(—1)a,求数列{b}的前2n项和.nnnn【感悟提升】某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.【变式探究】已知数列{a}的通项公式是a=2^3n-1+(―1)n・(ln2—In3)+(—nn1)n nln3,求其前n项和S.n高频考点二错位相减法求和例2、(2015・湖北)设等差数列{a}的公差为d,前n项和为S,等比数列{b}的公比为nnnq,已知b=a,b=2,q=d,S=100.11210(1)求数列{a},{b}的通项公式;nna(2)当d>1时,记c=b,求数列{c}的前n项和T.bn【感悟提升】用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S”与“qS”的表达式时应特别注意将两式“错项对齐”以便下一步准确nn写出“s—qS”的表达式;nn(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.【变式探究】已知数列{a}满足首项为a=2,a丄=2a(nW N*).设b=3loga—1+122(nG N*),数列{c}满足c=ab.nnnn(1)求证:数列{b}为等差数列;n(2)求数列{c}的前n项和S.nn高频考点三裂项相消法求和例3、设各项均为正数的数列{a}的前n项和为S,且S满足S2—(n2+n—3)S—3(n2nnnnn+n)=0,nE N*.(1)求a1的值;(2)求数列{a}的通项公式;n有aa+1+aa+1+^+aa+11122nn1【变式探究】已知函数f(x)=x a 的图象过点(4,2),令a n ^fn+1+fn ,nG N *.记数列{a }的前n 项和为S,则S=.nn 201711【感悟提升】(1)用裂项相消法求和时,要对通项进行变换,女如:需十:市=k"Jn+k1111ijn),nn+k =匸卡—帚)裂项后可以产生连续可以相互抵消的项•⑵抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(1)求s 的表达式;n⑵设b=^+?,求{b }的前n 项和T.2n+1练习:2n —13211.已知数列{a }的通项公式是a=r"-,其前n 项和S ,则项数n=()2nn 64A.13B.10C.9D.6 (3)证明:对一切正整数n. 【举一反三】在数列{a }中,a=1,当n$2时, 其前n 项和S 满足S 2=a nn2.已知数列{a}满足a=1,a•a=2n(nG N*),则S=()n1n+1n2012A.22012—1B.3*21006—3C.3・21006—1D.3・21005—213.已知函数f(x)=X2+2bx过(1,2)点,若数列{厂厂}的前n项和为匚则S2012的值为() 012,2011)010,2011)013,2012)012,2013)14.数列{a}满足a+a=T(nG N*),且a=1,S是数列{a}的前n项和,则S=()nnn+121nn21B.6C.10D.115.已知函数f(n)=n2cos(nn),且a=f(n)+f(n+1),则a+a+aa=()n123100A.-100B.0C.100D.102006.在数列{a}中,已知a=1,a+—a=sin—上弓—,记S为数列{a}的前n项和,则n1n+1n2nnS=()2014A.1006B.1007C.1008D.10097.在数列{a}中,a=1,a丄=(—1)n(a+1),记S为{a}的前n项和,则S=。
数列求和专题讲义一、知识梳理1.等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.3.一些常见数列的前n 项和公式(1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+2n -1=n 2.(3)2+4+6+8+…+2n =n (n +1).(4)12+22+…+n 2=n (n +1)(2n +1)6.注意:数列求和的常用方法(1)公式法:直接利用等差、等比数列的求和公式求和. (2)分组转化法:把数列转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12)121121(+--n n ;③1n +n +1=n +1-n . (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( )(2)当n ≥2时,1n 2-1=12)111(+-n n .( ) (3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )(5)如果数列{a n }是周期为k 的周期数列,那么S km =mS k (m ,k 为大于1的正整数).( )题组二:教材改编2.一个球从100 m 高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( ) A .100+200(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)3.1+2x +3x 2+…+nx n -1=________(x ≠0且x ≠1). 题组三:易错自纠4.设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( ) A.n 2+7n 4B.n 2+5n 3C.2n 2+3n 4D .n 2+n5.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400D .-4006.数列{a n }的通项公式为a n =n cosn π2,其前n 项和为S n ,则S 2 017=________. 三、典型例题题型一:分组转化法求和典例 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 引申探究:本例(2)中,求数列{b n }的前n 项和T n . 思维升华:分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.跟踪训练 等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)令c n =⎩⎪⎨⎪⎧2S n ,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .题型二:错位相减法求和典例 已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *). 思维升华:错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 跟踪训练设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n ,求数列{c n }的前n 项和T n .题型三:裂项相消法求和 命题点1:形如a n =1n (n +k )型典例已知数列{a n }的前n 项和为S n ,a 1=-2,且满足S n =12a n +1+n +1(n ∈N *).(1)求数列{a n }的通项公式; (2)若b n =log 3(-a n +1),设数列}1{1+n n b b 的前n 项和为T n ,求证:T n <34. 命题点2:a n =1n +n +k型典例 已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=________.思维升华:(1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n (n +k )=1k )11(kn n +-,裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.跟踪训练已知等差数列{a n }满足(a 1+a 2)+(a 2+a 3)+…+(a n +a n +1)=2n (n +1). (1)求数列{a n }的通项公式;(2)设b n =1a n ·a n +1,求{b n }的前n 项和S n .四、反馈练习1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17等于( ) A .9 B .8 C .17 D .163.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80 D .824.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( )A .5B .6C .7D .165.已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 2006.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018等于( ) A .22 018-1 B .3×21 009-3 C .3×21 009-1D .3×21 008-27.等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则1S k =________.8.有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为__________.9.已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.10.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.11.已知数列{a n }是首项为正数的等差数列,数列}1{1+n n a a 的前n 项和为n2n +1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2n a ,求数列{b n }的前n 项和T n .12.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =13log (1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .。
数列求和公式总结数列求和是数学中常见的问题,也是很多学生在学习数学时遇到的难题之一。
本文旨在总结数列求和的公式,帮助学生更好地理解和解决这类问题。
首先,我们需要明确一些基本概念。
数列是按照一定规律排列的一系列数,其中每个数都有特定的顺序。
数列求和即求所有数的和,在数学中表示为∑(读作sigma)。
一、等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a1,公差为d,第n项为an,则等差数列的求和公式为:Sn = (a1 + an) * n / 2其中,Sn表示等差数列的前n项和。
二、等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
设等比数列的首项为a1,公比为r(r≠0),第n项为an,则等比数列的求和公式有两种情况:1. 当|r|<1时,求和公式为:Sn = a1 * (1 - r^n) / (1 - r)2. 当|r|>1时,求和公式为:其中,Sn表示等比数列的前n项和。
三、特殊数列的求和公式除了等差数列和等比数列外,还有一些特殊的数列求和公式需要我们熟记。
1. 自然数列求和公式:Sn = n * (n + 1) / 2其中n为正整数。
这个公式常用于计算一连串自然数的和。
2. 平方数列求和公式:Sn = n * (n + 1) * (2n + 1) / 6其中n为正整数。
这个公式可以用来计算一连串平方数的和。
3. 立方数列求和公式:Sn = [n * (n + 1) / 2]^2其中n为正整数。
这个公式可以用来计算一连串立方数的和。
四、部分求和的应用有时候我们只需要计算数列的部分和,而不是全部求和。
这时可以应用等差数列或等比数列的部分求和公式。
例如,如果我们需要求等差数列的前n项和中的某一段连续项的和,可以利用部分求和的方法:其中,a1为这段连续项的首项,d为公差。
同样,等比数列的部分求和公式为:Sn = a1 * (1 - r^n) / (1 - r)其中,a1为这段连续项的首项,r为公比。
新高考数学复习考点知识培优专题讲解专题10 数列求和方法之错位相减法一、单选题1.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n二、解答题2.在公差不为零的等差数列{}n a 中,前五项和5n S =,且3a ,4a ,7a 依次成等比数列,数列{}n b 的前n 项和n T 满足210n n T b +-=(n *∈N ).(1)求n a 及n b ;(2)设数列{}n n a b ⋅的前n 项和为n A ,求n A .3.已知数列{a n }的前n 项和为S n ,且12S n =2n ﹣1. (1)求数列{a n }的通项公式,(2)设函数f (x )=(12)x ,数列{b n }满足条件b 1=f (﹣1),f (b n +1)()13n f b =--. ①求数列{b n }的通项公式,②设c n n nb a =,求数列{c n }的前n 项和T n . 4.数列{}n a 的前n 项和()2*4N n S n n n =-∈,数列{}n b 的前n 项和nT ,满足()*210N n n T b n +-=∈.(1)求n a 及n b ;(2)设数列{}n n a b ⋅的前n 项和为n A ,求n A 并证明:1n A ≤-.5.已知数列{}n a 是公差不为零的等差数列,若12a =,且1a 、5a 、17a 成等比数列.(1)求数列{}n a 的通项公式;(2)若2n an b =,求数列{}n n a b 的前n 项和n S . 6.已知数列{a n }的前n 项和为S n ,且满足2S n =3a n -3,其中n ∈N *.(1)证明:数列{a n }为等比数列;(2)设b n =2n -1,c n =n nb a ,求数列{c n }的前n 项和T n . 7.已知等比数列{}n a 中,314610,80a a a a +=+=.(1)求数列{}n a 的通项公式;(2)记2log =n n n b a a ,求数列{}n b 的前n 项和n T .8.已知数列{}n a 的前n 项和1()2n n S =-. (1)求数列{}n a 的通项公式;(2)设(21)n n b n a =-,求数列{}n b 的前n 项和n T .(3)若存在正整数n ,使得1()()0n n m a m a +--<成立,求实数m 的取值范围.9.已知数列{}n a 满足12a =,()121n n n a a n ++=.设n n a b n=. (1)求证:数列{}n b 是等比数列;(2)求数列{}n a 的前n 项和为n S .10.已知等比数列{}()n a n N *∈满足234a a a =,13223a a a +=.(1)定义:首项为1且公比为正数的等比数列为“M -数列”,证明:数列{}n a 是“M -数列”; (2)记等差数列{}n b 的前n 项和记为n S ,已知59b =,864S =,求数列{}21n n b a -的前n 项的和n T .11.已知等比数列{}n a 的公比0q >,且满足1236a a a +=,2434a a =,数列{}n b 的前n 项和(1)2n n n S +=,*n N ∈. (1)求数列{}n a 和{}n b 的通项公式;(2)设2238,,n n n n n n nb a n b bc a b n +++⎧⋅⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .12.已知各项都大于1的数列{a n }的前n 项和为S n ,4S n -4n +1=a n 2:数列{b n }的前n 项和为T n ,b n +T n =1.(1)分别求数列{a n }和数列{b n }的通项公式;(2)设数列{c n }满足c n =a n b n ,若对任意的n ∈N *.不等式5(λn +3b n )-2b n S n >λn (c 1+c 2+c 3+…+c n )恒成立,试求实数λ的取值范围.13.已知等差数列{}n a 的前n 项的和为n S ,且33a =,1055S =. (1)求数列{}n a 的通项公式;(2)设2n n n a b =,求数列{}n b 的前n 项和n T . 14.记等比数列{}n a 的前n 项和为n S ,已知()*121n n a S n N+=+∈.(1)求数列{}n a 的通项公式;(2)令3log n n n b a a =,求数列{}n b 的前n 项和n T .15.已知数列{}n a 的前n 项的和为n S ,且21n n S a =-.(1)求数列{}n a 的通项公式;(2)设n nn b a =,求数列{}n b 的前n 项和n T .16.已知数列{}n a 中,11a =,13n n n a a a +=+. (1)求证:112n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式; (2)数列{}n b 满足()312n n n n n b a =-⋅,数列{}n b 的前n 项和为n T ,若不等式1(1)2n n n n T λ--<+对一切*n ∈N 恒成立,求λ的取值范围.17.已知数列{a n }的首项为0,且2a n a n +1+a n +3a n +1+2=0.(1)证明数列1{}1n a +是等差数列,并求{a n }的通项公式; (2)已知数列{b n }的前n 项和为S n ,且21nn n b a =+,若不等式(-1)n λ<S n +3×2n +1对一切n ∈N *恒成立,求λ的取值范围.18.已知等比数列{a n }的公比大于1,且满足a 3+a 5=90,a 4=27.(1)求{a n }的通项公式;(2)记b n =log 3a n ,求数列{a n (b n +1)}的前n 项和T n.19.已知在等差数列{}n a 中,2513a a +=,其前8项和860S =.(1)求数列{}n a 的通项公式﹔(2)设数列{}n b 满足()33nn n b a =-⋅,求{}n b 的前n 项和n T .20.已知等差数列{}n a 的前n 项和为n S ,525S =,5a 和7a 的等差中项为11.(1)求n a 及n S ;(2)设1(1)2n n n n a b a n-+⋅=⋅,求数列{}n b 的前n 项和n T .21.甲、乙两名同学在复习时发现他们曾经做过的一道数列题目因纸张被破坏导致一个条件看不清,具体如下等比数列{}n a 的前n 项和为n S ,已知____________,(1)判断123,,S S S 的关系并给出证明.(2)若133a a -=,设12n n n b a =,{}n b 的前n 项和为n T ,证明43n T <. 甲同学记得缺少的条件是首项1a 的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第(1)问的答案是132,,S S S 成等差数列.如果甲、乙两名同学记得的答案是正确的,请通过推理把条件补充完整并解答此题.22.已知数列{}n a 中,12,a =且满足()1122n n n a a n N +*+-=∈. (1)求证:数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式; (2)求证:对于数列{}n b ,122n n b b nb a +++=的充要条件是1(1)2n n n b n -+=. 23.数列{}n a 的前n 项和为n S ,若13a =,点1(,)n n S S +在直11()n y x n n N n*+=++∈上. (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足2n a n n b a =,求数列{}n b 的前n 项和n T ;24.已知数列{}n a ,{}()*0,n n b b n N ≠∈,满足112a b =,112n n n n n a b b a b ++⋅=+. (1)令n n na cb =,证明:数列{}nc 为等差数列,并求数列{}n c 的通项公式; (2)若13n n b =,证明:12332n a a a a ++++<. 25.已知{}n a 是递增的等差数列,2a 、4a 是方程212320x x -+=的根 (1)求数列{}n a 的通项公式;(2)求数列{}3n n a ⋅的前n 项和nT . 三、填空题50.求和238135152222++++=____________. (用数字作答)。
温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。
考点10 数列求和
一、选择题
1.(2012·大纲版全国卷高考理科·T5)已知等差数列{}n a 的前n 项和为n S ,55a =,
515S =,则数列1
1
{
}n n a a +的前100项和为( ) (A )
100101 (B )99101
(C )99100 (D )101
100 【解题指南】本题考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用,通过a 5=5,S 5=15,求出1a 和d ,进而求出等差数列的通项公式,利用裂项法求和.
【解析】选A.设{}n a 的公差为d,则有115a 4d 55(a a )
152
+=⎧⎪⎨⨯+=⎪⎩,
,解得1,11==d a ,则n a n =, 11
1)1(111+-=+=+n n n n a a n n ,设数列11{}n n a a +的前100项和为T 100,
100111111100T (1)()()1223100101101101
∴=-+-+⋅⋅⋅+-=-=.
2.(2012·大纲版全国卷高考文科·T6)已知数列{}n a 的前n 项和为n S ,11=a ,
12+=n n a S ,则=n S ( )
(A )12-n (B )1)23
(-n (C )1)3
2(-n (D )
1
21-n
【解题指南】思路一:利用公式1--=n n n S S a ,求出1,+n n a a 之间的关系.
思路二:采用特殊值法,求出2a ,在四个选项中求2S 进行验证.
【解析】选B.方法一:当1=n 时,11=a ,
当2≥n 时,n n n n n a a S S a 2211-=-=+-,解得123+=n n a a ,
23`1=∴+n n a a ,n n 21,n 1,a 13(),n 2,22-=⎧⎪∴=⎨≥⎪⎩11
)23(2
31)
23(21211--=--+=∴n n n S .
方法二:2112a a S == ,212=∴a .2
3
211212=+=+=∴a a S .
3.(2012·重庆高考理科·T1)在等差数列{}n a 中,,5,142==a a 则{}n a 的前5项和=5S ( )
(A)7 (B)15 (C)20 (D)25
【解题指南】直接根据等差数列的性质即可求出前5项的和5S 的值. 【解析】选B. 因为{}n a 为等差数列,且,5,142==a a 则152
)
51(52)(52)(542515=+=+=+=
a a a a S . 二、解答题
4. (2012·重庆高考文科·T16)已知{}n a 为等差数列,且831=+a a ,.1242=+a a (1)求{}n a 的通项公式;
(2)记{}n a 的前n 项和为n S ,若21,,+k k S a a 成等比数列,求正整数k 的值.
【解题指南】直接根据等差数列、等比数列的定义及等差数列的前n 项和公式求解即可.
【解析】(1)设数列{}n a 的公差为d ,由题意知
112a 2d 8,
2a 4d 12,
+=⎧⎨
+=⎩解得2,21==d a , 所以n n d n a a n 2)1(22)1(1=-+=-+=,即n a 2n =. (2)由(1)可得).1(2
)
22(2)(1+=+=+=
n n n n a a n S n n 因21,,+k k S a a 成等比数列,所以212+=k k S a a ,
从而)3)(2(2)2(2++=k k k ,即0652=--k k ,解得6=k 或1-=k (舍去) , 因此6=k .
关闭Word 文档返回原板块。