第14讲数列求和及数列的综合应用
- 格式:docx
- 大小:17.31 KB
- 文档页数:4
6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。
《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。
举例说明数列的组成,如自然数数列、等差数列等。
1.2 数列的项解释数列中的每一个数称为数列的项。
强调数列项的顺序和重复性质。
1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。
举例讲解如何写出简单数列的通项公式。
第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。
练习写出几个给定数列的列举表示。
2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。
举例说明如何用公式法表示等差数列和等比数列。
2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。
引导学生通过观察图形来理解数列的特点。
第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。
举例说明如何确定一个数列的项数。
3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。
举例说明如何判断一个数列的单调性。
3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。
举例说明如何判断一个数列的周期性。
第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。
推导等差数列的通项公式。
4.2 等比数列的通项公式讲解等比数列的定义和性质。
推导等比数列的通项公式。
4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。
举例讲解如何求解其他类型数列的通项公式。
第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。
推导等差数列的前n项和的公式。
5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。
推导等比数列的前n项和的公式。
5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。
举例讲解如何求解其他类型数列的前n项和。
第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。
专题04 数列求和及综合应用【要点提炼】1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1)6.2.(1)数列通项a n 与前n 项和S n 的关系为a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和(1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题.考点一 数列求和及综合应用考向一 a n 与S n 的关系问题【典例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值.解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14, 所以数列{a n }是公比、首项均为-14的等比数列. 所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n.(2)由(1)知b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2, c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.由S n 求a n 时,一定注意分n =1和n ≥2两种情况,最后验证两者是否能合为一个式子,若不能,则用分段形式来表示.【拓展练习1】 (2020·合肥检测)已知正项数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式;(2)设b n =(1-a n )2-a (1-a n ),若{b n }是递增数列,求实数a 的取值范围. 解 (1)a 2n =S n +S n -1(n ≥2), a 2n -1=S n -1+S n -2(n ≥3).相减可得a 2n -a 2n -1=a n +a n -1,∵a n >0,a n -1>0,∴a n -a n -1=1(n ≥3). 当n =2时,a 22=a 1+a 2+a 1,∴a 22=2+a 2,a 2>0,∴a 2=2. 因此n =2时,a n -a n -1=1成立. ∴数列{a n }是等差数列,公差为1. ∴a n =1+n -1=n .(2)b n =(1-a n )2-a (1-a n )=(n -1)2+a (n -1), ∵{b n }是递增数列,∴b n +1-b n =n 2+an -(n -1)2-a (n -1) =2n +a -1>0,即a >1-2n 恒成立,∴a >-1. ∴实数a 的取值范围是(-1,+∞). 考向二 数列求和 方法1 分组转化求和【典例2】 (2020·山东五地联考)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d ,又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.探究提高 1.求解本题要过四关:(1)“转化”关,把不等式的解转化为方程根的问题;(2)“方程”关,利用方程思想求出基本量a 1及d ;(3)“分组求和”关,观察数列的通项公式,把数列分成几个可直接求和的数列;(4)“公式”关,会利用等差、等比数列的前n 项和公式求和.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.本题易忽视数列通项的下标如错得a 2n =n ,应注意“=”左右两边保持一致.【拓展练习2】 (2020·潍坊调研)设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40.数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *. (1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和P n .解 (1)设等差数列{a n }的公差为d , 由题意,得⎩⎨⎧a 1+d =8,4a 1+6d =40,解得⎩⎨⎧a 1=4,d =4,所以a n =4n , 因为T n -2b n +3=0,所以当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2),则数列{b n }为首项为3,公比为2的等比数列, 所以b n =3·2n -1.(2)c n =⎩⎨⎧4n ,n 为奇数,3·2n -1,n 为偶数,当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n ) =(4+4n -4)·n 22+6(1-4n2)1-4=2n +1+n 2-2.当n 为奇数时,法一 n -1(n ≥3)为偶数,P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1,n =1时符合上式.法二 P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1) =(4+4n )·n +122+6(1-4n -12)1-4=2n +n 2+2n -1.所以P n =⎩⎨⎧2n +1+n 2-2,n 为偶数,2n +n 2+2n -1,n 为奇数.方法2 裂项相消求和【典例3】 (2020·江南六校调研)设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2.(1)证明:{a n }为等比数列; (2)记b n =log 2a n ,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围.(1)证明 由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n , 所以a n +1=2a n (n ≥2).又a 2=2a 1,所以a n +1a n=2(n ∈N *),所以{a n }是首项为2,公比为2的等比数列. (2)解 由(1)可得a n =2n ,所以b n =n . 则λb n b n +1=λn (n +1)=λ⎝ ⎛⎭⎪⎫1n -1n +1, T n =λ⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=λ⎝ ⎛⎭⎪⎫1-1n +1,因为T n ≥10,所以λn n +1≥10,从而λ≥10(n +1)n ,因为10(n +1)n =10⎝ ⎛⎭⎪⎫1+1n ≤20, 所以λ的取值范围为[20,+∞).探究提高 1.裂项相消求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【拓展练习3】 设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,① 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1,又n =1时,a 1=2适合上式,从而{a n }的通项公式为a n =22n -1.(2)记⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n2n +1.方法3 错位相减法求和【典例4】 (2020·济南统测)在①a 3=5,a 2+a 5=6b 2,②b 2=2,a 3+a 4=3b 3,③S 3=9,a 4+a 5=8b 2这三个条件中任选一个,补充至横线上,并解答问题. 已知等差数列{a n }的公差为d (d >1),前n 项和为S n ,等比数列{b n }的公比为q ,且a 1=b 1,d =q ,________. (1)求数列{a n },{b n }的通项公式; (2)记c n =a nb n,求数列{c n }的前n 项和T n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 选条件①.(1)∵a 3=5,a 2+a 5=6b 2,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1+2d =5,2a 1+5d =6a 1d ,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=256,d =512(舍去).∴⎩⎨⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件②.(1)∵b 2=2,a 3+a 4=3b 3,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1d =2,2a 1+5d =3a 1d 2,即⎩⎨⎧a 1d =2,2a 1+5d =6d , 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=-1,d =-2(舍去).∴⎩⎨⎧b 1=1,q =2. ∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n . ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件③.(1)∵S 3=9,a 4+a 5=8b 2,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1+d =3,2a 1+7d =8a 1d ,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=218,d =38(舍去),∴⎩⎨⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n . ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【拓展练习4】 (2020·潍坊模拟)在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中,a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列, 所以a n =3n -1.选①②时,设数列{b n }的公差为d 1. 因为a 2=3,所以b 1+b 2=3(ⅰ).因为b 2n =2b n +1,所以当n =1时,b 2=2b 1+1(ⅱ). 由(ⅰ)(ⅱ)解得b 1=23,b 2=73,所以d 1=53,所以b n =5n -33.所以b n a n=5n -33n .所以S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,所以13S n =232+733+1234+…+5n -83n +5n -33n +1.上面两式相减,得23S n =23+5⎝ ⎛⎭⎪⎫132+133+…+13n -5n -33n +1 =23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1.所以S n =94-10n +94×3n .选②③时,设数列{b n }的公差为d 2.因为a 2=3,所以b 1+b 2=3,即2b 1+d 2=3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 2)2=b 1(b 1+3d 2),化简得d 22=b 1d 2.因为d 2≠0,所以b 1=d 2,从而d 2=b 1=1,所以b n =n . 所以b n a n =n 3n -1.所以S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,所以13S n =131+232+333+…+n -13n -1+n 3n .上面两式相减,得23S n =1+131+132+133+…+13n -1-n 3n=32⎝ ⎛⎭⎪⎫1-13n -n 3n =32-2n +32×3n . 所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d 3.因为b 2n =2b n +1,所以b 2=2b 1+1,所以d 3=b 1+1.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 3)2=b 1(b 1+3d 3),化简得d 23=b 1d 3.因为d 3≠0,所以b 1=d 3,无解,所以等差数列{b n }不存在.故不合题意.考向三 与数列相关的综合问题【典例5】 (2020·杭州滨江区调研)设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2. ∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2,则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,设公比为q ,∵b 1=a 1=1,b 2=a 2=3, ∴q =3.∴b n =3n -1,∴数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 可化为3n -12≤n 2.又n ∈N *,∴n =1,或n =2.故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题要注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【拓展练习5】 已知数列{a n }与{b n }满足:a 1+a 2+a 3+…+a n =2b n (n ∈N *),若{a n }是各项为正数的等比数列,且a 1=2,b 3=b 2+4. (1)求数列{a n }与{b n }的通项公式; (2)若数列{c n }满足c n =a nb n b n +1(n ∈N *),T n 为数列{c n }的前n 项和,证明:T n <1. (1)解 由题意知,a 1+a 2+a 3+…+a n =2b n ,① 当n ≥2时,a 1+a 2+a 3+…+a n -1=2b n -1,② ①-②可得a n =2(b n -b n -1) ⇒a 3=2(b 3-b 2)=2×4=8,∵a 1=2,a n >0,设{a n }的公比为q , ∴a 1q 2=8⇒q =2,∴a n =2×2n -1=2n (n ∈N *). ∴2b n =21+22+23+ (2)=2(1-2n )1-2=2n +1-2,∴b n =2n -1(n ∈N *).(2)证明 由已知c n =a n b n ·b n +1=2n(2n -1)(2n +1-1)=12n -1-12n +1-1, ∴T n =c 1+c 2+…+c n=121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,当n ∈N *时,2n +1>1,∴12n +1-1>0,∴1-12n +1-1<1,故T n <1.【专题拓展练习】一、单选题1.已知数列{}n a 满足()2*11n n n a a a n N+=-+∈,设12111n nS a a a =+++,且10910231a S a -=-,则数列{}n a 的首项1a 的值为( )A .23 B .1C .32D .2【答案】C 【详解】若存在1n a =,由2111n n n a a a --=-+,则可得11n a -=或0n a =,由12111n nS a a a =+++可得0n a ≠,由10910231a S a -=-可得101a ≠所以{}n a 中恒有1n a ≠由211n n n a a a +=-+,可得()111n n n a a a +-=-所以()11111111n n n n n a a a a a +==----,即111111n n n a a a +=---所以1212231111111111111111n n n n S a a a a a a a a a +⎛⎫⎛⎫⎛⎫=+++=-+-++-⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭111111n a a +=--- 所以110109*********a S a a a -=---=-,即1010101010123222111111a a a a a a =+--=----= 所以1121a =-,则1112a -=,所以132a = 2.已知在数列{}n a 中,14a =,26a =,且当2n ≥时,149n n a a +=-,若n T 为数列{}nb 的前n 项和,19(3)n n n n a b a a +-=⋅,则当175(3)()8n n a T λ+=-⋅-为整数时,n λ=( )A .6B .12C .20D .24 【答案】D 【详解】当2n ≥时,149n n a a +=-,得134(3)n n a a +-=-,又26a =,∴{3}n a -从第二项开始是首项为3,公比为4的等比数列,∴2334n n a --=⨯(2n ≥),∴2413432n n n a n -=⎧=⎨⨯+≥⎩,,, 当1n =时,1138T b ==,217155(3)()82a T Z λ=-⋅-=∉,不符合题意, 当2n ≥时,221213411(41)(41)4141n n n n n n b -----⨯==-++++, ∴12221131171()84141841n n n n T b b b ---=++⋅⋅⋅+=+-=-+++, 则111115534154141n n n λ---=⨯⨯⨯=-++,由λ为整数可知141n -+是15的因数, ∴当且仅当2n =时λ可取整数,12λ=,所以24n λ=,3.设n S 为数列{}n a 的前n 项和,*()(11),2n n n n S a n N -+=∈,则数列{}n S 的前7项和为( ) A .1256-B .85256-C .11024- D .3411024-【答案】B 【详解】 ∵(1)12nn n n S a -+=, ∴1n =时,1112S a +=-,即1112a a +=-,114a =-,由已知1(1)2nn n n S a =--, 2n ≥时,11111111(1)(1)(1)(1)222n n n nn n n n n n n n n na S S a a a a -----=-=----+=-+-+(*), (*)式中n 为偶数时,112n n n na a a -=++,112n n a -=-,此时1n -为奇数, ∴n 为奇数时112n n a +=-(*)式中n 为奇数时,112n n n n a a a -=--+,1122n n na a --=-,即1111112222n n n n a -+-⎛⎫=-⨯-+= ⎪⎝⎭,此时1n -为偶数,∴n 为偶数时,12n na =, ∴11,21,2n n nn a n +⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,由1(1)2nn n nS a =--,得n 为奇数时,11122n n n S +=-,n 为偶数时,11022nn nS =-=, ∴数列{}n S 的前7项和为11111111421686432256128⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11118541664256256=----=-. 4.若()()*12coscoscoscos 5555n n n S n ππππ-=++++∈N ,则1S 、2S、、2020S 中值为0的共有( ) A .202个 B .404个C .606个D .808个【答案】B 【详解】由于4coscos055ππ+=,23cos cos 055ππ+=,5cos 15π=-,69cos cos 055ππ+=,78cos cos 055ππ+=,10cos 15π=,所以234cos coscos cos 05555ππππ+++=, 2310cos cos cos cos 05555ππππ++++=,所以40S =,100S =,()()()101210coscos cos555n n n n n S S πππ++++-=+++()()()()()()1627510cos cos cos cos cos cos 555555n n n n n n ππππππ++++++⎡⎤⎡⎤⎡⎤=++++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()()()()()112255cos cos cos cos cos cos 555555n n n n n n ππππππ++++++⎡⎤⎡⎤⎡⎤=-+-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0=,所以,()10n n S S n N *+=∈,则()44+100n SS n N *==∈,()10100n S S n N *==∈,因此,1S 、2S 、、2020S 中值为0的共有2022404⨯=个.5.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8 B .9 C .10 D .11【答案】A 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.6.已知数列{}n a 满足123232n n a a a na ++++=,设1(1)2nn n a b n -=+,n S 为数列{}n b 的前n 项和.若t n S <对任意n *∈N 恒成立,则实数t 的最小值为( ) A .1 B .2C .32D .52【答案】C 【详解】1n =时,12a =,因为123232n n a a a na ++++=,所以2n ≥时,1123123(1)2n n a a a n a --++++-=,两式相减得到12n n na -=,故12,n n a n-=1n =时不适合此式,所以11,11,2(1)2(1)nn n n a b n n n n -=⎧⎪==⎨≥+⎪+⎩,当1n =时,111S b ==, 当2n ≥时,111111313123341221n S n n n ⎛⎫=+-+-+-=-< ⎪++⎝⎭, 所以32t ≥;所以t 的最小值32; 7.已知数列{}n a 的前n 项和为n S ,满足2n S an bn =+,(,a b 均为常数),且72a π=.设函数2()sin 22cos 2xf x x =+,记()n n y f a =,则数列{}n y 的前13项和为( ) A .132πB .7πC .7D .13【答案】D 【详解】因为2()sin 22cos sin 2cos 12xf x x x x =+=++, 由2n S an bn =+,得()()()2211122n n n S S an bn a n b n an a b n a -=-=+----=-+≥,又11a S a b ==+也满足上式,所以2n a an a b =-+, 则12n n a a a --=为常数,所以数列{}n a 为等差数列; 所以11372a a a π+==,()()111131131313sin 2cos 1sin 2cos 1y f a f a a a a y a =+=++++++()()1111sin 2cos 1sin 22cos 12a a a a ππ=+++-+-+=.则数列{}n y 的前13项和为()()()1213...f a f a f a +++,记()()()1213...M f a f a f a =+++,则()()()13121...M f a f a f a =+++,所以()()11321326M f a f a ⎡⎤=+=⎣⎦,因此13M =.8.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用。
数列求和与数列的综合应用 一、分组求和法:若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减。
1、已知数列{}n a 的前n 项和*∈+=N n nn S n ,22.(1)求数列{}n a 的通项公式;(2)设()n na n ab n 12-+=,求数列{}n b 的前n 2项和T 2n .2、已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和S n .二、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
(2)常见的裂项技巧①1n (n +1)=1n -1n +1②1n(n+2)=12(1n−1n +2) ③1(2n −1)(2n+1)=12(12n−1−12n +1)④1n +n +1=n +1-n 3、设数列{}n a 满足123(21)2n a a n a n +++-= .(1)求{}n a 的通项公式;n .4、已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .三、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的。
5、已知 a n 是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3(1)求数列 a n 通项公式;(2) b n 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列 b na n 的前n 项和T n .6、已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和T n *()n ∈N .四、分奇数、偶数求和(课后作业)7、设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且(1)证明:23n n a a +=;(2)求n S8、已知数列{}n a 的前n 项和为n S ,若a 1=2,a n +1+a n =2n −1(1) 求数列{}n a 的通项公式(2) 求n S。
§ 6.4 数列乞降、数列的综合应用考纲解读考点考纲内容要求浙江省五年高考统计201420152016201720131. 认识等差数列与一次函数、等比数列与指数函数的18(2),717(2)( 文 17(2)( 文1. 数列的求 关系 .分 19(2),7 掌握),),和2. 能利用等差、 等比数列前 文 ),4 分14(8 分8 分n 项和公式及其性质求一些分特别数列的和 .18(1),720,15 分2. 数列的综 能利用数列的等差关系或 掌握分 19(1), 17(1)( 文 20(2), 22,15 分合应用等比关系解决实质问题 .7 分),8 分19( 文 ),14 分7 分剖析解读1. 等差数列和等比数列是数列的两个最基本的模型 , 是高考取的热门之一 . 基本知识的考察以选择题或填空题的形式体现 , 而综合知识的考察则以解答题形式体现.2. 经过以数列为载体来考察推理概括、类比的能力成为高考的热门 .3. 数列常与其余知识如不等式、函数、概率、分析几何等综合起来进行考察 .4. 估计 2019 年高考取 , 对数列与不等式的综合题的考察还是热门, 复习时应惹起高度重视 .五年高考考点一 数列的乞降1.(2017 课标全国Ⅰ理 ,12,5 分 ) 几位大学生响应国家的创业呼吁 , 开发了一款应用软件 . 为激发大家学习数 学的兴趣 , 他们推出了“解数学题获得软件激活码”的活动 . 这款软件的激活码为下边数学识题的答案 : 已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16, ,, 此中第一项为哪一项 20, 接下来的两项是 20,2 1, 再接下来的三项是 20 ,2 1,2 2, 依此类推 . 求知足以下条件的最小整数 N:N>100 且该数列的前 N 项和为 2 的整数幂 . 那么该款软件 的激活码是 ( ) A.440 B.330 C.220 D.110 答案 A 2.(2015 江苏 ,11,5 分 ) 设数列 {a n } 知足 a 1=1, 且 a n+1-a n =n+1(n ∈N * ), 则数列 前 10 项的和为.答案3.(2016 浙江文 ,17,15 分 ) 设数列 {a } 的前 n 项和为 S . 已知 S =4,a*n =2S +1,n ∈N .n 2n+1n(1) 求通项公式 a n ;(2) 求数列 {|a n -n-2|} 的前 n 项和 .分析 (1) 由题意得 则又当 n ≥ 2 时 , 由 a n+1-a n =(2S n +1)-(2S n-1+1)=2a n , 得 a n+1=3a n .所以 , 数列 {a n } 的通项公式为 a n =3n-1 ,n ∈ N * .(2) 设 b n =|3 n-1 -n-2|,n ∈ N * , 则 b 1=2,b 2=1.n-1n-1当 n ≥ 3 时 , 因为 3 >n+2, 故 b n =3 -n-2,n ≥3.当 n ≥ 3 时 ,T n =3+ - = ,所以 T n =4.(2015 浙江文 ,17,15 分) 已知数列 {a n } 和 {b n } 知足 a 1=2,b 1=1,a n+1=2a n (n ∈ N * ),b 1+ b 2+ b 3+, + b n =b n+1-1(n ∈ N * ).(1) 求 a n 与 b n ;(2) 记数列 {a n b n } 的前 n 项和为 T n , 求 T n .n*分析(1) 由 a 1=2,a n+1=2a n , 得 a n =2 (n ∈ N ).当 n=1 时 ,b 1=b 2-1, 故 b 2=2.当 n ≥ 2 时 , b n =b n+1-b n , 整理得= ,n*所以 b =n(n∈ N).(2) 由 (1) 知 a n b n =n · 2n ,n23n所以 T =2+2· 2 +3· 2 +, +n · 2 ,2T n =22+2· 23+3·24+, +n ·2n+1,n n 2 3nn+1所以 T -2T =2+2 +2 +,+2 -n ·2 .故 T n =(n-1)2n+1+2(n ∈ N * ).} 是各项均为正数的等比数列, 且 a +a =6,a a =a .5.(2017山东文 ,19,12分 ) 已知 {a n121 23(1) 求数列 {a n } 的通项公式 ; (2){b n } 为各项非零的等差数列, 其前 分析 此题考察等比数列与数列乞降 n 项和为.S n .已知S 2n+1=b n b n+1, 求数列的前 n 项和T n .(1) 设 {a n } 的公比为 q,由题意知 :a 1(1+q)=6,q=a 1q 2,又 a n >0, 解得 a 1=2,q=2, 所以 a n =2n .(2) 由题意知 :S ==(2n+1)bn+1 ,2n+1又 S 2n+1=b n b n+1,b n+1≠ 0, 所以 b n =2n+1.令 c =, 则 c =.nn所以 T =c +c +,+c = + + +, ++,n12n又 T n = + + +, ++, 两式相减得 T = +-,n所以 T n =5-.6.(2016 课标全国Ⅱ ,17,12 分 )S 为等差数列 {a } 的前 n 项和 , 且 a =1,S =28. 记 b =[lga n ], 此中 [x] 表示不超nn17n过 x 的最大整数 , 如 [0.9]=0,[lg99]=1.(1) 求 b 1,b 11,b 101;(2) 求数列 {b n } 的前 1000 项和 .分析 (1) 设 {a n } 的公差为 d, 据已知有 解得 d=1.所以 {a n } 的通项公式为 a n =n.7+21d=28, b 1 =[lg1]=0,b 11 =[lg11]=1,b 101=[lg101]=2.(6 分 )(2) 因为 bn = (9分 )所以数列 {b n } 的前 1000 项和为 1× 90+2×900+3×1=1893.(12分 )7.(2015 天津 ,18,13 分 ) 已知数列 {a } 知足 a =qa (q 为实数 , 且 q≠ 1),n ∈ N ,a =1,a =2, 且 a +a ,a +a ,a +an n+2n *1 2 233445 成等差数列 .(1)求 q 的值和 {a n} 的通项公式 ;(2)设 b n=,n ∈ N* , 求数列 {b n} 的前 n 项和 .分析 (1) 由已知 , 有(a 3+a4)-(a 2+a3)=(a 4+a5)-(a 3+a4), 即 a4-a 2=a5-a 3, 所以a2(q-1)=a 3(q-1). 又因为 q≠1, 故 a3=a2=2,由 a3=a1· q, 得 q=2.当 n=2k-1(k ∈ N* ) 时 ,a n=a2k-1 =2k-1 = ;k* n 2k当 n=2k(k ∈ N ) 时 ,a =a =2= .所以 ,{a n}的通项公式为a n=(2) 由 (1) 得b n= =. 设 {b n} 的前n 项和为S n, 则S n=1×+2×+3×+,+(n-1) ×+n×,S n=1×+2×+3×+, +(n-1) ×+n×,上述两式相减, 得S=1++ +, + - = -=2--,n整理得 ,S n=4-.*所以 , 数列 {b n} 的前 n 项和为 4-,n ∈ N .8.(2013 辽宁 ,14,5 分 ) 已知等比数列 {a n} 是递加数列 ,S n是 {a n} 的前 n 项和 . 若 a1,a 3是方程 x2-5x+4=0 的两个根,则 S6= .答案639.(2013 重庆 ,12,5 分 ) 已知 {a n} 是等差数列 ,a 1=1, 公差 d≠ 0,S n为其前 n 项和 , 若 a1,a 2,a 5成等比数列 , 则S8 = .答案6410.(2013 湖南 ,15,5 分 ) 设 S n为数列 {a n} 的前 n 项和 ,S n=(-1) n a n- ,n ∈ N* , 则(1)a 3= ;.(2)S +S +, +S =1 2 100答案(1)- (2)11.(2017 北京文 ,15,13 分 ) 已知等差数列 {a } 和等比数列 {b } 知足 a =b =1,a +a =10,b b =a .n n 11 24 2 45(1)求 {a n} 的通项公式 ;(2)乞降 :b 1+b3 +b5+, +b2n-1 .分析此题考察等差数列及等比数列的通项公式, 数列乞降 . 考察运算求解能力.(1)设等差数列 {a n} 的公差为 d.因为 a2+a4=10, 所以 2a1+4d=10.解得 d=2. 所以 a n=2n-1.(2) 设等比数列 {b n} 的公比为q.2 4511 3因为 b b =a ,所以 b qb q =9.解得 q 2=3.2n-2 n-1所以 b 2n-11 . =b q=31 3 52n-12+3 n-1=.进而 b +b +b +,+b =1+3+3 +,12.(2013浙江 ,18,14分 ) 在公差为 d 的等差数列 {a } 中 , 已知 a =10, 且 a ,2a2+2,5a 3成等比数列 .n11(1) 求 d,a n ;|+|a |+|a |+ , +|a |.(2) 若 d<0, 求 |a1 n23分析 (1) 由题意得 5a 3· a 1=(2a 2+2) 2,2即 d -3d-4=0.故 d=-1 或 d=4.**所以 a =-n+11,n∈ N或 a =4n+6,n ∈ N.nn(2) 设数列 {a n } 的前 n 项和为 S n .因为 d<0, 由 (1) 得 d=-1,a n =-n+11, 则当 n ≤ 11 时 ,|a |+|a2 |+|a |+ , +|an |13n2 n. =S =- n +当 n ≥ 12 时,|a1|+|a 2|+|a 3|+ , +|a n |=-S n +2S 11= n 2-n+110.综上所述 ,|a 1|+|a 2|+|a 3|+ , +|a n |=13.(2017 天津文 ,18,13 分 ) 已知 {a n } 为等差数列 , 前 n 项和为 S n (n ∈ N * ),{b n } 是首项为 2 的等比数列 , 且公比大于 0,b+b =12,b =a -2a ,S=11b4 .2 334111(1) 求 {a n } 和{b n } 的通项公式 ; *(2) 求数列 {a 2n nb } 的前 n 项和 (n ∈ N ).分析 本小题主要考察等差数列、等比数列及其前n 项和公式等基础知识 . 考察数列乞降的基本方法和运 算求解能力 .(1) 设等差数列 {a n } 的公差为 d, 等比数列 {b n } 的公比为 q. 由已知 b 2+b 3=12, 得 b 1(q+q 2)=12, 而 b 1=2, 所以 q 2+q-6=0.又因为 q>0, 解得 q=2.n所以 ,b n =2 .由 b 3=a 4-2a 1, 可得 3d-a 1=8①. 由 S 11=11b 4, 可得 a 1+5d=16②, 联立①② ,解得 a 1=1,d=3, 由此可得 a n =3n-2.所以 ,{a n } 的通项公式为 a n =3n-2,{b n } 的通项公式为 b n =2n .(2) 设数列 {a 2n b n } 的前 n 项和为 T n , 由 a 2n =6n-2, 有 T n =4× 2+10× 22+16× 23+, +(6n-2) ×2n ,n 2 3 4 nn+12T =4× 2 +10×2 +16× 2 +, +(6n-8)×2 +(6n-2) × 2 ,上述两式相减 , 得 -T n =4× 2+6× 22+6× 23+, +6× 2n -(6n-2) × 2n+1 =-4-(6n-2) × 2n+1=-(3n-4)2 n+2-16.得 T n =(3n-4)2 n+2+16.所以 , 数列 {a 2n b n } 的前 n 项和为 (3n-4)2 n+2+16.} 的公比为 q. 已知14.(2015 湖北 ,19,12 分 ) 设等差数列 {a } 的公差为 d, 前 n 项和为 S , 等比数列 {bnnnb 1 =a 1,b 2=2,q=d,S 10 =100.(1) 求数列 {a },{b} 的通项公式 ;nn(2) 当 d>1 时 , 记 c n = , 求数列 {c n } 的前 n 项和 T n .分析(1) 由题意有 ,即解得或故或n n n-1 n=,(2) 由 d>1, 知 a =2n-1,b =2 , 故 c于是 T n=1+ + + + +, + , ①T n= + + + + +, + . ②①- ②可得T=2+ + +, + - =3- ,n故 T n=6-.15.(2014 山东 ,19,12 分 ) 已知等差数列 {a n} 的公差为 2, 前 n 项和为 S n, 且 S1,S 2,S 4成等比数列 .(1)求数列 {a n} 的通项公式 ;(2) 令 b n=(-1) n-1 , 求数列 {b n} 的前 n 项和 T n.分析(1) 因为 S =a ,S =2a + ×2=2a +2,1 12 1 1S4 =4a1+×2=4a1+12,2由题意得 (2a 1+2) =a1(4a 1+12),(2)b n-1 =(-1) n-1=(-1)n=(-1) n-1 .当 n 为偶数时 ,n- +, + -T ==1-=.当 n 为奇数时 ,T n =-+, -+++=1+=.所以 T=n16.(2013 江西 ,17,12n n知足 :2 n 2+n)=0. 分 ) 正项数列 {a } 的前 n 项和 S -(n +n-1)S -(n(1) 求数列 {a } 的通项公式 a ;n n(2) 令 b = , 数列 {b } 的前 n 项和为 T . 证明 : 关于随意的*n∈N , 都有 T < .n n n n分析(1) 由 -(n 2+n-1)S n-(n 2+n)=0, 得 [S n-(n 2+n)](S n+1)=0.因为n n n2{a } 是正项数列 , 所以 S >0,S =n +n.于是 a1=S1=2,n ≥ 2 时 ,a n=S n-S n-1 =n2+n-(n-1) 2-(n-1)=2n. 综上 , 数列 {a n} 的通项 a n=2n.(2) 证明 : 因为 a n=2n,b n= ,则 b = = - .nT n = 1-+-+-+,+ - + -= < = .17.(2013 山东 ,20,12 分 ) 设等差数列 {a n} 的前 n 项和为 S n, 且 S4=4S2,a 2n=2a n+1.(1)求数列 {a n} 的通项公式 ;(2)设数列 {b n} 的前 n 项和为 T n, 且 T n+=λ ( λ为常数 ), 令 c n=b2n(n ∈ N* ), 求数列 {c n} 的前 n 项和 R n. 分析(1) 设等差数列 {a n} 的首项为 a1, 公差为 d.由 S4=4S2,a 2n=2a n+1 得1 n *解得 a =1,d=2. 所以 a =2n-1,n ∈ N.(2) 由题意知 :T n=λ - ,所以 n≥ 2 时 ,b =T -Tn-1 =- + = .nn故 c n=b2n= =(n-1) ,n ∈ N* .所以 R =0×+1×+2×+3×+, +(n-1) ×, n则 R n=0×+1×+2×+, +(n-2) ×+(n-1) ×, 两式相减得R = ++ +, +-(n-1) ×n=-(n-1) ×= -,整理得 R n=.所以数列 {c n} 的前 n 项和 R n=.18.(2013 四川 ,16,12分 ) 在等差数列 {a } 中 ,a +a =8, 且 a 为 a 和 a 的等比中项 , 求数列 {a } 的首项、公差n13429n及前 n 项和 .分析 设该数列公差为d, 前 n 项和为 S . 由已知 , 可得n2a 1+2d=8,(a 1+3d) 2=(a 1+d)(a 1+8d).所以 a +d=4,d(d-3a1)=0,1解得 a 1=4,d=0, 或 a 1=1,d=3, 即数列 {a n } 的首项为 4, 公差为 0, 或首项为 1, 公差为 3.所以数列的前 n 项和 S n =4n 或 S n =.考点二数列的综合应用1.(2015 福建 ,8,5 分 ) 若 a,b 是函数 f(x)=x 2-px+q(p>0,q>0) 的两个不一样的零点 , 且 a,b,-2 这三个数可适合排序后成等差数列 , 也可适合排序后成等比数列 , 则 p+q 的值等于 ( )A.6B.7C.8D.9 答案 D2.(2017 北京理 ,10,5 分 ) 若等差数列 {a n } 和等比数列 {b n } 知足 a 1=b 1=-1,a 4=b 4=8, 则=.答案 13.(2016 浙江 ,20,15 分 ) 设数列 {a n } 知足 ≤ 1,n ∈ N * .(1) 证明 :|a n | ≥ 2n-1 (|a 1|-2),n ∈ N * ;(2) 若 |a n | ≤ ,n ∈ N * , 证明 :|a n | ≤ 2,n ∈ N * .证明 (1) 由≤ 1 得 |a |- |a | ≤1,故-≤ ,n ∈N ,nn+1*所以 -=++, +≤+ +,+ <1,所以 |a nn-1(|a 1 |-2).|≥ 2(2) 任取 n ∈ N * , 由 (1) 知, 关于随意 m>n,-=++, +≤ ++,+<,nnnn故 |a |<· 2 ≤·2 =2+·2 .进而关于随意nnm>n,均有 |a |<2+·2.①由 m 的随意性得 |a n | ≤2.不然 , 存在 n 0∈ N * , 有 ||>2, 取正整数 m 0>lo 且 m 0>n 0, 则 · < · =| |-2, 与①式矛盾 .综上 , 关于随意 n ∈ N * , 均有 |a n | ≤2.4.(2015 浙江 ,20,15 分 ) 已知数列 {a n } 知足 a 1= 且 a n+1=a n - (n ∈ N * ). (1) 证明 :1 ≤ ≤ 2(n ∈ N * );(2) 设数列 { } 的前 n 项和为 S n , 证明 : ≤ ≤(n ∈ N * ).证明(1) 由题意得 a n+1-a n =- ≤ 0, 即 a n+1≤ a n ,故 a n ≤ .由 a n =(1-an-1)a n-1 得 a n =(1-a n-1 )(1-a n-2 ) , (1-a 1)a 1>0.由 0<a ≤ 得==∈ [1,2],n即 1≤≤ 2.(2) 由题意得 =a -a,nn+1n1n+1所以 S =a -a . ①由- =和 1≤ ≤2得 1≤- ≤2,所以 n ≤- ≤ 2n, 所以 ≤ a n+1≤ (n ∈N * ). ②由①②得≤ ≤(n ∈ N * ).5.(2014 浙江 ,19,14 分 ) 已知数列 {a n} 和 {b n 1 2 3 n * n} 知足 a a a , a =((n ∈ N ). 若 {a } 为等比数列 , 且a 1 =2,b 3=6+b 2. (1) 求 a n 与 b n ;(2) 设c n = -(n ∈ N * ).记数列{c n } 的前n 项和为S n .(i) 求 S n ;(ii) 求正整数 k, 使得对随意 n ∈ N * 均有 S k ≥ S n .分析 (1) 由 a 1a 2a 3, a n =( ,b 3-b 2=6,知 a =(=8.31得公比 q=2(q=-2 舍去 ), 所以数列 nn n*又由 a =2, {a } 的通项为 a =2 (n ∈ N ), 所以 ,a 1 23n=() n(n+1).a a ,a =故数列 n } 的通项为 n*{b b =n(n+1)(n ∈N ).(2)(i)由 (1) n- =- *知 c =(n ∈ N ),所以 S n =- (n ∈ N * ).(ii) 因为 c 1=0,c 2>0,c 3>0,c 4>0;当 n ≥ 5 时 ,c n =,而-=>0,得 ≤ <1,所以 , 当 n ≥ 5 时 ,c <0.n综上 , 对随意 n ∈ N * , 恒有 S 4≥ S n , 故 k=4.} 的前 n 项和为 S , 等比数列 {b } 的前 n 项和为6.(2017课标全国Ⅱ文 ,17,12分 ) 已知等差数列 {annnT n ,a 1=-1,b 1=1,a 2+b 2=2.(1) 若 a 3+b 3=5, 求 {b n } 的通项公式 ; (2) 若 T 3=21, 求 S 3.分析 此题考察了等差、等比数列 .设 {a n } 的公差为 d,{b n } 的公比为 q, 则 a n =-1+(n-1)d,b n=q n-1 .由 a 2+b 2=2 得 d+q=3. ①(1) 由 a 3+b 3=5 得 2d+q 2=6. ②联立①和②解得(舍去), 或所以 {b n } 的通项公式为 b n =2n-1 .(2) 由 b =1,T23=21 得 q +q-20=0.1解得 q=-5 或 q=4.当 q=-5时 , 由①得 d=8, 则 S =21.3当 q=4 时 , 由①得 d=-1, 则 S 3 =-6.7.(2017 课标全国Ⅲ文 ,17,12 分 ) 设数列 {a n } 知足 a 1+3a 2+, +(2n-1)a n =2n. (1) 求 {a n } 的通项公式 ; (2) 求数列的前 n 项和 .分析 (1) 因为 a 1+3a 2+, +(2n-1)a n =2n, 故当 n ≥ 2 时, a 1 +3a 2+, +(2n-3)a n-1 =2(n-1). 两式相减得 (2n-1)a n=2.所以 a =(n ≥2).n又由题设可得 a =2,1进而 {a } 的通项公式为*a =(n ∈ N ).nn(2) 记的前 n 项和为 S n .由(1) 知== -.则 S n = - + - +, +-=.8.(2017 山东理 ,19,12 分 ) 已知 {x n } 是各项均为正数的等比数列 , 且 x 1+x 2=3,x 3-x 2=2.(1) 求数列 {x n } 的通项公式 ; (2) 如图 , 在平面直角坐标系 xOy 中 , 挨次连结点 P (x ,1),P (x ,2), , ,P (x ,n+1) 获得折线 P P , P , 求1122n+1n+11 2n+1由该折线与直线y=0,x=x 1,x=x n+1 所围成的地区的面积T n .分析 此题考察等比数列基本量的计算 , 错位相减法乞降 .(1) 设数列 {x n } 的公比为 q, 由已知知 q>0.由题意得所以 3q 2-5q-2=0. 因为 q>0,所以 q=2,x=1.1所以数列 {x n } 的通项公式为 x n =2n-1 .,Q.(2) 过 P,P, ,,Pn+1向 x 轴作垂线 , 垂足分别为 Q,Q , ,n+1 1212由 (1) 得 x n+1-x n =2n -2 n-1 =2n-1,记梯形 P n P n+1Q n+1Q n 的面积为 b n ,由题意 b n =×2n-1 =(2n+1) ×2n-2 ,所以 T n =b 1+b 2+, +b n=3× 2-1 +5× 20+7× 21+, +(2n-1) × 2n-3 +(2n+1) × 2n-2, ① 2T n =3× 20+5× 21+7× 22+, +(2n-1) × 2n-2 +(2n+1) × 2n-1 . ② ①- ②得 -T n =3× 2-1 +(2+2 2+, +2n-1)-(2n+1) × 2n-1 = + -(2n+1) × 2n-1 .所以 T=.n9.(2015 重庆 ,22,12 分 ) 在数列 {a } 中 ,a =3,aa +λ a +μ =0(n ∈ N ).n1n+1 nn+1+(1) 若 λ =0, μ =-2, 求数列 {a n } 的通项公式 ;(2) 若 λ = (k∈N ,k ≥ 2), μ =-1, 证明 :2+<<2+.+分析(1) 由 λ =0, μ=-2, 有 a a =2(n ∈ N). 若存在某个 n ∈ N , 使得 =0, 则由上述递推公式易得=0.n+1 n+0+重复上述过程可得a 1=0, 此与 a 1=3 矛盾 , 所以对随意 n ∈ N +,a n ≠ 0.进而 a=2a (n ∈ N ), 即 {a} 是一个公比 q=2 的等比数列 .n+1n+n故 a n =a 1q n-1 =3· 2n-1 .(2) 证明 : 由λ = , μ =-1, 数列 {a n } 的递推关系式变成a a + a -=0, 变形为 an+1= (n ∈ N ).n+1 n n+1+由上式及 a 1=3>0, 概括可得 3=a 1>a 2>, >a n >a n+1>, >0.因为 a n+1= ==a n - + ·,所以对 n=1,2, , ,k 0乞降得=a +(a -a )+ , +(- )121=a 1-k 0· + ·>2+ ·=2+ .另一方面 , 由上已证的不等式知 a >a >, > >>2, 得12=a 1-k 0· + ·<2+ · =2+.综上 ,2+<<2+.教师用书专用 (10 — 16)10.(2013 课标全国Ⅰ ,12,5 分 ) 设△ A n B n C n 的三边长分别为 a n ,b n ,c n , △A n B n C n 的面积为 S n ,n=1,2,3, , . 若b 1 >c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1= ,c n+1= , 则 ( )A.{S n } 为递减数列B.{S n } 为递加数列C.{S 2n-1 } 为递加数列 ,{S 2n } 为递减数列D.{S 2n-1 } 为递减数列 ,{S 2n } 为递加数列答案 B, 公差为 d. 对随意的 n ∈ N * ,b n 是 a n 和 a n+1 的等 11.(2016 天津 ,18,13 分 ) 已知 {a n } 是各项均为正数的等差数列 比中项 . (1) 设 c n =- ,n ∈ N * , 求证 : 数列 {c n } 是等差数列 ;1n = (-1) k,n * < . (2) 设 a =d,T ∈N, 求证 :证明 (1) 由题意得 =a a , 有 c = - =a · a -a a =2da, 所以 c n+1-c =2d(a -a )=2d ,n n+1nn+1 n+2n n+1 n+1nn+2n+12所以 {c } 是等差数列 .n(2)T =(-+)+(-+ )+, +(-+)n=2d(a +a +,+a )242n=2d ·=2d 2n(n+1).所以=== · < .12.(2017 江苏 ,19,16 分) 关于给定的正整数 k, 若数列 {a n } 知足 :a n-k +a n-k+1 +, +a n-1 +a n+1+, +a n+k-1 +a n+k =2ka n 对任意正整数 n(n>k) 总建立 , 则称数列 {a } 是“ P(k) 数列” .n(1) 证明 : 等差数列 {a n } 是“ P(3) 数列” ;(2) 若数列 {a n } 既是“ P(2) 数列” , 又是“ P(3) 数列” , 证明 :{a n } 是等差数列 .证明 本小题主要考察等差数列的定义、通项公式等基础知识 , 考察代数推理、转变与化归及综合运用数学知识研究与解决问题的能力 .(1) 因为 {a n } 是等差数列 , 设其公差为 d, 则 a n =a 1+(n-1)d,进而 , 当 n ≥ 4 时 ,a n-k +a n+k =a 1+(n-k-1)d+a 1+(n+k-1)d=2a 1+2(n-1)d=2a n ,k=1,2,3,所以 a n-3 +a n-2 +a n-1 +a n+1+a n+2+a n+3=6a n ,所以等差数列 {a n } 是“ P(3) 数列” .(2) 数列 {a n } 既是“ P(2) 数列” , 又是“ P(3) 数列” , 所以 , 当 n ≥ 3 时 ,a n-2 +a n-1 +a n+1+a n+2=4a n , ①当 n ≥ 4 时 ,a n-3 +a n-2 +a n-1 +a n+1+a n+2+a n+3=6a n . ② 由①知 ,a n-3 +a n-2 =4a n-1 -(a n +a n+1), ③ a n+2+a n+3=4a n+1-(a n-1+a n ). ④将③④代入② , 得 a n-1 +a n+1=2a n , 此中 n ≥ 4, 所以 a 3,a 4,a 5, , 是等差数列 , 设其公差为 d'. 在①中 , 取 n=4, 则 a 2+a 3+a 5+a 6=4a 4, 所以 a 2=a 3-d', 在①中 , 取 n=3, 则 a 1+a 2+a 4+a 5=4a 3, 所以 a 1=a 3-2d',所以数列 {a n } 是等差数列 .n*13.(2014 湖南 ,20,13 分 ) 已知数列 {a n } 知足 a 1=1,|a n+1-a n |=p ,n ∈ N . (1) 若 {a n } 是递加数列 , 且 a 1,2a 2,3a 3 成等差数列 , 求 p 的值 ;(2) 若 p= , 且 {a 2n-1 } 是递加数列 ,{a 2n } 是递减数列 , 求数列 {a n } 的通项公式 .分析(1) 因为 {a n } 是递加数列 , 所以 |a n+1-a n |=a n+1-a n =p n . 而 a 1=1, 所以 a 2=p+1,a 3=p 2+p+1.又 a 1,2a 2,3a 3 成等差数列 , 所以 4a 2=a 1+3a 3, 因此 3p 2-p=0, 解得 p= 或 p=0. 当 p=0 时 ,a n+1=a n , 这与 {a n } 是递加数列矛盾 . 故 p= . (2) 因为 {a 2n-1 } 是递加数列 , 因此 a 2n+1-a 2n-1 >0,于是 (a 2n+1-a 2n )+(a 2n -a 2n-1 )>0. ①但<,所以 |a 2n+1-a 2n |<|a 2n -a 2n-1 |. ② 由①②知 ,a 2n -a 2n-1 >0,所以 a -a2n-1 ==. ③2n因为 {a 2n } 是递减数列 , 同理可得 ,a 2n+1 -a 2n <0, 故 a -a=-=. ④2n+12n由③④知 ,a n+1 -a n = .于是 a =a +(a 2-a )+(a -a )+ , +(a -an-1 )n1132n=1+ - +, +=1+ ·=+· ,故数列 {a n } 的通项a = + ·.n14.(2014 四川 ,19,12 分 ) 设等差数列 {a n } 的公差为 d, 点 (a n ,b n ) 在函数 f(x)=2 x 的图象上 (n ∈ N * ).(1) 若 a 1=-2, 点 (a 8,4b 7) 在函数 f(x) 的图象上 , 求数列 {a n } 的前 n 项和 S n ; (2) 若 a 1=1, 函数 f(x) 的图象在点 (a 2,b 2) 处的切线在 x 轴上的截距为 2- , 求数列的前 n 项和 T n .分析 (1) 由已知 , 得 b 7= ,b 8= =4b 7, 有 =4× =.解得 d=a 8-a 7=2.所以 ,S n =na 1+d=-2n+n(n-1)=n 2-3n.(2) 函数 f(x)=2 x 在 (a 2,b 2) 处的切线方程为 y-=( ln2)(x-a2),它在 x 轴上的截距为 a 2-.由题意 , 得 a 2-=2-,解得 a 2=2.所以 d=a2-a 1=1.进而 a n=n,b n=2n.所以 T n= + + +, ++,2T n= + + +, +.所以 ,2T n-T n=1+ + +, +- =2-- =.所以 ,T n=.15.(2014江西,17,12分)已知首项都是1 的两个数列 {a n},{b n}(b n≠0,n∈N*)知足a n b n+1-a n+1b n+2b n+1b n=0.(1)令 c n= , 求数列 {c n} 的通项公式 ;(2)若 b n=3n-1 , 求数列 {a n} 的前 n 项和 S n.分析(1) 因为 a n b n+1-a n+1b n+2b n+1b n=0,b n≠ 0(n ∈ N* ),所以- =2, 即 c n+1-c n=2.所以数列 {c n} 是以 1 为首项 ,2 为公差的等差数列,故 c n=2n-1.n-1n-1(2) 由 b n=3知a n=c n b n=(2n-1)3,于是数列 {a n} 的前 n 项和 S n=1· 30+3· 31+5· 32 +,+(2n-1) ·3 n-1 ,3S n=1·31+3· 32+, +(2n-3) · 3n-1 +(2n-1) ·3n,1 2 n-1 n n相减得 -2S =1+2· (3 +3 +, +3 )-(2n-1) · 3 =-2-(2n-2)3 ,nn n所以 S =(n-1)3 +1.16.(2014 湖北 ,18,12 分 ) 已知等差数列 {a n} 知足 :a 1=2, 且 a1,a 2,a 5成等比数列 .(1)求数列 {a n} 的通项公式 ;(2)记 S n为数列 {a n } 的前 n 项和 , 能否存在正整数 n, 使得 S n>60n+800?若存在 , 求 n 的最小值 ; 若不存在 , 说明原因 .分析(1) 设数列 {a n} 的公差为d, 依题意 ,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得 d2-4d=0, 解得 d=0 或 d=4.当 d=0 时 ,a n=2;当 d=4 时 ,a n=2+(n-1) · 4=4n-2,进而得数列 {a n} 的通项公式为a n=2 或 a n=4n-2.(2)当 a n=2 时,S n=2n. 明显 2n<60n+800,此时不存在正整数 n, 使得 S n >60n+800 建立 .当 a n=4n-2 时,S n= =2n2.令 2n2>60n+800, 即 n2-30n-400>0,解得 n>40 或 n<-10( 舍去 ),此时存在正整数n, 使得 S n>60n+800 建立 ,n 的最小值为41.综上 , 当 a n=2 时 , 不存在知足题意的n;当 a n=4n-2 时, 存在知足题意的n, 其最小值为41.三年模拟A 组2016— 2018 年模拟·基础题组考点一数列的乞降1.(2018浙江9+1高中结盟期中,7)已知等差数列{a n} 、 {b n} 的前 n 项和分别为S n、T n, 若=, 则的值是 ()A. B.C. D.答案 A2.(2018 浙江高考模拟卷 ,8) 在等差数列 {a n} 中 , 前 n 项和 S n= , 前 m项和 S m= (m≠n), 则 S m+n的值 ( )A.小于 4B.等于 4C.大于 4D.大于 2 且小于 4答案 C3.(2017 浙江“超级全能生” 3 月联考 ,11) 已知等比数列 {a n} 的前 n 项和为 S n,a 1=1, 若 a1,S 2,5 成等差数列 , 则数列 {a n} 的公比 q= ,S n= .答案2;2 n-1已知正项数列 {a } 知足 log a =1+log a , 若 a =1, 则其前 10 项和4.(2016 浙江名校 ( 镇海中学 ) 沟通卷二 ,12)n 2 n+1 n 12S10 = ; 若 a5=2, 则 a1a2, a9= .答案1023;512考点二数列的综合应用5.(2016 浙江温州二模 ,7) 数列 {a n} 是递加数列 , 且知足 a n+1=f(a n),a 1∈(0,1), 则 f(x) 不行能是 ( )A.f(x)=B.f(x)=2 x-1C.f(x)=D.f(x)=log 2(x+1)答案 B,13) 已知等差数列 {a } 的前 n 项和是 S , 若 S =4,S =9, 则6.(2018 浙江“七彩阳光”结盟期初联考kn n k-1a k = ,a 1的最大值为.答案5;47.(2018 浙江杭州二中期中 ,22) 设数列 {a } 知足 a = ,a =ln +2(n ∈ N ).n 1 n+1 *(1) 证明 :a n+1≥;(2) 记数列的前 n 项和为 S , 证明 :S < + .n n分析(1) 设 f(x)=lnx+ -1, 则 f'(x)= - = ,所以 f(x) 在 (0,1) 上单一递减 , 在 (1,+ ∞ ) 上单一递加 ,所以 f(x)=lnx+ -1 ≥ f(1)=0.则 ln+-1 ≥ 0, 即 ln≥ 1-=.∴ a n+1=ln+2≥+2=, 得证 .(2) ∵ a1>1, ∴a2=ln+2>ln +2>1, 同理可得 a3>1, , ,a n>1.∵ a n+1≥,a n>0, ∴≤= ·+ ,即-≤·,∴当 n≥ 2 时 , -≤ ·≤,≤·= ·,当 n=1 时 , - = ≤ ·,∴-≤ ·,n ∈ N* .∴≤== -·< , 即 S n< + .*8.(2017浙江宁波二模(5月),22)已知数列{a n}中,a1=4,a n+1=,n ∈ N ,S n为{a n} 的前 n 项和 .(1) 求证 : 当 n∈ N*时 ,a n>a n+1;(2) 求证 : 当 n∈ N*时 ,2 ≤ S n-2n<.证明(1) 当 n≥ 2 时, 因为 a -an+1 = -n=,(2分)所以 a n-a n+1与 a n-1 -a n同号 .(3分)又因为 a1=4,a 2=,a 1-a 2>0,所以当 n∈N*时 ,a n>a n+1.(5分)(2) 由条件易得2=6+a n, 所以 2(-4)=a n-2,所以 2(a n+1-2)(a n+1+2)=a n-2, ①所以 a n+1-2 与 a n-2 同号 .又因为 a1=4, 即 a1-2>0,所以 a n>2.(8分)又 S n=a1+a2+, +a n≥a1+(n-1) ×2=2n+2.所以 S n-2n ≥2.(10 分)由①可得= < ,所以 ,a -2 ≤(a -2) ×, 即 a ≤ 2+2×,(12 分) n 1 n所以 S n=a1+a2+,+a n≤ 2n+2=2n+ <2n+ .综上可得 ,2 ≤ S n-2n< .(15 分)9.(2017 浙江湖州期末调研,22) 已知数列 {a } 知足 a = ,an+1 = ,n ∈ N.n 1 *(1) 求 a2;(2) 求的通项公式 ;(3) 设 {a n} 的前 n 项和为 S n, 求证 :≤S n<.分析(1) 由条件可得 a = = .(3 分)2(2) 由 a n+1= 得= · - ,所以-1= ,(6 分 )又-1= , 所以是以首项为, 公比为的等比数列 ,所以 , = +1.(7 分)(3) 由 (2) 可得 a n=≥= ×,(9分)所以 S =a +a +, +a ≥ + ·+, + ·= .(11 分 )n12 n又a n= < = ,(13 分)所以 S n=a1+a2+a3+, +a n< + ++, +=+ - ·< ,n ≥ 3,(14 分 )又S1=< ,S2= < ,所以,S < *,n ∈ N .n综上 , ≤ S n< .(15 分)B 组2016— 2018 年模拟·提高题组一、选择题1.(2018 浙江要点中学12 月联考 ,7) 设 S n是等差数列 {a n} 的前 n 项和 , 若 a1=-2015,S 6-2S 3=18, 则 S2017=()A.2016B.2017C.-2015D.-2018答案 B2x,0 ≤ x 0<x 1<x 2<,2.(2017 浙江“七彩阳光”新高考研究结盟测试 ,9) 已知函数 f(x)=sinxcosx+cos<x n ≤,a n =|f(x n )-f(x n-1)|,n ∈ N * ,S n =a 1+a 2+, +a n , 则 S n 的最大值等于 () A. B.C.+1D.2答案 A3.(2016 浙江镇海中学测试 ( 七 ),6) 已知数列 {a n } 知足 :a 1=1,a n+1= (n ∈ N * ), 若 a 2k ,a 2k+1,9+a 2k+2 成等比数列 , 则正整数 k 的值是 () A.1 B.2 C.3 D.4 答案 B 二、解答题4.(2018 浙江“七彩阳光”结盟期中 ,22) 已知正项数列 {a n } 知足 a 1=3,*+a n+1=2a n ,n ∈ N.(1) 求证 :1<a n ≤ 3,n ∈N * ;(2) 若关于随意的正整数n, 都有<M 建立 , 求 M 的最小值 ;123n*(3) 求证 :a +a +a +, +a <n+6,n ∈ N . 分析 (1) 证明:由+a n+1=2a n ,得+a n+2=2a n+1,两式相减得- +(a n+2-a n+1)=2(a n+1-a n ),即 (a n+2-a n+1)(a n+2+a n+1+1)=2(a n+1-a n ), 因为 a n >0, 所以 a n+2+a n+1+1>0, 所以 a n+2-a n+1 与 a n+1-a n 同号 .∵ +a 2=2a 1=6, ∴ a 2=2, 则 a 2-a 1<0,所以 a n+1-a n <0, ∴数列 {a n } 是单一递减数列 ,所以 a ≤ a =3.n1由+a=2a , 得+a -2=2a -2, 即 (a n+1 +2)(a-1)=2(a -1),n+1nn+1nn+1n由 a n+1+2>0, 知 a n+1-1 与 a n -1 同号 ,因为 a 1-1=2>0, 所以 a n -1>0, 即 a n >1,*综上知 1<a n ≤ 3,n ∈ N .(2) 由 (1) 知= , 而 3<a +2≤a +2=4,n+12则≤<,所以M ≥.故 M 的最小值为 .(3) 证明 : 由(2) 知 n ≥ 2 时 ,a n -1=(a 1-1) ×××, ×<(a 1-1)=2 ×,又 n=1 时 ,a 1-1=2, 故 a n -1 ≤ 2×,n ∈ N * . 即 a ≤ 1+2×*,n ∈ N .n则 a 1+a 2+a 3+, +a n ≤n+2=n+2×=n+6<n+6.5.(2018 浙江杭州地域要点中学第一学期期中 ,22) 已知函数 f(x)=x2nn-1)(n ≥ 2,n ∈+x,x ∈ [1,+∞ ),a =f(aN).(1) 证明 :- ≤ f(x) ≤ 2x 2;(2) 设数列 {nn 1= ,证明:≤ ≤ .} 的前 n 项和为 A , 数列的前 n 项和为 B ,a证明(1)f(x)- 2= >0, ∴ f(x) ≥- .=x +x-f(x)-2x 2=x 2+x-2x 2=x-x 2=x(1-x) ≤ 0(x ≥ 1), ∴ f(x) ≤ 2x 2, ∴- ≤ f(x) ≤ 2x 2.(2)a =f(a n-1 )=+a? =a -an-1 (n ≥ 2),nn-1 n则 A n = + +, + =a n+1-a 1=a n+1- , a =+a =a (an-1 +1) ?==-?=- (n ≥ 2),nn-1n-1累加得 :B n =++, + = -= - ,∴== a n+1.由 (1) 得 a n ≥- ? a n+1+ ≥ ≥ ≥, ≥ ,∴ a n+1≥ - ∴ = a n+1≥ 3· - .a n =f(a n-1 ) ≤ 2? a n+1≤2 ≤ 23≤, ≤ == · .∴ = a ≤ × · = ·,n+1∴3·-≤ ≤·,即-1≤≤ ,而-1≥ ,∴ ≤≤ .6.(2017 浙江名校协作体 ,22) 已知函数 f(x)= .(1) 求方程 f(x)-x=0 的实数解 ;* *(2) n 1 n+1 n 2n 2n-1 都建立 ?并证明假如数列 {a } 知足 a =1,a =f(a )(n ∈ N ), 能否存在实数c, 使得 a <c<a 对全部的 n∈N你的结论 .分析(1)f(x)-x=0 ?=x? x=-4 或 x= .(2) 存在 c= , 使得 a2n< <a2n-1 .由题意可知 ,a n+1= , 所以 a2= ,a 3= ,下边用数学概括法证明0<a2n< <a2n-1≤ 1.当 n=1 时 ,0<a 2= < <a1=1≤ 1, 结论建立 .假定当n=k 时结论建立, 即0<a2k< <a2k-1≤ 1. 因为f(x)= 为(0,1] 上的减函数, 所以f(0)>f(a 2k)>f >f(a 2k-1 )≥f(1), 进而>a2k+1> >a2k≥,所以 f <f(a 2k+1)<f <f(a 2k)≤f ,即 0<f<a2k+2< <a2k+1≤ f故当 n=k+1 时 , 结论也建立.≤ 1.综上所述, 对全部 n∈ N* ,0<a 2n<<a2n-1≤ 1 都建立 ,即存在c= 使得a2n< <a2n-1 .7.(2017浙江测试卷,22)已知数列{a n}知足a1=1,a n+1=,n ∈ N* , 记 S n,T n分别是数列 {a n},{} 的前 n 项和 ,*证明 : 当 n∈ N 时 ,(1)a n+1<a n;(2)T n= -2n-1;(3) -1<S n<.证明(1) 由 a =1 及 a = , 知 a >0,1 n+1 n故 a n+1-a n=-a n=<0, ∴ a n+1<a n,n ∈N* .(2) 由= +a n , 得= + +2,进而= + + +2× 2=, =+++, + +2n,1∴=1+ + +, + n *又 a =1, +2n, ∴ T = -2n-1,n ∈ N.(3) 由 (2) 知,a = ,由T≥=1, 得 a ≤,n+1 n n+1∴当 n≥ 2 时 ,a n≤= < = ( - ),∴ S <a + [( -1)+(- )+, +( - )]=1+ ( -1)<,n ≥ 2, n1又 a1=1, ∴ S n<* ,n ∈ N,由 a = - ,n得 S n= - ≥-1> -1,综上 , -1<S n<.C 组 2016— 2018 年模拟·方法题组方法 1 数列乞降的解题策略1.(2017 浙江宁波期末 ,22) 已知数列 {a n} 知足 a1=2,a n+1=2(S n+n+1)(n ∈ N* ),b n=a n+1.(1)求证 :{b n} 是等比数列 ;(2)记数列 {nb n} 的前 n 项和为 T n, 求 T n;(3)求证: -< + + +, + <.分析(1) 证明 : 由 a1=2, 得 a2=2(a 1 +1+1)=8.由 a n+1=2(S n+n+1), 得 a n=2(S n-1 +n)(n ≥ 2),两式相减 , 得 a n+1=3a n+2(n ≥2),(3分)当 n=1 时上式也建立 , 故 a n+1=3a n+2(n ∈ N* ).所以有 a n+1+1=3(a n+1), 即 b n+1=3b n,又 b1=3, 故 {b n} 是等比数列 .(5 分 )(2) 由 (1) 得 b n=3n,n 2 3 +n·3 n ,所以 T =1× 3+2× 3 +3×3 +,3T n=1× 32+2× 33+3× 34+, +n· 3n+1,两式相减 , 得 -2T n=3+32 +33+, +3n-n · 3n+1= -n · 3n+1,故 T n= · 3n+1+ .(10 分 )(3) 证明 : 由 a n=b n-1=3 n-1, 得 = > ,k ∈N* ,所以+ + +, + > + + +, + = =- · ,(12分)又 = = < = ,k ∈N* ,所以+ + +, + < += + = + - ·< .故 - < + + +, + < .(15 分)方法 2数列综合应用的解题策略2019届高考数学(浙江版)一轮配套讲义:6.4数列乞降数列的综合应用 21 / 212.(2017 浙江金华十校联考 (4 月 ),22) 已知数列 {a n } 知足 a 1=1,a n+1·a n = (n ∈ N * ).(1) 证明 :=; (2) 证明 :2( -1)≤ + +, + ≤ n.证明(1) ∵ a n+1· a n = , ①∴ a n+2·a n+1=, ②②÷①得 , == ,∴ =(2) 由 (1) . 得,(n+1)an+2=na n ,∴ + +, + = ++, +.令 b n =na n , 则 b n ·b n+1=na n · (n+1)an+1= =n+1, ③∴ b n-1 ·b n =n(n ≥ 2), ④由 b 1=a 1=1,b 2=2, 易得 b n >0,③ - ④得 , =b n+1-b n-1 (n ≥ 2),∴ b 1<b 3<, <b 2n-1 ,b 2<b 4<, <b 2n , 得 b n ≥ 1,依据 b n · b n+1=n+1 得 ,b n+1≤ n+1, ∴1≤ b n ≤ n,∴+ +,+ =++, = +(b 3-b 1 )+(b4-b 2)+ , +(b+ n -b n-2 )+(b n+1-b n-1 )= +b n +b n+1-b 1-b 2=b n +b n+1-2,又 b +b -2 ≥2-2=2( -1),n n+1且由 1≤ b n ≤n 可知 ,b n +b n+1-2=b n +-2 ≤ min≤ n.综上可知 ,2( -1) ≤ + +, +≤n.。
一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。
三、解答题 6. (2016 山西太原市二模)数列{a n }的前n 项和记为S n , a 1 = t,点(S n , a n +1)在直线y = 3x +
1 上,n € N .
(1) 当实数t 为何值时,数列{a n }是等比数列;
第14讲 数列求和及数列的综合应用 1111专题突破,限时训练 |||| [P 82] 一、选择题 1
1.设函数f(x) = x m + ax 的导函数f ' (x)= 2x + 1,则数列{f-^} (n € N )的前n 项和是(C ) n + 2
B.^ 解析:因为 f ' (x)= 2x + 1,所以 f(x)= x 2 + x, 1 111 乔=1 —市,易求得其和为
C. f(n 2.右正项数列{ a n }满足 Ig a n +1 = 1 + l g a n ,且玄2001 + a 2002 + a 2003 +…+ a 2010= 2013,则 a 2011 + a 2012 + a 2013
+ …+ a 2°2o 的值为(A ) 10 11 A. 2013 X 10 B.2013 X 10
C. 2014X 1010
D.2014 X 1011 a n +i “ a n +i 解析:由 lg a n +1= 1 + lg a n ,可得 lg = 1, = 10, a n a n 10 10 a 2011 + a 2012 + a 2013+ …+ a 2020 =(82001 + 82002+ a 2oo3 + …+ a 2O1o ) X 10 = 2013 X 10 . 3.设某商品一次性付款的金额为 a 元,以分期付款的形式等额地分成 n 次付清,若每期 利率r 保持不变,按复利计算,则每期期末所付款是(B )
a n 一 口 ar(1+ r £ 一 A .;(1+「)元 B. 1+宀1 元 C.a (1 + r )n —1 元 D.屮二元 n' ' 1 + r — 1 解析:设每期期末所付款是 x 元,则各次付款的本利和为 x(1 + r)n — 1 + x(1 + r)n —2+ x(1 + r)n 3 + …+ x(1 + r)+ x = a(1 + r)n ,即 x 「十「) = a(1 + r)n ,故 x =\ . r (1 + r ) — 1
二、填空题 4.(原创题)已知数列{a .}满足a 1=— 1, ? n € N *, a n + a *+1= 2,其前n 项和为S n ,则 屜仃 2015 . m - 2016 - __________________________________________________________ 解析:S 2017= a 1+ (a 2 + a 3)+ (a 4 + a 5)+ …+ (a 2016+ a 2017)= — 1 + ~2 x
2 = 2015. 5.(2016湖南十三校联考)已知数列{a n }的前n 项和为S n ,且S n = 2n — a .,则数列{a n }的 1
通项公式a n = 2—(1)n —1 . 解析:当n = 1时,a 1= 1; 当 n >2 时,a n = S n — S n -1,所以 2a n = a n -1+ 2, 则 2(a n — 2) = a n - 1— 2, n. 所以 a n — 2 = (a i — n — 1,a n = 2—(捫1
⑵在(1)的结论下,设b n= log 4a n + 1, C n= a n+ b n, T n是数列{c n}的前n项和,求T n . 解析:(1)因为
点(S n, a n+1)在直线y= 3x+ 1上,
所以a n+计3S!+ 1, a n= 3Sn-1+ 1(n>1,且n € N ),
a n+1 —a n = 3(各一各-1) = 3a n,所以a n+1 = 4a n, n>1,
a2= 3S1+ 1 = 3a1+ 1 = 3t+ 1,
所以当t = 1时,a2= 4a1,数列{a n}是等比数列.
⑵在(1)的结论下,a n +1 = 4a n, a n +1 = 4,
b n = log4a n +1 = n,
c n = a n + b n = 4+ n,
T n= c1 + c2+…+ c n
=(4°+ 1) + (41+ 2) + …+ (4n-1+ n)
=(1 + 4+ 42+…+ 4n-1) + (1 + 2+ 3 +…+ n)
4n- 1
3 +
7. (2016甘肃兰州咼二实战)等差数列{a n}中,已知a n>0, a1 + a2 + a3= 15,且a1 + 2, a2 + 5, a3+ 13构成等比数列{b n}的前三项.
(1) 求数列{a n}, {b n}的通项公式;
⑵求数列{a n b n}的前n项和T n.
解析:(1)设等差数列的公差为d,则由已知得:
a1 + a? + 玄315 艮卩5,
又(5 —d+ 2)(5 + d+ 13) = 100,
解得d= 2或d=—13(舍),
a1 = a2 —d= 3,
所以a n= a1 + (n—1) x d = 2n + 1,
又b1 = a1 + 2 = 5, b2= a2+ 5 = 10,所以q = 2,
所以b n= 5 x 2n—1.
(2) 因为T n= 5[ 3+ 5X 2 + 7x 22+ …+ (2n+ 1) x 2n—1],
2T n= 5[3 x 2 + 5 x 22+ 7 X 23+ ••• + (2n+ 1)x 2n],
两式相减得一T n = 5[3+ 2x 2 + 2 x 22+ • + 2 x 2n—1—(2n+ 1)x 2n] = 5[(1 —2n)2n— 1 ], 则T n= 5[ (2n—1)2n+ 1].
8. (2016武汉联考)设数列{a n}的前n项和为S n, a1 = 10, a n+1 = 9S n+ 10.
(1)求证:{lg a n}是等差数列;
3
⑵设T n是数列{}的前n项和,求T n ;
(lg a n (lg a n+1J
1 *
⑶求使T n>1(m2—5m)对所有的n€ N*恒成立的整数m的取值集合
解析:(1)证明:依题意,得a2= 9a-)+ 10= 100,故~ = 10. a1
当n》2 时,a n+ 1 = 9S n+ 10, a n = 9S n-1 + 10, 两式相减得a n +1 —a n= 9a n, 即a n+1= 10a n,a^ = 10,
a n
故{a n}为等比数列,且a n = a1q n1= 10n(n€ N ),
所以lg a n= n.所以lg a n+1—lg a n= (n+ 1) —n= 1, 即{lg a n}是等差数列.
1 1 1
⑵由(1)知,T n= 3[乔寸页+- +甘=3(1 - 2+2 -齐…+ 一 1 1
n n+1)
3n
n+ 1
,,, 3n 小
(3) 因为T n=石=3—门+ 1,
3
所以当n = 1时几取最小值2.
依题意有2>4(m2—5m),解得一1<m<6, 故所求整数m的取值集合为{0,1,2,3,4,5}.。