学×思面授班初三数学 寒假 提高班讲义 第5讲.中考第一轮复习一次函数与反比例.提高班.学生版
- 格式:doc
- 大小:2.06 MB
- 文档页数:14
第十四章一次函数本章小结小结1 本章概述本章的主要内容包括:变量与函数的概念,函数的三种表示方法,正比例函数和一次函数的概念、图象、性质以及应用举例,用函数观点认识一元一次方程、一元一次不等式以及二元一次方程组,课题学习“选择方案”.函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际,而一次函数又是函数中最简单、最基本的函数,它是学习其他函数的基础,所以理解和掌握一次函数的概念、图象和性质至关重要,应认真掌握.小结2 本章学习重难点【本章重点】理解函数的概念,特别是一次函数和正比例函数的概念,掌握一次函数的图象及性质,会利用待定系数法求一次函数的解析式.利用函数图象解决实际问题,发展数学应用能力,初步体会方程与函数的关系及函数与不等式的关系,从而建立良好的知识联系.【本章难点】1.根据题设的条件寻找一次函数关系式,熟练作出一次函数的图象,掌握一次函数的图象和性质,求出一次函数的表达式,会利用函数图象解决实际问题.2.理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系.小结3 学法指导1.注意从运动变化和联系对应的角度认识函数.2.借助实际问题情境,由具体到抽象地认识函数,通过函数应用举例,体会数学建模思想.3.注重数形结合思想在函数学习中的应用.4.加强前后知识的联系,体会函数观点的统领作用.5.结合课题学习,提高实践意识和综合应用数学知识的能力.知识网络结构图专题总结及应用一、知识性专题专题1 函数自变量的取值范围【专题解读】 一般地,求自变量的取值范围时应先建立自变量满足的所有不等式,通过解不等式组下结论. 例1 函数21+=x y 中,自变量x 的取值范围是 ( ) A .x ≠0 B .x ≠1C .x ≠2D .x ≠-2分析 由x +2≠0,得x ≠-2.故选D .例2 函数xx y -+=21中,自变量x 的取值范围是 ( ) A .x ≥-1 B .-1<x <2C .-1≤x <2D .x <2分析 由⎩⎨⎧≥+-,01,0>2x x 得⎩⎨⎧-≥,1,2<x x 即-1≤x <2.故选C .专题2 一次函数的定义【专题解读】 一次函数一般形如y =kx +b ,其中自变量的次数为1,系数不为0,两者缺一不可.例3 在一次函数y =(m -3)x m -1+x +3中,符x ≠0,则m 的值为 .分析 由于x ≠0,所以当m -1=0,即m =1时,函数关系式为y =x +1.当m -3=0,即m =3时,函数关系式为y =x +3;当m -1=1,即m =2时,函数关系式为y =(m -2)x +3,当m =2时,m -2=0,此时函数不是一次函数.所以m =1或m =3.故填1或3.专题3 一次函数的图象及性质【专题解读】 一次函数y =kx +b 的图象为一条直线,与坐标轴的交点分别为⎪⎭⎫ ⎝⎛-0,k b ,(0,b ).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置. 例4 已知一次函数的图象经过(2,5)和(-1,-1)两点.(1)画出这个函数的图象;(2)求这个一次函数的解析式.分析 已知两点可确定一条直线,运用待定系数法即可求出对应的函数关系式.解:(1)图象如图14-104所示.(2)设函数解析式为y =kx +b ,则⎩⎨⎧-=+-=+,1,52b k b k 解得⎩⎨⎧==,1,2b k所以函数解析式为y =2x +1.二、规律方法专题专题4 一次函数与方程(或方程组或不等式)的关系【专题解读】 可根据一次函数的图象求出一元一次方程或二元一次方程(组)的解或一元一次不等式的解集,反之,由方程(组)的解也可确定一次函数表达武.例5 如图14-105所示,已知函数y =3x +b 和y =ax -3的图象交于点P (-2,-5),则根据图象可得不等式3x +b >ax -3的解集是 . 分析 由图象知当x >-2时,y =3x +b 对应的y 值大于y =ax -3对应的y 值,或者y =3x +b 的图象在x >-2时位于y =ax -3的图象上方.故填x >-2.专题5 一次函数的应用【专题解读】在应用一次函数解决实际问题时,关键是将实际问题转化为数学问题.例6 假定拖拉机耕地时,每小时的耗油量是个常最,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.(1)写出油箱中余油量Q (升)与工作时间t (小时)之间的函数关系式;(2)画出函数的图象;(3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?分析 由两组对应量可求出函数关系式,再画出图象(在自变量取值范围内).解:(1)设函数关系式为Q =kt +b (k ≠0).由题意可知⎩⎨⎧+=+=,322,228b k b k ∴⎩⎨⎧=-=.40,6b k∴余没量Q 与时间t 之间的函数关系式是Q =-6t +40. ∵40-6t ≥0,∴t ≤320. ∴自变量t 的取值范围是0≤t ≤320. (2)当t =0时,Q =40;当t =320时,Q =0. 得到点(0,40),(320,0). 连接两点,得出函数Q =-6t +40(0≤t ≤320)的图象,如图14-106所示.(3)当Q =0时,t =320,那么320-3=323 (小时). ∴拖拉机还能耕地323小时,即3小时40分. 规律.方法 运用一次函数图象及其性质可以帮助我们解决实际生活中的许多问题,如利润最大、成本最小、话费最省、最佳设计方案等问题,我们应善于总结规律,达到灵活运用的目的.三、思想方法专题专题6 函数思想【专题解读】 函数思想就是应用运动、变化的观点来分析问题中的数量关系,抽象升华为函数模型,进而解决有关问题的方法,函数的实质是研究两个变量之间的对应关系,灵活运用函数思想可以解决许多数学问题. 例7 利用图象解二元一次方程组⎩⎨⎧-=+=-②.5①,22y x y x分析 方程组中的两个方程均为关于x ,y 的二元一次方程,可以转化为y 关于x 的函数.由①得y =2x -2,由②得y =-x -5,实质上是两个y 关于x 的一次函数,在平面直角坐标系中画出它们的图象,可确定它们的交点坐标,即可求出方程组的解.解:由①得y =2x -2,由②得y =-x -5.在平面直角坐标系中画出一次函数y =2x -2,y =-x -5的图象,如图14-107所示.观察图象可知,直线y =2x -2与直线y =-x -5的交点坐标是(-1,-4).∴原方程组的解是⎩⎨⎧-=-=.4,1y x 规律·方法 解方程组通常用消元法,但如果把方程组中的两个方程看做是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解.例8 我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05 mL .小明同学在洗手时,没有把水龙头拧紧,当小明离开x 小时后,水龙头滴了y mL 水.(1)试写出y 与x 之间的函数关系式;(2)当滴了1620 mL 水时,小明离开水龙头几小时?分析 已知拧不紧的水龙头每秒滴2滴水,又∵1小时=3600秒,∴1小时滴水(3600×2)滴,又∵每滴水约0.05 mL ,每小时约滴水3600×2×0.05=360(mL).解:(1)y 与x 之间的函数关系式为y =360x (x ≥0).(2)当y =1620时,有360x =1620,∴x =4.5.∴当滴了1620 mL 水时,小明离开水龙头4.5小时.专题7 数形结合思想【专题解读】 数形结合思想是指将数与形结合起来进行分析、研究、解决问题的一种思想方法.数形结合思想在解决与函数有关的问题时,能起到事半功倍的作用.例9 如图14-108所示,一次函数的图象与x 轴、y 轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.分析 通过观察图象可以看出,要确定一次函数的关系式,只要确定B 点的坐标即可,因为OB =OA =2,所以点B 的坐标为(0,-2),再结合A 点坐标,即可求出一次函数的关系式.解:设一次函数的关系式为y =kx +b (k ,b 为常数,且k ≠0).∵OA =OB ,点A 的坐标为(2,0),∴点B 的坐标为(0,-2).∵点A ,B 的坐标满足一次函数的关系式y =kx +b ,∴⎩⎨⎧-=+=+,20,02b b k ∴⎩⎨⎧-==.2,1b k ∴一次函数的解析式为y =x -2.【解题策略】 利用函数图象研究数量之间的关系是数形结合思想的具体运用,在解决有关函数问题时有着重要的作用.专题8 分类讨论思想【专题解读】 分类讨论思想是在对数学对象进行分类的过程中寻求答案的一种思想方法.分类讨论思想既是一种重要的数学思想,又是一种重要的数学方法.分类的关键是根据分类的目的,找出分类的对象.分类既不能重复,也不能遗漏,最后要全面总结.例10 在一次遥控车比赛中,电脑记录了速度的变化过程,如图14-109所示,能否用函数关系式表示这段记录?分析 根据所给图象及函数图象的增减性,本题要分三种情况进行讨论.电脑记录提供了赛车时间t (s)与赛车速度v (m /s)之间的关系,在10 s 内,赛车的速度从0增加到7.5 m /s ,又减至0,因此要注意时间对速度的影响.解:观察图象可知.当t 在0~1 s 内时,速度v 与时间t 是正比例函数关系,v =7.5t (0≤t ≤1).当t 在1~8 s 内时,速度v 保持不变,v =7.5(1<t ≤8);当t 在8~10 s 内时,速度v 与时间t 是一次函数关系,设一次函数为v =kt +b (k ≠0),又一次函数图象过(8,7.5)和(10,0),则⎩⎨⎧+=+=,100,85.7b k b k 解得⎩⎨⎧=-=.5.37,75.3b k∴v =-3.75t +37.5(8<t ≤10).即7.5(01),7.5(18),3.7537.5(810).t t v t t t ≤≤⎧⎪=<≤⎨⎪-+<≤⎩专题9 方程思想【专题解读】 方程思想是指对通过列方程(组)使所求数学问题得解的方法.在函数及其图象中,方程思想的应用主要体现在运用待定系数法确定函数关系式.例11 已知一次函数y =kx +b (k ≠0)的图象经过点A (-3,-2)及点B (1,6),求此函数关系式,并作出函数图象.分析 可将由已知条件给出的坐标分别代入y =kx +b 中,通过解方程组求出k ,b 的值,从而确定函数关系式.解:由题意可知⎩⎨⎧=+-=+-,6,23b k b k ∴⎩⎨⎧==.4,2b k ∴函数关系式为y =2x +4.图象如图14-110所示.2011中考真题精选一、选择题1. (2011新疆乌鲁木齐,5,4)将直线y =2x 向右平移1个单位后所得图象对应的函数解析式为( )A 、y =2x -1B 、y =2x -2C 、y =2x +1D 、y =2x +2考点:一次函数图象与几何变换。
一、反比例函数的概念一、 反比例函数的定义函数ky x=(k 为常数,0k ≠)叫做反比例函数,其中k 叫做比例系数,x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.二、反比例函数的图象和性质 二、 反比例函数的图象反比例函数ky x=(k 为常数,0k ≠)的图象由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线.反比例函数k y x =与ky x=-(0k ≠)的图象关于x 轴对称,也关于y 轴对称.三、 反比例函数图象的性质反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线; 当0k >时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大. 三、反比例函数综合应用 反比例函数与方程、不等式综合 如图双曲线与直线相交,则方程12k k x b x =+的解为交点的横坐标12x x 、;不等式12kk x b x+>的解为120x x x x ><<或.反比例函数知识点四、反比例函数实际应用把实际问题抽象成反比例函数的问题来解决.一、 反比例函数的图像和性质1、下面的函数是反比例函数的是() A .31y x =+ B .22y x x =+ C .2xy = D .2y x=【答案】 D【解析】该题考查的是反比例函数定义. 反比例函数形如()0ky k x=≠, 本题中,A 为一次函数;B 为二次函数;C 为一次函数;D 为反比例函数,故本题选D .2、下列四个点中,在反比例函数2y x=-上的点是()A .()1,1k 1x例题B .()1,2-C .()1,2--D .()1,2【答案】 B 【解析】该题考查的是反比例函数的性质. 将选项中各个点坐标代入函数中, 若等式成立,则点在反比例函数上, 经验证,只有()1,2-点满足, 故该题答案为B .3、(2014初三上期末大兴区)若反比例函数1k y x-=的图象在各自象限内,y 随x 的增大而减小,则k 的值可能是() A .4- B .5 C .0 D .2-【答案】 B【解析】该题考察的是反比例函数的性质. 因为反比例函数1k y x-=的图象在各自象限内,y 随x 的增大而减小, 所以10k ->,解得1k >,只有B 选项符合,故答案是B .4、(2012初二下期末西城区北区)如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在反比例函数2510k k y x-+=(0x >)的图象上.若点B 的坐标D .1-或6【答案】 D【解析】该题考查的是反比例函数的性质. ∵点B 的坐标为()4,4--, ∴点D 坐标为()4,4,将点D 坐标代入反比例函数中, 251016k k -+=,解得16k =,21k =-, 故该题答案为D .5、(2010初二下期中101中学)已知()111,P x y ,()222,P x y ,()333,P x y 是反比例函数2y x=的图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是() A .321y y y << B .123y y y << C .213y y y << D .231y y y <<【答案】 C【解析】该题考察的是反比例的单调性.∵反比例函数2y x=中,20>, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵()111,P x y ,()222,P x y ,()333,P x y 是反比例函数2y x=的图象上的三点,且120x x <<, ∴1P ,2P 在第三象限且120y y <<, 又∵30x <, ∴213y y y <<, 故答案是C .6、(2014北京中考)如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数()0ky k x=≠,使它的图象与正方形OABC 有公共点,这个函数的表达式为________【答案】 4y x=【解析】该题考查的是反比例函数解析式求法.由题可知()22B ,∵反比例函数的图象与正方形OABC 有公共点∴将()22B ,代入ky x=,解得4k =.7、(2014中考怀柔二模)如图,四边形ABCD 为菱形,已知()0,4A ,()3,0B -. (1)求点D 的坐标;(2)求经过点C 的反比例函数表达式.【答案】(1)()1,0- (2) 15y x=【解析】该题考查的是反比例函数综合.(1)根据题意得4AO =,3BO =,90AOB ∠=︒,∴5AB =. …………………1分 ∵四边形ABCD 为菱形, ∴5AD AB ==,∴1OD AD AO =-=, ∵点D 在y 轴负半轴,∴点D 的坐标为()1,0-. ………………………………3分 (2)设反比例函数表达式为()0ky k x=≠. ∵5BC AC ==,3OB =,∴点C 的坐标为()3,5-.………………………………4分 ∵反比例函数表达式ky x=经过点C , ∴反比例函数表达式为15y x=.………………………..5分8、(2014初二下期末北达资源中学)已知()4,A a ()2,4B --,是一次函数y kx b =+的图象与反比例函数my x=的图象的交点. (1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;(3)结合图象,直接写出不等式mkx b x+≥的解集.【答案】 (1)8y x=;2y x =-(2)6(3)20x -≤<或4x ≥【解析】该题考查的是一次函数与反比例函数综合. (1)将()2,4B --代入my x=中得8m = 反比例函数的解析式为8y x= 将()4,A a 代入8y x=中得2a = 一次函数y kx b =+过()2,4B --,()4,2A 得42k b -=-+,24k b =+ 得1k =,2b =-所以一次函数的解析式为2y x =-(2)直线2y x =-同x 轴的交点()2,0,y 轴的交点()0,2- 1112222226222S AOB =⨯⨯+⨯⨯+⨯⨯=(3)由图象可知,mkx b x+≥的解集是20x -≤<或4x ≥9、(2013初二下期末东城区南区)下图是反比例函数1k y x =和2ky x=(12k k <)在第一象限的图象,直线AB x ∥轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值为___________【答案】4【解析】该题考查的是反比例函数. 设A ,B 的纵坐标为y ,∴1A kx y =,2B k x y =,∴21k k AB y y=-, ∴122△AOB S AB y =⋅=, ∴21122kk y y y ⎛⎫-= ⎪⎝⎭,解得214k k -=.10、(2012初三上期末门头沟)如图,已知反比例函数ky x=与一次函数2y x =-+的图象交于A 、B 两点,且点A 的横坐标是2-. (1)求出反比例函数的解析式; (2)求AOB ∆的面积.【答案】(1)8y x=-(2)6【解析】该题考查的是反比例函数 (1)由题意,得,()224--+=A 点坐标()2,4-…………………………………………..1分 42k=-,8k =-反比例函数解析式为8y x=- ………………………………..2分(2)由题意,得B 点坐标()4,2-………………………………3分一次函数2y x =-+与x 轴的交点坐标()2,0M ,与y 轴的交点()0,2N ………4分 6AOB OMB OMN AON S S S S =++== …………………5分11、点P 在反比例函数1y x=(0x >)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是()A .5(0)y x x =->B .5(0)y x x =>C .6(0)y x x=->D .6(0)y x x=>【答案】 D【解析】由题意得12,2P ⎛⎫ ⎪⎝⎭,平移后得到3'4,2P ⎛⎫⎪⎝⎭,设经过点P '的反比例函数的解析式为k y x =(0k >),则3462k =⨯=,所以6y x=(0x >),故答案为D 选项.12、如图,将一块直角三角板OAB 放在平面直角坐标系中,(2,0)B ,o 60AOB ∠=,点A 在第一象限,过点A 的双曲线为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O B ''.当点O '与点A 重合时,点P 的坐标是_______.【答案】()4,0【解析】点'O 与点A 重合时,直线l 垂直平分OA ,如图,连接PA ,则PA PO =,因为()2,0B ,60AOB ︒∠=,所以2OB =,AB =设(),0P x ,则P A P O x ==,2PB x =-,在Rt P A B ∆中,由勾股定理可得()(2222x x =-+,解得4x =,所以()4,0P .二、 反比例函数综合13、(2014中考大兴一模)在平面直角坐标系xOy 中,直线l 与直线2y x =-关于y 轴对称,直线l 与反比例函数xky =的图象的一个交点为()2,A m . (1) 试确定反比例函数的表达式;(2) 若过点A 的直线与x 轴交于点B ,且45ABO ∠=︒,直接写出点B 的坐标.【答案】 (1)8y x=(2)()6,0或()2,0-【解析】该题考查的是反比例函数与一次函数的交点问题. 由题意,直线l 与直线2y x =-关于y 轴对称,∴直线l 的解析式为2y x = …………………………………………………1分 ∵点()2,A m 在直线l 上, ∴224m =⨯=.∴点A 的坐标为()2,4………………………………………………………2分 又∵点()2,4A 在反比例函数ky x=的图象上, ∴42k =, ∴8k =∴反比例函数的解析式为8y x=……………………………………………3分 (2)∵45ABO ∠=︒∴A 的纵坐标值等于A 点、B 点横坐标差的绝对值, ∴B 点横坐标246x =+=或242x =-=- 又∵B 点在x 轴上,故B 点纵坐标为0∴B 点的坐标为()6,0或()2,0-…………………………………………5分14、(2013中考海淀一模)如图,在平面直角坐标系xOy 中,反比例函数2y x=-的图 象与一次函数y kx k =-的图象的一个交点为()1,A n -.(1)求这个一次函数的解析式;(2)若P 是x 轴上一点,且满足45APO ∠=︒,直接写出点P 的坐标.【答案】(1)1y x =-+(2)()3,0-或()1,0【解析】该题考查的是反比例函数和一次函数综合. (1)∵点()1,A n -在反比例函数2y x=-的图象上, ∴2n = ………………………1分 ∴点A 的坐标为()1,2-∵点A 在一次函数y kx k =-的图象上,∴2k k =--∴1k =-………………………2分∴一次函数的解析式为1y x =-+………………………3分 (2)点P 的坐标为()3,0-或()1,0………………………5分 (写对一个给1分)15、(2013中考海淀二模)如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与一次函数2y x =+的图象的一个交点为(),1A m -.(1)求反比例函数的解析式;(2)设一次函数2y x =+的图象与轴交于点B ,若P 是y 轴上一点,且满足PAB ∆ 的面积是3,直接写出点P 的坐标.【答案】 (1)3y x=(2)()0,0或()0,4【解析】该题考查的是一次函数和反比例函数的综合. (1)∵点(),1A m -在一次函数2y x =+的图象上,∴3m =- -------------------------1分 ∴A 点的坐标为()3,1-- ∵点()3,1A --在反比例函数ky x=的图象上, ∴3k =-------------------------2分 ∴反比例函数的解析式为3y x=.-------------------------3分 (2)点P 的坐标为()0,0或()0,4.-------------------------5分 (写对一个给1分)16、(2012中考东城二模)如图,在平面直角坐标系xOy 中,直线AB 与反比例函数k y x=的图像交于点()3,4A -,AC x ⊥轴于点C . (1)求此反比例函数的解析式;(2)当直线AB 绕着点A 转动时,与x 轴的交点为(),0B a , 并与反比例函数ky x=图象的另一支还有一个交点的情形下,求ABC ∆的面积S 与a 之间的y函数关系式,并写出自变量a 的取值范围.【答案】 (1)12y x=-(2)()263S a a =+>-【解析】该题考查的是一次函数和反比例函数的综合题. (1)∵43k=-∴12k =- ∴12y x=-……2分 (2)∵()33BC a a =--=+,4AC = ∴()1432ACB S a ∆=⨯⨯+……4分()2 6 3a a =+>-……5分17、(2012中考朝阳二模)如图,点()3,0P -是反比例函数my x=的图象上的一点. (1)求该反比例函数的解析式; (2)设直线y kx =与双曲线m y x =的两个交点分别为P 和P′,当mkx x<时,直接写出x 的取值范围.【答案】(1)3y x=-(2)3x <-或03x <<该题考查的是反比例函数和一次函数的综合.(1)∵点()3,1P -在反比例函数ky x=的图象上,由13k =-得3k =-.∴反比例函数的解析式为3y x=-. …………………………………………3分(2)3x <-或03x <<. …………………………………………………………5分18、(2014中考石景山一模)如图,一次函数12y kx =+的图象与x 轴交于点()2,0B -,与函数()20my x x=>的图象交于点()1,A a . (1)求k 和m 的值; (2)将函数()20my x x=>的图象沿y 轴向下平移3个单位后交x 轴于点C .若点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.【答案】(1)3m =(2)3,25⎛⎫⎪⎝⎭或()3,2-【解析】该题考查的是一次函数与反比例函数. (1)根据题意,将点代入12y kx =+, ∴022k =-+.∴1k = ∴()1,3A 将其代入2my x=,可得3m =. (2)函数()230y x x =>的图象沿y 轴向下平移3个单位后解析式为()330y x x=->, 与交x 轴于点C ,令0y =代入上解析式中得1x =.∴C 点坐标为()1,0.∵()2,0B -,∴3BC =.∵△BCD 的面积是3,∴D 到x 轴的距离为2.当点D 在x 轴上方时,2y =,则横坐标为35x =,故坐标为3,25⎛⎫⎪⎝⎭当点D 在x 轴下方时,2y =-,则横坐标为3x =,故坐标为()3,2-19、(2014中考西城二模)经过点()1,1的直线l :()2 0y kx k =+≠与反比例函数1G :()10my m x=≠的图象交于点()1,A a -,(),1B b -,与y 轴交于点D . (1)求直线l 对应的函数表达式及反比例函数G 1的表达式;(2)反比例函数G 2:()2 0ty t x=≠,①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA EB =,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<t 的取值范围.【答案】(1)2y x =-+;3y x=-(2)()3,3E ;504t -<<或01t <<【解析】该题考查的是一次函数和反比例函数.(1)∵直线l : 2 (0)y kx k =+≠经过()1,1-,∴1k =-,∴直线l 对应的函数表达式2y x =-+. 1分 ∵直线l 与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,(),1B b -, ∴3a b ==.∴(1,3)A -,()3,1B - ∴3m =-.∴反比例函数G 1函数表达式为3y x=-. ······················································· 2分(2)∵EA EB =,(1,3)A -,()3,1B -, ∴点E 在直线y x =上.∵△AEB 的面积为8,AB =,∴EH =∴△AEB 是等腰直角三角形.∴()3,3E 5分 ②分两种情况:(ⅰ)当0t >时,则01t <<; 6分(ⅱ)当0t <时,则504t -<<.综上,当504t -<<或01t <<时,反比例函数2G 的图象与直线l 有两个公共点M ,N ,且DM DN +< 7分20、(2013初二下期末东城区南区)在直角坐标平面内,反比例函数my x=的图象经过点()1,4A 、()B a b ,过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D(1)求反比例函数的解析式;为顶点的四边形是等腰梯形,点B 的坐标是______; (3)ABD ∆的面积为4,求点B 的坐标。
中考一轮复习《一次函数》中考一轮复习《一次函数》一、【教学目标】(一)知识与技能1.理解正比例函数和一次函数的概念,能根据实际问题的条件或图象上的点的坐标确定正比例函数和一次函数的解析式.2.理解一次函数和正比例函数的图象与性质,理解它们的性质在实际应用中的意义.3.会用函数图象的方法求方程(组)与不等式(组)的解(集).4.能利用一次函数的图象与性质解决简单的实际问题.(二)过程与方法1、通过复习进一步发展学生形象思维能力和应用数学的能力2、发展学生数形结合意识,提高学生观察图象的能力(三)情感态度价值观通过复习进一步培养学生良好的学习习惯二、【教学重难点】1、重点:一次函数的图象与性质.2、难点:用函数图象的方法求方程(组)与不等式(组)的解(集).三、【教学过程】(一)课前热身1.下列函数中,是一次函数的有 ( )2.一次函数y = -2x +1不经过下列哪个象限( ) y = -xA.第一象限B.第二象限2C. 第三象限D.第四象限(第3题) (第4题)3.(2013.青岛.12)如图,一个正比例函数图象与一次函数的图象相交于点P , 则这个正比例函数的表达式是____________4.一次函数 y=k x +b(k 、b 为常数)的图象如图所示,则关于x 的不等式k x +b>0 的解集______. y x y x y x y 2)4(1)3(1)2(2)1(=+-=== x(二)考点一:一次函数的定义与性质考点知识精讲1、正比例函数和一次函数的概念一般地,如果y kx b =+(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
2、一次函数的图象所有一次函数的图象都是一条直线3、一次函数、正比例函数图象的主要特征:一次函数b kx y +=的图象是经过点(0,b )的直线;正比例函数kx y =的图象是经过原点(0,0)的直线。
中考数学专题辅导第五讲应用题(一次函数与反比例函数专题)选讲此部分内容包括:函数的应用(主要是一次函数与反比例函数),则属于中档题。
真题再现:1.(2008年苏州•本题8分)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A、B两船始终关于O点对称.以O为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A、B两船恰好在直线上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A( ,)、B( ,)和C( ,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
2.(2010年苏州•本题8分) 如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.3.(2014年•苏州•本题7分)如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P (a,0)(其中a>2),过点P作x轴垂线,分别交函数y=-x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.x4yx=y x=kyx=kyx=12124.(2014年•苏州• 8分)如图,已知函数y=(x>0)的图象经过点A ,B ,点A 的坐标为(1,2).过点A 作AC ∥y 轴,AC =1(点C 位于点A 的下方),过点C 作CD ∥x 轴,与函数的图象交于点D ,过点B 作BE ⊥CD ,垂足E 在线段CD 上,连接OC ,OD . (1)求△OCD 的面积; (2)当BE =AC 时,求CE 的长.5.(2015年苏州•本题满分8分)如图,已知函数(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E .(1)若AC =OD ,求a 、b 的值; (2)若BC ∥AE ,求BC 的长.6.(2016年苏州•本题满分8分)如图一次函数的图像与轴交于点A ,与反比例函数的图像交干点B (2,n).过点B 作轴于点P ,P 是该反比例函数图像上的一点,且∠PBC=∠ABC .求反比例函数和一次函数的表达式.7.(2017年苏州•本题满分8分)如图,在中,,轴,垂足为.反比例函数()的图像经过点,交于点.已知,. kx12ky x=326y kx =+x (0)my x x=>BC x ⊥(34,1)n -C ∆AB C C A =B x AB ⊥A k y x =0x >C AB D 4AB =5C 2B =(1)若,求的值;(2)连接,若,求的长.8. (2017年南京市•本题满分3分)如图,已知点A 是一次函数y =x (x ≥0)图像上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数(k )0)的图像过点B 、C ,若△OAB 的面积为6,求△ABC 的面积.9.(2017年南京市•本题满分8分)如图,已知一次函数y =kx +b 的图像与x 轴交于点A ,与反比例函数y =(x <0)的图像交于点B (-2,n ),过点B 作BC ⊥x 轴于点C ,点D (3-3n ,1)是该反比例函数图像上一点. (1)求m 的值;(2)若∠DBC =∠ABC ,求一次函数y =kx +b 的表达式.10.(2017年无锡市•本题满分12分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作PC ⊥x 轴于点C ,点C 绕点P 逆时针旋转60°得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点P (a ,b )经过T 变换后得到的点Q的坐标为 ;若点M 经过T 变换后得到点N (6,﹣),则点M 的坐标为 . (2)A 是函数y =x 图象上异于原点O 的任意一点,经过T 变换后得到点B .①求经过点O ,点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求△OAB 的面积与△OAD 的面积之比.11.(2017年泰州市•本题满分12分)阅读理解:如图①,图形l 外一点P 与图形l 上各点连接的所有线段中,若线段PA 1最短,则线段PA 1的长度称为点P 到图形l 的距离.4OA =k C O D C B =B C O 12ky x=mx例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)模拟训练:1.(2017年常熟市•本题满分8分)如图,点、分别在轴和轴上, (点和点在直线的两侧),点的坐标为(4,).过点的反比例函数的图像交边于点. (1)求反比例函数的表达式; (2)求点的坐标.2.(2018年蔡老师预测•本题满分8分如图,正比例函数y=2x 的图象与反比例函数y=的图象交于点A 、B ,AB=2,(1)求k 的值;(2)若反比例函数y=的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.3.( 2017年张家港•本题满分8分) 货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发3h 后休息,直至与货车相遇后,以原速度继续行驶.设货车出发h 后,货车、轿车分别到达离甲地km 和km 的地方,图中的线段、折线分别表示、与之间的函数关系.(1)求点的坐标,并解释点的实际意义;(2)求线段所在直线的函数表达式; (3)当货车出发 h 时,两车相距50km.4.(2017年苏州市区•本题满分8分)如图,在平面直角坐标系中,函数(,是常数)的图像经过,,其中.过点作轴垂线,垂足为,过点作轴垂线,垂足为,AC 与BD 交于点E ,连结,,.A B y x BC AB ⊥C O AB C n C (0)m y x x =>AC 1(,3)3D n +B x 1y 2y OA BCDE 1y 2y x D D DE ky x=0x >k (26)A ,(,)B m n 2m >A x C B y D AD DC CB(1)若的面积为3,求的值和直线的解析式;(2)求证:; (3)若∥ ,求点B 的坐标 .5.(2017年昆山市•吴江区••本题满分7分)如图,在平面直角坐标系中,矩形的对角线相交于点,且,(1)求证:四边形是菱形;(2)如果,求出经过点的反比例函数解析式.6.(2017年高新区•本题满分8分) 如图,反比例函数y =的图象与一次函数y =kx +b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =10,求点E 的坐标.7.(2017年吴中区•本题满分8分)如图,一次函数的图象与反比例(为常数,且)的图象交于,两点。
知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标. 例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.7.一次函数与方程组二元一次方程组的解 两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用y=k2x+b y=k1x+b9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断. k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可. 例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△OPE>S△AOC=S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
中考数学一次函数与反比例函数专题复习讲义中考考点梳理一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
二、不同位置的点的坐标的特征1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>⇔y x ;点P(x,y)在第二象限0,0><⇔y x ;点P(x,y)在第三象限0,0<<⇔y x ;点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数;点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数;点P 与点p’关于原点对称⇔横、纵坐标均互为相反数.三、函数及其相关概念1、函数解析式中,只有一个待定系数,因此只需要一对对y=中自变量y=的自变量【答案】B.【解析】试题分析:根据被开方数大于等于0,分母不等于0可得x+2≥0且x≠0,解得x≥﹣2且x≠0,故答案选B.考点:函数自变量的范围考点典例三、函数图象【例3】小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )A.B.C.D.【答案】B.【解析】考点:函数图象.【点睛】这是分段函数,根据实际情况解决即可.【举一反三】1.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )A.B.C.D.【答案】B.【解析】考点:动点问题的函数图象.考点典例四、一次函数【例4】若一次函数y=ax+b的图像经过第一、二、四象限,则下列不等式中总是成立的是()A、b<0B、a-b>0C、a2+b>0D、a+b>0【答案】C.【解析】试题分析:已知一次函数y=ax+b的图像经过第一、二、四象限,可得a<0,b>0,选项A错误;a-b>0,选项B错误;a2>0,所以a2+b>0,选项C正确;a+b的大小不能确定,选项D错误,故答案选C.考点:一次函数的性质.【点睛】熟练掌握一次函数图象与性质是解决此类问题的关键.【举一反三】1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )2A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D.【解析】试题分析:∵在直角坐标中,点P(2,﹣3),∴点P在第四象限,故选D.考点:点的坐标;探究型.2.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是( )A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【答案】D.【解析】试题分析:将点A(3,2)向左平移4个单位长度得点A′,可得点A′的坐标为(﹣1,2),所以点A′关于y轴对称的点的坐标是(1,2),故选D.考点:关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.3.(2015自贡)小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是( )A.B.C.D.【答案】C.【解析】考点:函数的图象.4.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。
考试内容考试要求层次A B C平面直角坐标系认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标;了解特殊位置的点的坐标特征能在方格纸上建立适当的直角坐标系,描述物体的位置和变化;会由点的特殊位置,求点的坐标中相关字母的范围;会求已知点到坐标轴的距离;能用不同的方式确定物体的位置函数及其图象了解常量和变量的意义;了解函数的概念和三种表示方法;能举出函数的实例;会确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求函数值能用适当的函数表示法刻画某些实际问题中变量之间的关系能探索具体问题中的数量关系和变化规律;结合函数关系的分析,能对变量的变化趋势进行初步预测;能结合图象对简单实际问题中的函数关系进行分析一次函数理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函数的性质会根据已知条件确定一次函数解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解能用一次函数解决实际问题反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题中考大纲剖析5中考第一轮复习一次函数与反比例函数【编写思路】一次函数和反比例函数在中考中的位置大都是第17,18题,难度不大. 在模拟考中有可能会涉及到反比例函数的面积问题。
本讲分三个模块,第一模块为一次函数的图象及性质,例1的几个小题主要运用一次函数的性质解决一次函数的变换,理解系数对图象的影响;第二模块为反比例函数,本模块主要让学生掌握反比例函数的图像和性质以及k的几何意义(例2);第三模块是一次函数与反比例函数综合,是本讲的重难点所在,主要有四类题型:一是一次函数的反比例函数的图像与性质综合(例3);二是解析式或点的坐标的确定:知点求线、知线求点(例4);三是函数与方程、不等式综合(例5);四是函数与几何综合(面积问题)(例6、例7).一次函数图象的性质y kx b=+示意图(草图)经过的象限变化趋势性质(增减性)k>0b=一、三从左向右上升y随x的增大而增大,y随x的本讲结构知识导航模块一一次函数的图象及性质0b > 一、二、三减小而减小0b < 一、三、四0k <0b = 二、四从左向右下降y 随x 的增大而减小,y 随x 的减小而增大0b > 一、二、四0b < 二、三、四一次函数y kx b =+()0k ≠图象的平移、对称和旋转变换平移对称旋转 关于x 轴关于y 轴 关于垂直于坐标轴的直线 旋转图象上的两个点,由旋转后的两点坐标确定解析式方法 ⑴k 值不变,平移图象上的一个点;⑵k 值不变,“上加下减,左加右减” ⑴对称图象上的两个点;⑵k b 、均变为相反数⑴对称图象上的两个点;⑵k 变为相反数,b 不变对称图象上的两个点,由对称后的两点坐标确定解析式一些特殊直线 ()0y kx b k =+≠1k =过()10,点 过()10-,点 大致图象等等等举例1y x =-+,2y x =-等2233y x y x =-+=-,等 11122y x y x =+=--,等重要性质 ⑴与y x =或y x =-平行 ⑵与x y ,轴的夹角为45︒,并与坐标轴围成等腰直角三角形k b ,互为相反数 即0k b +=k b =夯实基础Oyxy 2y 1(2,2)(-1,1)【例1】 ⑴点()01,向下平移2个单位后的坐标是 ; 直线21y x =+向下平移2个单位后的解析式是 ; 直线21y x =+向右平移2个单位后的解析式是 .⑵如果一条直线l 经过不同三点()()()A a b B b a C a b b a --,,,,,,那么直线l 经过( )A .二、四象限B .一、二、三象限C .二、三、四象限D .一、三、四象限⑶如图所示,函数1y x =和21433y x =+的图象相交于(1-,1),(2,2)两点.当12y y >时,x 的取值范围是( )A .x <1-B .1-<x <2C .x >2D . x <1-或x >2⑷设b a >,将一次函数y bx a =+与y ax b =+的图象画在同一平面直角坐标系内,则有一组a 、b 的取值,使得下列4个图中的一个为正确的是( )11DCBAOb a y xxy a bO xya bO Ob a y x⑸在平面直角坐标系中,已知直线y =34-x +3与x 轴、y 轴分别交于A 、B 两点,点C(0,n )是y 轴正半轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上, 则点C 的坐标是 ( )A.(0,43)B.(0,34) C.(0,3) D.(0,4)一、反比例函数的性质定 义 示例剖析模块二 反比例函数2x m=()()200ax b m a m +=≠≥,()211x +=11x +=±11x +=11x +=-1202x x ==-,二、与反比例函数有关的面积问题OxyABCDDCxyABO(4)点A 与C ,点B 与D 分别关于原点对称,所以四边形ABCD 为平行四边形. 从而4AOB ABCD S S =△四边形.①12S S =;②MONP S 四边形的值为定值;③当M 为AP 中点,则N 必为PB 中点; ④当M 为AP 的n 等分点时,N 必为PB 的n 等分点.【例2】 ⑴函数()()12400y x x y x x==>≥,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >;③当1x =时,3BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而 减小.其中正确结论的序号是 .⑵如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别与坐标轴平行,点C 在反比例函数221k k y x++=的图象上.若点A 的坐标为()22--,,则k 的值为_________.⑶ 如图,矩形OABC 的两条边在坐标轴上,OA =1,OC =2,现 将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n 次(n >1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为 (用含n 的代数式表示)能力提升模块三 一次函数与反比例函数综合xyC BAO →解决面积的几种方法:1、公式法:三角形、特殊四边形等面积公式;2、割补法:通过“割补”转化为易求图形面积的和或差;3、容斥法4、等积变换法:如同底等高、平行线法5、铅垂线法:如右图所示()1212ABC S AP h h =⋅+△,AP 称为铅垂高,12h h +称为水平宽.【例3】 ⑴关于x 的函数()1y k x =+和()0ky k x=-≠,它们在同一坐标系中的大致图象是( )O yx x y O x yO Oy xA .B .C .D .⑵如图,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线ky x=(k ≠0)与ABC ∆有交点,则k 的取值范围是 A .12k << B .13k ≤≤C .14k ≤≤D .14k <≤【例4】 ⑴直线()0y ax a =>与双曲线3y x=交于()()1122A x y B x y ,、,两点,则122143x y x y -= .⑵ 如图,在平面直角坐标系xOy 中,已知直线l :1y x =--,双曲线1y x=,在l 上取一点1A ,过1A 作x 轴的垂线交双曲线于点1B ,过1B 作y 轴的垂线交l 于点2A ,知识导航夯实基础h 2h 1B OCyxA Py 1x O A BCB 11 1 yxlOA 2A 1请继续操作并探究:过2A 作x 轴的垂线交双曲线于点2B ,过2B 作y 轴的垂线交l 于点3A ,…,这样依次得到l 上的点1A ,2A ,A ,…,n A ,….记点n A 的横坐标为n a ,若12a =,则2a = ,2013a = ;若要将上述操作无限次地进行下云,则1a 不能取的值是 .【例5】 如图,直线1y k x b =+与双曲线2k y x=相交于()12A ,,()1B m -,两点. ⑴ 求直线和双曲线的解析式;⑵ 若()11C x y ,,()22D x y ,,()33E x y ,为双曲线上的三点,且1230x x x <<<,请直接写出1y ,2y ,3y 的大小关系式;⑶ 观察图象,请直接写出不等式21k k x b x+>的解集.【例6】 如图,在直角坐标平面内,函数my x=(0x >,m 是常数)的图象经过A (1,4),B (a ,b ),其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连接AD 、DC 、CB . ⑴若ABD △的面积为4,求点B 的坐标;⑵若DC AB ∥,当AD BC =时,求直线AB 的函数的解析式.能力提升yxCOD BA xyO AB【例7】 已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动 点.过点B 作BD ∥y 轴交x 轴于点D .过()0N n -,作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . ⑴若点D 坐标是(8-,0),求A 、B 两点坐标及k 的值.⑵若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的 解析式.⑶设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP , MB =qMQ ,求p -q 的值.探索创新yO · AD xB CENM ·y=kx-2yxOBA模块一 一次函数的图象与性质 课后演练演练1 ⑴如图直线y kx b =+经过()()2112A B --,,,两点,则不等式 122x kx b >+>-的解集为_______.⑵在平面直角坐标系中.线段AB 的端点坐标为A (2-,4),B (4,2),直线2y kx =-与线段AB 有交点,则k 的值不可能是( ) A .5- B .2- C .2 D .5模块二 一次函数与面积 课后演练演练2 如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为()156,,直线 13y x b =+恰好将矩形OABC 分成面积相等的两部分,那么b = .模块三 反比例函数 课后演练演练3 ⑴如图,函数11-=x y 和函数xy 22=的图象相交于点M (2,m ), N (-1,n ),若21y y >, 则x 的取值范围是( )A. 1-<x 或20<<xB. 1-<x 或2>xC. 01<<-x 或20<<xD. 10x -<<或2>x⑵如图,在反比例函数2y x=(0)x >的图象上,有点1234P P P P ,,,,它 们的横坐标依次为1234,,,.分别过这些点作x 轴与y 轴的垂线,图中 所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .实战演练演练4 如图,正比例函数y kx =和反比例函数my x=的图象都经过点 (33)A ,,将直线y kx =向下平移后得直线l ,设直线l 与反比例函数的图象的一个分支交于点(6)B n ,. ⑴求n 的值;⑵求直线l 的解析式.l演练5在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=xk2的图象交于A(1,6),B(a,3)两点.⑴求k1,k2的值;⑵如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值.第十八种品格:坚持少年与金表一个农场主在巡视谷仓时不慎将一只名贵的金表遗失在谷仓里,他遍寻不获,便在农场门口贴了一张告示,要人们帮忙,悬赏100美元。