纳米材料与纳米团簇
- 格式:ppt
- 大小:3.80 MB
- 文档页数:63
自组装制备纳米材料的研究现状摘要文章综述了纳米材料各种制备方法,提出了应用自组装技术制备纳米材料。
评述了其在制备纳米材料时的机理、优缺点。
综述了纳米材抖的各种制备方法,提出了应用自组装技术制备纳米材料。
并对国内外应用自组装技术制备纳米材料(如纳米团簇、纳米管、纳米膜等)的研究现状进行了综述。
关键字:纳米材料自组装纳米团簇纳米薄膜前言纳米材料是20世纪80年代中期发展起来的一种具有全新结构的材料,它所具有的独特性质,使它在磁学、电学、光学、催化以及化学传感等方面具有广阔的应用前景。
自组装技术从纳米材料出现开始就一直应用于纳米材料的制备,只不过当时没有明确地将其作为一种方法提出。
到目前为止,自组装技术已能用来制备纳米结构材料,如纳米团簇、纳米管、纳米环、纳米线、多孔纳米材料、功能化纳米材料、功能化纳米级膜及有机/无机纳米复合材料。
纳米科学生命科学技术、信息科学技术和纳米科学技术是本世纪科技发展的主流方向。
纳米科学技术是在纳米空间对原子、分子及其他类型物质的运动与变化规律进行研究,同时在纳米尺度范围内对原子、分子等物质结构单元进行操纵、加工的一个新兴科学领域。
著名物理学家诺贝尔奖获得者Richmd P.Feynman在1959年l2月指出”There is a plenty of room at the bottom”,并预言,如果人类按照自己的意志去安排一个个原子,将得到具有独特性质的物质。
1981年G.Binning教授和H.Rohrer 博士发明了扫描隧道显微镜(scanning tunneling microscopy,STM),使人类首次能够直接观察原子,并能通过STM对原子、分子进行操纵。
1990年7月,在美国巴尔的摩召开了第一届国际纳米科学技术学术会议,这标志着纳米科学技术作为一个新兴的领域正式形成,纳米材料学成为材料科学的一个新分支。
2000年7月美国国家科学技术委员会宣布实施纳米技术创新工程,并将纳米计划视为下一次工业革命的核心。
绪论1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。
Richard Feynman:世界上首位提出纳米科技构想的科学家。
2、纳米材料(1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因)(2)纳米尺度:1-100 nm范围的几何尺;纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。
(3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等(4)纳米材料的维度:○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状)○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构)○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构)○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成)(5)纳米材料的分类○1具有纳米尺度外形的材料○2以纳米结构单元作为主要结构组分所构成的材料3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。
4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。
分辨率达0.1~0.2 nm,可以直接观察和移动原子。
5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。
可用于研究半导体、导体和绝缘体。
AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。
6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程分支学科:纳米力学:研究物体在纳米尺度的力学性质纳米物理学:研究物质在纳米尺度上的物理现象及表征纳米化学:研究纳米尺度范围的化学过程及反应纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制;纳米医学:利用纳米科技解决医学问题的边缘交叉学科纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。
《纳米材料与团簇物理》课程报告题目纳米团簇研究进展及其应用魏智强指导教师祝杰名姓908 级班级班082070205016 号学纳米团簇研究进展及其应用团簇和纳米体系是20世纪末发展起来的崭新领域,它所研究的对象是既不同于原子、分子,又不同于宏观物体的中间体系,现在普遍认为直径在1~100nm尺寸的颗粒属纳米粒子的范畴。
这段尺寸的粒子的物理和化学性质与大于100nm 以上的粒子有着明显的区别,但对其性质远没有深入研究。
迄今人工合成的最新枝状化合物的最大尺寸还只能达到10nm,而光刻的最小尺寸也只能接近100nm( Intel公司PentiumIII微处理器使用的光刻技术达到180nm),胶体粒子和纳米团簇的尺寸大体位于这一间隙。
因此纳米团簇的发现正为填补这段间隙的研究架起了桥梁。
虽然早在1857年Faraday就对纳米级的金属胶体的制备和性质有所研究,但真正有目的地研究纳米材料却还是在20世纪60年代,到20世纪80 年代这方面的研究进程才明显加快。
这是人们过去从未进行研究的新领域,是人们认识物质世界的新层次。
它的丰富物理内涵,对物理提出了新的挑战,也是当前物理与其它学科交叉最富有活力的热点领域。
团簇和纳米体系是研究介观尺寸范围内出现的物理现象和物理效应。
纳米体系物理主要是探索尺寸限域引起的量子尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而导致纳米体系具有与常规宏观体系和微观体系不同的新的物理现象和效应。
由于纳米材料尺寸小,与电子的德布洛意波长、超导相干波长及激子玻尔半径相比拟,电子局限在一个体积十分小的纳米空间,电子输运受到限制,电子平均自由程很短,电子的局域性和相干性增强。
尺度下降使纳米体系包含的原子数大大降低,宏观固体的准连续能带消失了,表现了分立的能级,量子尺寸效应十分显著,这使得纳米体系的光、热、电、磁等物理性质与常规材料不同,出现许多新奇特性。
例如纳米材料的熔点显著降低。
一般来讲,纳米结构材料与其对应的正常态材料相比,密度降低,强度和硬度提高,塑韧性改善,扩散能力提高,热膨胀系数增加,导热性减小,弹性模量降低。
纳米ir团簇
摘要:
一、纳米ir团簇的概述
二、纳米ir团簇的制备方法
三、纳米ir团簇的性能与应用
四、纳米ir团簇的发展前景
正文:
纳米ir团簇作为一种新兴的纳米材料,正逐渐引起科研界的关注。
纳米ir 团簇是由若干个原子组成的微观粒子,其尺寸在1到100纳米之间。
由于其独特的物理和化学性质,纳米ir团簇在许多领域都有广泛的应用前景。
纳米ir团簇的制备方法有多种,包括物理法、化学法和生物法等。
物理法主要是通过蒸发、溅射等手段制备;化学法则是通过化学反应生成纳米ir团簇;生物法则是利用生物分子作为模板,合成纳米ir团簇。
纳米ir团簇具有出色的性能,如高催化活性、高磁性、高光学性能等。
这些性能使其在许多领域得以应用,如催化、磁性材料、光电器件等。
此外,纳米ir团簇还具有较高的生物相容性,因此在生物医学领域也有广泛的应用,如药物传递、肿瘤治疗等。
展望未来,纳米ir团簇的发展前景十分广阔。
随着科研技术的不断进步,纳米ir团簇的制备方法和性能研究将更加成熟,进而推动其在各个领域的应用。
同时,纳米ir团簇在产业化进程中也面临一定的挑战,如规模制备、成本降低等。
但相信在不久的将来,纳米ir团簇将为我们带来更多的惊喜和便利。
总之,纳米ir团簇作为一种具有巨大潜力的纳米材料,其独特的性能和广泛的应用前景使其在科研和产业界备受关注。
纳米材料习题答案1、简单论述纳米材料的定义与分类。
答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。
现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。
如果按维数,纳米材料可分为三大类:零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。
一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。
二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。
因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。
2、什么是原子团簇? 谈谈它的分类。
3、通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 答:利用微束拉曼光谱仪能有效地观察到单臂纳米管特有的谱线,这是鉴定单臂纳米管非常灵敏的方法。
100-400cm-1范围内出现单臂纳米管的特征峰,单臂纳米管特有的环呼吸振动模式;1609cm-1,这是定向多壁纳米管的拉曼特征峰。
单臂管的直径d与特征拉曼峰的波数成反比,即d=224/wd:单壁管的直径,nm;w:为特征拉曼峰的波数cm-14、论述碳纳米管的生长机理(图)。
答:碳纳米管的生长机理包括V-L-S机理、表面(六元环)生长机理。
(1)V-L-S机理:金属和碳原子形成液滴合金,当碳原子在液滴中达到饱和后开始析出来形成纳米碳管。
根据催化剂在反应过程中的位置将其分为顶端生长机理、根部生长机理。
①顶端生长机理:在碳纳米管顶部,催化剂微粒没有被碳覆盖的的部分,吸附并催化裂解碳氢分子而产生碳原子,碳原子在催化剂表面扩散或穿过催化剂进入碳纳米管与催化剂接触的开口处,实现碳纳米管的生长,在碳纳米管的生长过程中,催化剂始终在碳纳米管的顶端,随着碳纳米管的生长而迁移;②根部生长机理:碳原子从碳管的底部扩散进入石墨层网络,挤压而形成碳纳米管,底部生长机理最主要的特征是:碳管一末端与催化剂微粒相连,另一端是不含有金属微粒的封闭端;(2)表面(六元环)生长机理:碳原子直接在催化剂的表面生长形成碳管,不形成合金。
名词解释:1、纳米:纳米是长度单位,10-9米,10埃。
2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。
3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm)。
4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。
5、布朗运动:悬浮微粒不停地做无规则运动的现象.6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应.7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。
8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。
9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。
10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。
11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。
HAII—Petch公式:σ--强度; H--硬度;d--晶粒尺寸;K--常数纳米复合材料:指分散相尺度至少有一维小于100nm的复合材料。
14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。
15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。
大题:纳米粒子的基本特性?(1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。
(2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。
(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性)(3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。
金属纳米团簇综述一、金属纳米团簇团簇,也称超细小簇。
团簇是由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。
团簇的空间尺度是几埃至几百埃的范围,用无机分子来描述显得太小,用小块固体描述又显得太大,许多性质既不同于单个原子分子,又不同于固体和液体,也不能用两者性质的简单线性外延或内插得到。
因此,人们把团簇看成是介于原子、分子与宏观固体物质之间的物质结构的新层次,是各种物质由原子分子向大块物质转变的过渡状态。
而金属纳米团簇是团簇的一种,其一般由少则数个、多则上百个原子组成,其尺寸与电子费米波长相当,并且因为其超小尺寸、冷光性、耐光性和生物相容性的特点,近年来成为纳米材料的明星成员。
二、金属纳米团簇的合成方法与机理1、直接合成法以制备Au(I)举例,在硫醇配体的存在下,Au(III)会被转化成Au(I)-SR络合物,然后通过还原剂(NaBH4)直接将Au(I)-SR络合物还原成团簇。
根据报道,在合成用谷胱甘肽(GSH)保护的金纳米团簇时,采用这种方法,虽然合成步骤比较方便,但是合成的团簇的尺寸比较分散,包括了Au10(SG)10、Au15(SG)13、Au15(SG)14、Au22(SG)16、Au22(SG)17等等,并且产率很低。
值得一提的是,在这种方法中,有两个关键的步骤:1)热力学选择:即通过反应温度的控制,从而控制反应过程中的某一产物的形成;2)动力学控制:即通过还原剂的强弱以及加入的快慢等来控制产物的形成,比如强还原剂LiAlH4、NaBH4,温和还原剂NaBH3CN、CO等等。
Figur1.1 NaBH4直接将Au(I)-SR络合物还原成团簇示意图。
Figue1.2 通过还原合成[Au25(SR)18]-团簇示意图。
2、种子生长法种子生长法即采用较小尺寸金属纳米团簇作为种子,逐步生长为较大尺寸金属纳米团簇的方法。