二次函数与圆综合强化1(答案)
- 格式:doc
- 大小:588.00 KB
- 文档页数:4
【例1】.如图,点()40M ,,以点M 为圆心、2为半径的圆与x 轴交于点A B ,.已知抛物216y x bx c =++过点A 和B ,与y 轴交于点C .⑴ 求点C 的坐标,并画出抛物线的大致图象.⑵ 点()8Q m ,在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ PB + 最小值. ⑶ CE 是过点C 的M ⊙的切线,点E 是切点,求OE 所在直线的解析式.【巩固】已知抛物线2y ax bx c =++与y 轴的交点为C ,顶点为M ,直线CM 的解析式2y x =-+并且线段CM 的长为(1)求抛物线的解析式。
(2)设抛物线与x 轴有两个交点A (X 1 ,0)、B (X 2 ,0),且点A 在B 的左侧,求线段AB 的长。
(3)若以AB 为直径作⊙N ,请你判断直线CM 与⊙N 的位置关系,并说明理由。
【例2】如图,在平面直角坐标系中,以点(04)C ,为圆心,半径为4的圆交y 轴正半轴于点A ,AB 是C ⊙的切线.动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O 点开始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、Q 从点A 和点O 同时出发,设运动时间为t (秒).⑴当1t =时,得到1P 、1Q 两点,求经过A 、1P 、1Q 三点的抛物线解析式及对称轴l ;⑵当t 为何值时,直线PQ 与C ⊙相切?并写出此时点P 和点Q 的坐标;⑶在⑵的条件下,抛物线对称轴l 上存在一点N ,使NP NQ +最小,求出点N 的坐标并说明理由.提示:(1)先求出t=1时,AP 和OQ 的长,即可求得P 1,Q 1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l 的解析式.(2)当直线PQ 与圆C 相切时,连接CP ,CQ 则有Rt △CMP ∽Rt △QMC (M 为PG 与圆的切点),因此可设当t=a 秒时,PQ 与圆相切,然后用a 表示出AP ,OQ 的长即PM ,QM 的长(切线长定理).由此可求出a 的值.(3)本题的关键是确定N 的位置,先找出与P 点关于直线l 对称的点P ′的坐标,连接P ′Q ,那么P ′Q 与直线l 的交点即为所求的N 点,可先求出直线P ′Q 的解析式,进而可求出N 点的坐标.【巩固】已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与 二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线l 过()01-,点.⑴ 求一次函数与二次函数的解析式;⑵ 判断以线段AB 为直径的圆与直线l 的位置关系,并给出证明;⑶ 把二次函数的图象向右平移2个单位,再向下平移t 个单位()0t >,二次函数的图象与x轴交于M N,,三点的圆的,两点,一次函数图象交y轴于F点.当t为何值时,过F M N面积最小?最小面积是多少?【例3】如图1,⊙O的半径为1,正方形ABCD顶点B坐标为(),,顶点D在⊙O上运动.50⑴当点D运动到与点A、O在同一条直线上时,试证明直线CD与⊙O相切;⑵当直线CD与⊙O相切时,求OD所在直线对应的函数关系式;⑶设点D的横坐标为x,正方形ABCD的面积为S,求S与x之间的函数关系式,并求出S 的最大值与最小值.【巩固】如图,已知点A 从()10,出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶点作菱形OABC ,使点B C ,在第一象限,且60AOC ∠=︒;以()03P ,为圆心,PC 为半径作圆.设点A 运动了t 秒,求: ⑴ 点C 的坐标(用含t 的代数式表示);⑵ 当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.【例4】已知:如图,抛物线213y x m =+与x 轴交于A B ,两点,与y 轴交于C 点,90ACB ∠=︒⑴ 求m 的值及抛物线顶点坐标;⑵ 过A B C ,,的三点的M ⊙交y 轴于另一点D ,连结DM 并延长交M ⊙于点E ,过E 点的M ⊙的切线分别交x 轴、y 轴于点F G ,,求直线FG 的解析式;⑶ 在条件⑵下,设P 为CBD 上的动点(P 不与C D ,重合),连结PA 交y 轴于点H ,问是否存在一个常数k ,始终满足AH AP k ⋅=,如果存在,请写出求解过程;如果不存在,请说明理由.【巩固】如图,已知点A的坐标是(),,以AB为直径作O',90-,,点B的坐标是()10交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.⑴求抛物线的解析式;⑵点E是AC延长线上一点,BCE∠的平分线CD交O'于点D,连结BD,求直线BD的解析式;⑶在⑵的条件下,抛物线上是否存在点P,使得PDB CBD∠=∠?如果存在,请求出点P的坐标;如果不存在,请说明理由.DCEA yxBO O'课后作业:1.如图,直角坐标系中,已知两点()A,,点B在第一象限且OAB2000O,,()∆为正三角形,OAB∆的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.⑴求B C,两点的坐标;⑵求直线CD的函数解析式;⑶设E F,分别是线段AB AD,上的两个动点,且EF平分四边形ABCD的周长.试探究:AEF∆的最大面积?参考答案例1【巩固】例2分析:(1)先求出t=1时,AP和OQ的长,即可求得P1,Q1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l的解析式.(2)当直线PQ与圆C相切时,连接CP,CQ则有Rt△CMP∽Rt△QMC(M为PG与圆的切点),因此可设当t=a秒时,PQ与圆相切,然后用a表示出AP,OQ的长即PM,QM的长(切线长定理).由此可求出a的值.(3)本题的关键是确定N的位置,先找出与P点关于直线l对称的点P′的坐标,连接P′Q,那么P′Q与直线l的交点即为所求的N点,可先求出直线P′Q的解析式,进而可求出N点的坐标.【巩固】例3【巩固】例4【巩固】作业。
中考数学总复习《二次函数与圆综合压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,已知抛物线()20y ax bx c a =++≠过点()0,4C -,顶点为253,4M ⎛⎫- ⎪⎝⎭,与x 轴交于A 、B 两点. 以AB 为直径作圆,记作D .(1)求抛物线表达式及点D 的坐标;(2)试判定直线CM 与D 的位置关系,并说明理由;(3)抛物线对称轴上是否存在点P ,连接CP ,将线段CP 绕点P 旋转90︒,点C 的对应点为点C ',是否存在点C '恰好落在抛物线上?若能,请直接写出点P 的坐标;若不能,请说明理由.2.如图,抛物线2y x bx c =++与x 轴交于()1,0A ,B 两点,与y 轴交于点()0,3C .(1)求该抛物线的解析式;(2)如图(1),点P 是线段BC 上的一动点,过点P 作PQ y ∥轴交抛物线于点Q ,连接CQ ,若CQ 平分OCB ∠,求点P 的坐标;(3)如图(2),过A ,B ,C 三点作I ,直线()3y t t =>交I 于点M ,N ,交抛物线于点E ,F . 若EM FN MN +=,求t 的值3.如图,在平面直角坐标系中,M 交x 轴于点()()1,04,0A B -、,交y 轴负半轴于点C AB ,为M 的直径.(1)求图象经过点A 、B 、C 的二次函数的解析式;(2)设点D 为(1)中二次函数图象的顶点,求直线CD 的函数解析式; (3)判断直线CD 与M 的位置关系,并说明理由.4.如图1,平面直角坐标系xOy 中,抛物线()()1222y x x m =+-与x 轴交于()2,0A -、B (点A 在点B 左侧),与y 轴交于点C .(1)连接BC ,则OCB ∠=______︒;(2)如图2,若P 经过A 、B 、C 三点,连接PA 、PC ,若OBC △与PAC △的周长之比为3:5,求该抛物线的函数表达式;(3)如图3,在(2)的条件下,连接OP ,抛物线对称轴上是否存在一点Q ,使得以O 、P 、Q 为顶点的三角形与OAP △相似?若存在,求出点Q 的坐标;若不存在,说明理由.5.已知二次函数22y x ax c =+-的图象与y 轴交于点A ,与x 轴交于点B 、C .(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,求点D 的坐标;(3)如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与C 有怎样的位置关系,并给出证明.8.如图,已知抛物线()20y ax bx c a =++≠过点()0,4C -.顶点为253,4M ⎛⎫- ⎪⎝⎭,与x 轴交于A 、B 两点.以AB为直径作圆,记作D .(1)求抛物线解析式及点D 的坐标;(2)猜测直线CM 与D 的位置关系,并证明你的猜想;(3)抛物线对称轴上是否存在点P ,若将线段CP 绕点P 逆时针旋转90︒,使点C 的对应点C '恰好落在抛物线上?若能,求点P 的坐标;若不能,说明理由.为半径作圆,请判断P是不是二次函数轴于点C,则该二次函数的坐标圆的圆心为求POA周长最小值..如图,抛物线作C的切线切点为点11.如图,在平面直角坐标系中,已知抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于C 点,且4OB OC ==.(1)求抛物线的解析式;(2)在抛物线上是否存在点M ,使ABC BCM ∠=∠,如果存在,求M 点的坐标,如果不存在,说明理由; (3)若D 是抛物线第二象限上一动点,过点D 作DF x ⊥轴于点F ,过点A 、B 、D 的圆与DF 交于E 点,求ABE 的面积.12.如图,二次函数()20y x bx c a =-++≠的图像经过点()1,0A -和()3,0B ,交y 轴于点C ,点E 为该二次函数图象上第一象限内一动点.(1)b =__________,c =__________;PBEPACSS-的值最大时,求点交直线BC 于点F ,为直径的M 与BC 当EFR 周(1)如图1,若1OH =,求该抛物线的解析式; (2)如图1,若点P 是线段HD 上一点,当113AH AD AP+=时,求点P 的坐标(用含b 的代数式表示); (3)如图2,在(1)的条件下,设抛物线交y 轴于点C ,过A ,B ,C 三点作Q ,经过点Q 的直线y hx q =+交Q 于点F ,I ,交抛物线于点E ,G .当EI GI FI =+时,求22h 的值.15.二次函数2225y x mx m m =-++-.(1)当1m =时,函数图象与x 轴交于点A 、B ,与y 轴交于点C . ①写出函数的一个性质;①如图1,点P 是第四象限内函数图象上一动点,求出点P 坐标,使得BCP 的面积最大;①如图2,点Q 为第一象限内函数图象上一动点,过点Q 作QF x ⊥.轴,垂足为F ,ABQ 的外接圆与QF 交于点D ,求DF 的长度;(2)点()11,M x y 、()22,N x y 为函数图象上任意两点,且12x x <.若对于123x x +>时,都有12y y <,求m 的取值范围.参考答案是D 的切线152738t +=(3)直线CD 与M 相切()24-, 0a =;BN 32S ⎧-⎪⎪=⎨与D 相切(3))3-或45⎛- ⎝4)-(3)ABE S △的坐标315,⎛⎫与C 相切第 11 页 共 11 页 15.【答案】(1)①函数图象的顶点坐标为()1,4-;①278;①1DF =(2)32m <。
二次函数与圆综合提高(压轴题)1、如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE 翻折,与梯形BCED重叠的部分记作图形L.(1)求△ABC的面积;(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;∴MO=OE,∠MOE=120°,∴∠OME=30°,∴∠DME=90°,∴DE是直径,S⊙O=π×12=π.2、(2013•压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=﹣1,则直线AB的函数解析式为y=﹣x+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD,∴∠BOD=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,OD=43, ∴点D 的坐标为(0,﹣43), 直线CD 的解析式为:y=﹣13x ﹣43, 由得:,∴点P 的坐标为(8,﹣4),综上所述,点P 的坐标为(2,2)或(8,﹣4).3、抛物线y=x ²-bx-3b+3过A 、B 两点(点A 在点B 的左边),交y轴于点C ,且经过点(b -2,2b 2-5b -1).(1)求这条抛物线的解析式;(2)⊙M 过A 、B 、C 三点,交y 轴于另一点D ,求点M 的坐标;(3)连接AM 、DM ,将∠AMD 绕点M 顺时针旋转,两边MA 、MD 与x轴、y 轴分别交于点E 、F ,若△DMF 为等腰三角形,求点E 的坐标.解析:(1)把点(b -2,2b 2-5b -1)代入解析式,得2b 2-5b -1=(b -2)2+b (b -2)-3b +3, ……………1′解得b =2.∴抛物线的解析式为y =x 2+2x -3. ……………2′(2)由x 2+2x -3=0,得x =-3或x=1.∴A (-3,0)、B (1,0)、C (0,-3).抛物线的对称轴是直线x =-1,圆心M 在直线x =-1上. ……………3′∴设M (-1,n ),作MG ⊥x 轴于G ,MH ⊥y 轴于H ,连接MC 、MB .∴MH =1,BG =2. ……………4′∵MB =MC ,∴BG 2+MG 2=MH 2+CH 2,即4+n 2=1+(3+n )2,解得n=-1,∴点M (-1,-1) ……………5′(3)如图,由M (-1,-1),得MG =MH .∵MA =MD ,∴Rt △AMG ≌RtDMH ,∴∠1=∠2.由旋转可知∠3=∠4. ∴△AME ≌△DMF .若△DMF 为等腰三角形,则△AME 为等腰三角形. ……………6′设E (x ,0),△AME 为等腰三角形,分三种情况:①AE =AM =5,则x=5-3,∴E (5-3,0);②∵M 在AB 的垂直平分线上,∴MA =ME =MB ,∴E (1,0) ……………7′③点E 在AM 的垂直平分线上,则AE =ME .AE =x +3,ME 2=MG 2+EG 2=1+(-1-x )2,∴(x +3)2=1+(-1-x )2,解得x =47-,∴E (47-,0). ∴所求点E 的坐标为(5-3,0),(1,0),(47-,0) ……………8′4、(2013•压轴题)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA 面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.:解:(1)如答图1所示,过点D作DE⊥x轴于点E,则DE=3,OE=2.∵tan∠DBA==,∴BE=6,∴OB=BE﹣OE=4,∴B(﹣4,0).∵点B(﹣4,0)、D(2,3)在抛物线y=ax2+bx﹣2(a≠0)上,∴,解得,∴抛物线的解析式为:y=x2+x﹣2.(2)抛物线的解析式为:y=x2+x﹣2,令x=0,得y=﹣2,∴C(0,﹣2),令y=0,得x=﹣4或1,∴A(1,0).设点M坐标为(m,n)(m<0,n<0),如答图1所示,过点M作MF⊥x轴于点F,则MF=﹣n,OF=﹣m,BF=4+m.S四边形BMCA=S△BMF+S梯形MFOC+S△AOC=BF•MF+(MF+OC)•OF+OA•OC=(4+m)×(﹣n)+(﹣n+2)×(﹣m)+×1×2=﹣2n﹣m+1∵点M(m,n)在抛物线y=x2+x﹣2上,∴n=m2+m﹣2,代入上式得:S四边形BMCA=﹣m2﹣4m+5=﹣(m+2)2+9,∴当m=﹣2时,四边形BMCA面积有最大值,最大值为9.(3)假设存在这样的⊙Q.如答图2所示,设直线x=﹣2与x轴交于点G,与直线AC交于点F.设直线AC的解析式为y=kx+b,将A(1,0)、C(0,﹣2)代入得:,解得:k=2,b=﹣2,∴直线AC解析式为:y=2x﹣2,令x=﹣2,得y=﹣6,∴F(﹣2,﹣6),GF=6.在Rt△AGF中,由勾股定理得:AF===3.设Q(﹣2,n),则在Rt△AGF中,由勾股定理得:OQ==.设⊙Q与直线AC相切于点E,则QE=OQ=.坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C.(1)求经过A、B、C三点的抛物线所对应的函数解析式;(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;∴MC与⊙P的位置关系是相切.6、(2013•压轴题)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣23,0),以0C为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C 不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.解答:解:(1)由题意,得A(0,2),B(2,2),E的坐标为(﹣23,0),则,解得,,∴该二次函数的解析式为:y=﹣98x2+94x+2;(2)如图,过点D作DG⊥BE于点G.由题意,得ED=+1=,EC=2+=,BC=2,∴BE==.∵∠BEC=∠DEG,∠EGD=∠ECB=90°,∴△EGD∽△ECB,∴=,∴DG=1.∵⊙D的半径是1,且DG⊥BE,∴BE是⊙D的切线;(3)由题意,得E(﹣23,0),B(2,2).设直线BE为y=kx+h(k≠0).则,解得,,∴直线BE为:y=34x+12.∵直线BE与抛物线的对称轴交点为P,对称轴直线为x=1,∴点P的纵坐标y=54,即P(1,54).∵MN∥BE, ∴∠MNC=∠BEC.∵∠C=∠C=90°,∴△MNC∽△BEC,∴=,∴=2t ,则CN=43t , ∴DN=t﹣1,∴S △PND =12DN•PD=5568t -. S △MNC =12CN•CM=23t 2. S 梯形PDCM =(12PD+CM )•CD=5182t +. ∵S=S △PND +S 梯形PDCM ﹣S △MNC =﹣+t (0<t <2).∵抛物线S=﹣+t (0<t <2)的开口方向向下,∴S 存在最大值.当t=1时,S 最大=23. 7、(2013•)已知:一元二次方程x +kx+k ﹣=0.(1)求证:不论k 为何实数时,此方程总有两个实数根;(2)设k <0,当二次函数y=x 2+kx+k ﹣的图象与x 轴的两个交点A 、B 间的距离为4时,求此二次函数的解析式;(3)在(2)的条件下,若抛物线的顶点为C ,过y 轴上一点M (0,m )作y 轴的垂线l ,当m 为何值时,直线l 与△ABC 的外接圆有公共点?(1)证明:∵△=k 2﹣4××(k ﹣)=k 2﹣2k+1=(k ﹣1)2≥0,∴关于x 的一元二次方程x 2+kx+k ﹣=0,不论k 为何实数时,此方程总有两个实数根;(2)令y=0,则x 2+kx+k ﹣=0.∵x A +x B =﹣2k ,x A •x B =2k ﹣1,∴|x A ﹣x B |===2|k ﹣1|=4,即|k ﹣1|=2,解得k=3(不合题意,舍去),或k=﹣1.∴此二次函数的解析式是y=x 2﹣x ﹣;(3)由(2)知,抛物线的解析式是y=x 2﹣x ﹣.易求A (﹣1,0),B (3,0),C (1,﹣2),∴AB=4,AC=2,BC=2.显然AC 2+BC 2=AB 2,得△ABC 是等腰直角三角形.AB 为斜边,∴外接圆的直径为AB=4,∴﹣2≤m≤2.8、(2013•压轴题)如图,已知抛物线y=ax +bx+c (a≠0)的顶点坐标为(4,﹣),且与y轴交于点C (0,2),与x 轴交于A ,B 两点(点A 在点B 的左边).(1)求抛物线的解析式及A ,B 两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由;(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.解:(1)由题意,设抛物线的解析式为y=a(x﹣4)2﹣(a≠0)∵抛物线经过(0,2)∴a(0﹣4)2﹣=2解得:a=∴y=(x﹣4)2﹣即:y=x2﹣x+2当y=0时,x2﹣x+2=0解得:x=2或x=6∴A(2,0),B(6,0);(2)存在,如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)∴OB=6,OC=2∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2;(3)如图3,连接ME∵CE是⊙M的切线∴ME⊥CE,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE∵在△COD与△MED中∴△COD≌△MED(AAS),∴OD=DE,DC=DM设OD=x则CD=DM=OM﹣OD=4﹣x则RT△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2∴x=∴D(,0)设直线CE的解析式为y=kx+b∵直线CE过C(0,2),D(,0)两点,则解得:∴直线CE的解析式为y=﹣+2;圆的圆心坐标为C (2,0),B 是第一象限圆弧上的一点,且BC ⊥AC ,抛物线c bx x y ++-=221经过C 、B 两点,与x 轴的另一交点为D 。
专题16 巧解二次函数与圆综合题知识解读二次函数与圆结合的问题,是灵活运用数学思想方法解决类似以抛物线为主线,以圆为背景的函数综合题,这类题难度大,考查知识点多.对于在抛物线上架构圆的这类题型,不仅要求对抛物线和圆的相关知识能熟练掌握,还要挖掘其中隐含的等量关系,同时注意分类讨论所有可能的情况,避免遗漏;在抛物线中求圆问题时,要将点的坐标转化为所有图形边的长度.二次函数与圆的综合应用是初中阶段的重点题型,是知识覆盖面广、数学方法运用较多的试题,因而综合能力要求比较高,解决这类问题时应从多角度、多方面去分析,灵活运用多种数学方法和数学思想.解题中常用的数学思想方法有:方程和函数思想,数形结合思想,分类讨论思想.培优学案典例示范例1 如图161,抛物线2y ax bx c (,,a b c 是常数,0a)的对称轴为y 轴,且经过(0,0)和1(,)16a 两点,点p 在该抛物线上运动,以点P 为圆心的p 总经过定点(0,2)A .(1)求,,a b c 的值;(2)求证:在点P 运动的过程中,p 始终与x 轴相交;(3)设p 与x 轴相交于1212(,0),(,0)()M x N x x x 两点,当AMN △为等腰三角形时,求圆心P 的纵坐标.【提示】(1)根据题意得出二次函数一般形式进而将已知点代入求出,,a b c 的值即可;(2)设(,)P x y ,表示出p 的半径r ,进而与214x 比较得出答案即可;(3)分别表示出,AM AN 的长,进而分别利用当AM AN 时,当AMMN 时,当1ANMN 时,求出x 的值,进而得出圆心P 的纵坐标即可。
第(2)题综合程度高,难度加大,主要考查了直线与圆的位置关系,解决的方法是利用函数、圆的性质及勾股定理的有关知识进行计算并比较圆心到直线的距离与半径的大小关系;第(3)题主要是运用分类讨论的数学思想进行探究,是动态问题,计算量大。
在探讨动态问题时,首先要对运动过程做一个全面的分析,弄清楚运动过程中的变量和常量,变量反映了运动变化关系,常量则是问题求解的重要依据.其次,要分清运动过程中不同的变化关系.【解答】跟踪训练如图16-2,在平面直角坐标系中,O 为坐标原点,抛物线c bx ax y ++=2(0≠a )过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(524,518-),以OB 为直径的⊙A 经过C 点,直线l 垂直x 轴于B 点。
2020中考数学 培优专题:二次函数与圆综合(含答案)例题1. 在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(3,0)-,若将经过A 、C 两点的直线y kx+b =沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-. (1)求直线AC 及抛物线的函数表达式;(2)如果P 是线段AC 上的一点,设三角形ABP 、三角形BPC 的面积分别为ABP S △、BPC S △,且2:3ABP BPC S S =△△:,求点P 的坐标;(3)设Q 的半径为1,圆心Q 在抛物线上运动,则在运动的过程中是否存在Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,Q 与两坐标轴同时相切?【答案】(1)因为y kx+b =沿y 轴向下平移3个单位后恰好经过原点, 所以3b =,(0,3)C ,将(3,0)A -代入3y kx =+, 得330k -+=,解得1k =.所以直线AC 为:3y x+= 因为抛物线的对称轴是直线2x =-,所以930222a b c c b a ⎧⎪-+=⎪=⎨⎪⎪-=-⎩,解得143a b c =⎧⎪=⎨⎪=⎩. 所以抛物线的函数表达式为:243y x x =++.(2)如图,过点B 作BD AC ⊥于点D .因为:2:3ABP BPC S S =△△,所以:2:3AP PC =. 过点P 作PE x ⊥轴于点E ,则PE//CO ,所以APE ACO △∽△. 所以25PE AP CO AC ==. 所以2655PE OC ==. 所以635=x +,解得95x =-. 所以点P 的坐标为96,55⎛⎫- ⎪⎝⎭.(3)存在,设点Q 的坐标为00(,)x y ①当Q 与y 轴相切时,有01x =,即01x =±.11yxO当01x =-时,得20(1)4(1)30y =-+⨯-+=,所以1(1,0)Q -. 当01x =时,得2014138y =+⨯+=,所以2(1,8)Q , ②当Q 与x 轴相切时,有01y =,即01y =±, 当01y =-时,得200143x x -=++,即200440x x ++=,解得02x =-,所以3(2,1)Q -- 当01y =时,得200143x x =++,即200420x x ++=,解得02x =-±,所以4(2Q -,5(2Q -+综上所述,存在符合条件的Q ,其圆心Q 的坐标分别为1(1,0)Q -,2(1,8)Q ,3(2,1)Q --,4(2Q -,5(2Q -探究:设点Q 的坐标为00(,)x y .当Q 与两坐标同时轴相切时,有00y x =±.①当00y x =时,得200043x x x ++=,即200330x x ++=, 此时0<△,所以次方程无解.②当00y x =-时,得200043x x x ++=-,即200530x x ++=.解得0x =. ∴当Q的半径为0r x ===Q 与两坐标同时轴相切.例题2. 在平面直角坐标系中,抛物线经过(0,0)O 、(4,0)A、3,B ⎛ ⎝⎭三点. (1)求此抛物线的解析式;(2)以OA 的中点M 为圆心,OM 的长为半径作M ,在(1)中的抛物线上是否存在这样的点P ,过点P 作M 的切线l ,且l 与x 轴的夹角为30︒?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(注意:本题中的结果保留根号)【答案】(1)设抛物线的解析式为2y ax bx c =++,11Oyx由题意,得0164093c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩,解得0a b c ⎧=⎪⎪⎪⎪=⎨⎪=⎪⎪⎪⎩.所以抛物线的解析式为2y x =. (2)存在,抛物线222)y x x ==-所以抛物线的顶点为2,⎛ ⎝⎭,作抛物线和M (如图) 设满足条件的切线l 与x 轴交于点B ,与M 相切于点C . 连接MC ,过点C 作CD x ⊥轴于点D .因为2MC OM ==,30CBM ∠=︒,CM BC ⊥, 所以90BCM ∠=︒,60BMC ∠=︒,24BM CM ==. 所以2OB =,所以(2,0)B -.在Rt CDM △中,9030DCM CMD ∠=︒-∠=︒,2CM =. 所以1DM =,CD .所以C . 设切线l 的解析式为y=kx+b ,则可得20k b k b ⎧+=⎪⎨-+=⎪⎩,解得k b ⎧=⎪⎪⎨⎪=⎪⎩. 所以切线BC的解析式为.由题意2y ⎧=⎪⎪⎨⎪⎪⎩,解得1112x y ⎧=-⎪⎪⎨⎪=⎪⎩226x y =⎧⎪⎨=⎪⎩.所以点P的坐标为112P ⎛- ⎝⎭、2P ⎛ ⎝⎭. 因为抛物线和M 都关于直线2x =对称,则存在切线l 关于2x =对称的直线'l 也满足条件.同样得到满足的点P 关于1P 和2P对称,则得到392P ⎛ ⎝⎭、4P ⎛- ⎝⎭. 综上所述,这样的点P 共有4个,112P ⎛- ⎝⎭、2P ⎛ ⎝⎭、392P ⎛ ⎝⎭、4P ⎛- ⎝⎭.例题3. 如图,抛物线2134y x x =-++与x 轴交于点A 、B ,与y 轴交于点C ,顶点为点D ,对称轴l 与直线BC 交于点E ,与x 轴交于点F . (1)求直线BC 的解析式.(2)设点P 为该抛物线上的一个动点,以点P 为圆心、r 为半径作P ⊙. ①当点P 运动到点D 时,若P ⊙与直线BC 相交,求r 的取值范围;②若r =,是否存在点P 使P ⊙与直线BC相切?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线2134y x x =-++中,令0y =,得21034x x =-++,解得12x =-,26x =;令0x =,得3y =;∴(2,0)A -,(6,0)B ,(0,3)C ;设直线BC 的解析式为y kx b =+,则有:603k b b +=⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为:132y x =-+;(2)(2,4)D ,(2,2)E ;∴2EF DE ==,4BF =; ①过D 作DG BC ⊥于G ,则DEG BEF △∽△; ∴::2:1DE GE BF EF ==,即2DG GE =; Rt DGE △中,设GE x =,则2DG x =, 由勾股定理,得:222GE DG DE +=,即:2244x x +=,解得x;∴2DG x ==故D 、P 重合时,若P ⊙与直线BC 相交,则r DG >,即r >; ②存在符合条件的P 点,且P 点坐标为:1(2,4)P ,2(4,3)P,33P ⎛+ ⎝⎭,43P ⎛ ⎝⎭;过点F 作FM BC ⊥于M ; ∵2DE EF ==,则Rt Rt DGE FME △≌△;∴FM DG r == 分别过D 、F 作直线m 、n 平行于直线BC ,则直线m 与直线BC 、直线n 与直线BC 之间的距离都等于x ;所以P 点必为直线m 、n 与抛物线的交点; 设直线m 的解析式为:y ax h =+,由于直线m 与直线m 与直线BC 平行,则12a =-;∴1242h -⨯+=,5h =,即直线m 的解析式为152y x =-+;同理可求得直线x 的解析式为:112y x =-+;联立直线m 与抛物线的解析式,得:2134152y x xy x⎧=-++⎪⎪⎨⎪=-+⎪⎩,解得24xy=⎧⎨=⎩,43xy=⎧⎨=⎩;∴1(2,4)P,2(4,3)P;同理,联立直线n与抛物线的解析式可求得:33P⎛+⎝⎭,43P⎛-⎝⎭;故存在符合条件的P点,且坐标为:1(2,4)P,2(4,3)P,33P⎛+⎝⎭,43P⎛⎝⎭.例题4. 已知,如图4-1,抛物线2y ax bx c=++经过点1(,0)A x,2(,0)B x,(0,2)C-,其顶点为D.以AB为直径的M交y轴于点E、F,过点E作M的切线交x轴于点N.30ONE∠=︒,12||8x x-=.(1)求抛物线的解析式及顶点D的坐标;(2)如图4-2,点Q为EBF上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH AQ⋅是否为定值?若是,请求出这个定值;若不是,请说明理由.【答案】(1)圆的半径12||84222x xABr-====.连接ME,∵NE是切线,∴ME NE⊥.在Rt MNE△中,30ONE∠=︒,4MA ME==.∴60EMN∠=︒,8MN=,∴2OM=.∴2OA=,6OB=.∴点A、B的坐标分别为(2,0)-、(6,0).∵抛物线过A、B两点,所以可设抛物线解析式为:图(a)图(b)(2)(6)y a x x =+-,又∵抛物线过点(0,2C -,∴2(02)(06)a -=+-,解得:16a =. ∴抛物线解析为:2112(2)(6)2663y x x x x =+-=--,∴当232126x -=-=⨯时,128422633y =⨯-⨯-=-.即抛物线顶点D 的坐标为82,3⎛⎫- ⎪⎝⎭.(2)连接AF 、QF , 在AQF △和AFH △中, 由垂径定理易知:AE AF =.∴AQF AFH ∠=∠,又QAF HAF ∠=∠,∴AQF AFH △∽△,∴AF AHAQ AF =,∴2AH AQ AF ⋅= 在Rt AOF △中,22222216AF AO OF =+=+= (或利用22816AF AO AB =⋅=⨯=) ∴16AH AQ ⋅=即:AH AQ ⋅为定值.例题5. 如图,已知点A 的坐标是(1,0)-,点B 的坐标是,0(9),以AB 为直径作'O ,交y 轴的负半轴于点C ,连接AC ,BC ,过A ,B ,C 三点作抛物线. (1)求抛物线的解析式;(2)点E 是AC 延长线上一点,BCE ∠的平分线CD 交'O 于点D ,连接BD ,求直线BD 的解析式;(3)在(2)的条件下,抛物线上是否存在点P ,使得PDB CBD ∠=∠?如果存在,请求出点P 的坐标;如果不存在,请说明理由.【答案】(1)连接'O C ,因为(1,0)A -,(9,0)B ,所以1'''52O A O B O C AB ====,1OA =,''4OO O A OA =-=,由勾股定理,得3OC =,所以(0,3)C -, 设抛物线的解析式为2y ax bx c =++,则038190a b c c a b c -+=⎧⎪=-⎨⎪++=⎩,解得13833a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以抛物线的解析式为218333y x x =--;(2)连接'O D ,则由圆周角定理,90ACB BCE ∠=∠=︒,又CD 平分BCE ∠,所以45BCD ∠=︒,'290BO D BCD ∠=∠=︒,所以可以得到(4,5)D -,又(9,0)B ,所以直线BD 的解析式为:9y x =-.(3)存在,①当1//DP CB 时,能使PDB CBD ∠=∠,又可得13BC k =, 所以113DP k =,且点(4,5)D -,所以直线1DP 的解析式为11933y x =-,则 由题意21193318333y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)所以此时点1P ⎝⎭. ②过点C 作BD 的平行线,交'O 于点G , 此时有,GDB GCB ∠=∠CBD =∠.又可得1BD k =,1CG k =,所以直线CG 的解析式为:3y x =-, 设点(,3)G m m -,作GH x ⊥轴交x 轴于点H ,连接'O G ,则在Rt 'O GH △中,由勾股定理可得,7m =,所以此时(7,4)G , 所以直线DG 的解析式为:317y x =-,则由题意231718333y x y x x =-⎧⎪⎨=--⎪⎩,解得111425x y =⎧⎨=⎩或2238x y =⎧⎨=-⎩(舍去), 所以此时点2(14,25)P .综上所述,1P ⎝⎭,2(14,25)P .例题6. 如图所示,抛物线与x 轴交于点(1,0)A -、(3,0)B 两点,与y 轴交于点(0,3)C -.以AB 为直径作M ,过抛物线上一点P 作M 的切线PD ,切点为D ,并与M 的切线AE 相交于点E ,连结DM 并延长交M 于点N ,连结AN 、AD . (1)求抛物线所对应的函数关系式及抛物线的顶点坐标;(2)若四边形EAMD的面积为,求直线PD 的函数关系式;(3)抛物线上是否存在点P ,使得四边形EAMD 的面积等于DAN △的面积?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)因为抛物线与轴交于点(1,0)A -,(3,0)B 两点, 设抛物线的函数关系式为:(1)(3)y a x x =+-, ∵抛物线与y 轴交于点(0,3)C -, ∴3(01)(03)a -=+-, ∴1a =所以,抛物线的函数关系式为:223y x x =--, 又2(1)4y x =--,因此,抛物线的顶点坐标为(1,4)-.(2)连结EM ,∵EA 、ED 是M 的两条切线,x∴∴, 又四边形EAMD 的面积为∴∴又2AM =,∴AE =,因此,点E的坐标为1(1,E -或2(1,E --. 当E 点在第二象限时,切点D 在第一象限.在直角三角形EAM 中,∴∴, 过切点D 作垂足为点F , ∴1MF =,DF =因此,切点D的坐标为(2,,设直线PD 的函数关系式为y kx b =+,将(1,E -、(2,D 的坐标代入得 解之,得 所以,直线PD 的函数关系式为 当E 点在第三象限时,切点D 在第四象限.同理可求:切点D的坐标为(2,,直线PD 的函数关系式为 因此,直线PD 的函数关系式为(3)若四边形EAMD 的面积等于DAN △的面积 又 ∴∴E 、D 两点到x轴的距离相等,∵PD 与M 相切,∴点D 与点E 在x 轴同侧, ∴切线PD 与x 轴平行,此时切线PD 的函数关系式为或当时,由得, 当时,由得,故满足条件的点P 的位置有4个,分别是1(12)P +、2(12)P 、3(12)P -、4(12)P -.EA ED EA AM ED MN =⊥⊥,,,EAM EDM △≌△EAM S =△12AM AE =⋅tan EA EMA AM ==∠60EMA =∠,°60DMB =∠°DF AB ⊥2k b k b +-+⎪⎩k b ⎧=⎪⎪⎨⎪⎪⎩y =y =y =y 22EAM DAN AMD EAMD S S S S ==△△△四边形,AMD EAM S S =△△2y = 2.y =-2y =223y x x =--1x =2y =-223y x x =--1x =例题7. 如图,在直角坐标系中,以点(3,0)A 为圆心,以23为半径的圆与x 轴交于B 、C 两点,与y 轴交于D 、E 两点. (1)写出B 、C 、D 三点的坐标; (2)若B 、C 、D 三点在抛物线析式; 2y ax bx c =++上,求这个抛物线的解(3)若圆A 的切线交x 轴正半轴于点M ,交y 轴负半轴于点N ,切点为P 且30OMN ∠=︒,试判断直线MN 是否经过所求抛物线的顶点?说明理由. 【答案】(1)(3,0)B -,(33,0)C ,(0,3)D -(2)由题意得,330273303a b c a b c c ⎧-+=⎪⎪++=⎨⎪=-⎪⎩,解得13233a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以抛物线的解析式为212333y x x =--,(3)连接AP ,则23AP =,在Rt APM △中,30AMP ∠=︒,则43AM =,所以(53,0)M ,所以直线MN 解析式为35y x =-, 又(2)得抛物线2212313(3)433y x x x =--=--,所以抛物线的顶点为(3,4)-,将顶点代入直线MN 验证, 得顶点在直线MN 上.例题8. 已知抛物线2y ax bx c =++与y 轴的交点为C ,顶点为M ,直线CM 的解析式为2y x =-+,并且线段CM 的长为22;(1)求抛物线的解析式;(2)设抛物线与x 轴有两个交点1(,0)A x 、2(,0)B x ,且点A 在B 的左侧,求线段AB 的长; (3)若以AB 为直径作N ,请判断直线CM 与N 的位置关系,并说明理由.【答案】(1)因为直线CM 的解析式为2y x =-+,所以(0,2)C ,又线段CM 的长为22,所以(2,0)M或(2,4)M -,所以抛物线的解析式可得21222y x x =-+或21222y x x =-++. (2)因为抛物线和x 轴有两个交点1(,0)A x 、2(,0)B x ,所以此时抛物线为21222y x x =-++,令0y =,得1x 和2x 是方程212202x x =-++的两根,且12x x <, 则由韦达定理得,124x x +=,124x x ⋅=-,所以22211212()()432x x x x x x -=+-⋅⋅=,所以21AB x x =-=(3)相切,由题意抛物线的对称轴应为2x =-,所以(2,0)N -,作NP CM ⊥于点P ,设直线CM 与x 轴相交于点D ,则45NPD ∠=︒,且(2,0)D ,4DN =,所以得NP =AB 为N 的直径,且AB =N 点到直线CM 的距离等于N 的半径,所以直线CM 与N相切.例题9. 如图,在平面直角坐标系中,已知抛物线2y ax bx c =++交x 轴于(2,0)A ,(6,0)B 两点,交y 轴于点(0,23)C . (1)求此抛物线的解析式; (2)若此抛物线的对称轴与直线2y x =交于点D ,作D 与x 轴相切,D 交y 轴于点E 、F 两点,求劣弧EF 所对圆心角的度数;(3)P 为此抛物线在第二象限图像上的一点,PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得PGA △的面积被直线AC 分为1:2两部分.【答案】(1)由题意,得420366023a b c a b c c ⎧++=⎪++=⎨⎪=⎩,解得34323a b c ⎧=⎪⎪⎪⎪=-⎨⎪⎪=⎪⎪⎩ 所以抛物线的解析式为:234323y x x =-+. (2)由(1)得22343323234)y x x x =-+=--(, 所以它的对称轴为4x =,所以得(4,8)D ,所以D 的半径为8,作DH EF ⊥于点H ,连接EH 、FH ,则8DE DF ==,4DH =,且EDH FDH ∠=∠,在Rt DEH △中,8DE =,4DH =,1cos 2DH EDH DE ∠==, 所以60EDH ∠=︒,2120EDF EDH ∠=∠=︒,所以劣弧EF 所对圆心角的度数为120︒.(3)设AC 交PG 于点Q ,则由题可知PGA △被直线AC 分为AQP △和AQG △,故:2:1AQP AQG S S =△△或1:2,所以11:2:122PQ AG QG AG ⎛⎫⎛⎫⋅⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭或1:2, 所以:2:1PQ QG =或1:2,由题,(2,0)A ,(0,23)C ,所以直线AC 为323y x =-+,因为P 点为抛物线第二象限上的一个点,设2343,23P t t t ⎛⎫-+ ⎪ ⎪⎝,0t <, 则(,323)Q t t -+,(,0)G t ,所以223433323(323)PQ t t t t t =-+--+=-,323QG t =-+, ①当:2:1PQ QG =时,得2332(323)t t t -=-+, 解得12t =-,(2t =舍去),此时(12,423)P -,②当:2:1PQ QG =21(2=+,解得3t =-,(2t =舍去),此时P ⎛- ⎝,综上所述,(12,P -或P ⎛- ⎝。
【例1】.如图,点()40M ,,以点M 为圆心、2为半径的圆与x 轴交于点A B ,.已知抛物216y x bx c =++过点A 和B ,与y 轴交于点C .⑴ 求点C 的坐标,并画出抛物线的大致图象.⑵ 点()8Q m ,在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ PB + 最小值. ⑶ CE 是过点C 的M ⊙的切线,点E 是切点,求OE 所在直线的解析式.【巩固】已知抛物线2y ax bx c =++与y 轴的交点为C ,顶点为M ,直线CM 的解析式 2y x =-+并且线段CM 的长为22 (1)求抛物线的解析式。
(2)设抛物线与x 轴有两个交点A (X 1 ,0)、B (X 2 ,0),且点A 在B 的左侧,求线段AB 的长。
(3)若以AB 为直径作⊙N,请你判断直线CM 与⊙N 的位置关系,并说明理由。
My xO E D C BA【例2】如图,在平面直角坐标系中,以点(04)C ,为圆心,半径为4的圆交y 轴正半轴于点A ,AB 是C ⊙的切线.动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O 点开始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、Q 从点A 和点O 同时出发,设运动时间为t (秒).⑴当1t =时,得到1P 、1Q 两点,求经过A 、1P 、1Q 三点的抛物线解析式及对称轴l ; ⑵当t 为何值时,直线PQ 与C ⊙相切?并写出此时点P 和点Q 的坐标;⑶在⑵的条件下,抛物线对称轴l 上存在一点N ,使NP NQ +最小,求出点N 的坐标并说明理由.l Q 1P 1yxQO PCBA提示:(1)先求出t=1时,AP 和OQ 的长,即可求得P 1,Q 1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l 的解析式.(2)当直线PQ 与圆C 相切时,连接CP ,CQ 则有Rt△CMP∽Rt△QMC(M 为PG 与圆的切点),因此可设当t=a 秒时,PQ 与圆相切,然后用a 表示出AP ,OQ 的长即PM ,QM 的长(切线长定理).由此可求出a 的值. (3)本题的关键是确定N 的位置,先找出与P 点关于直线l 对称的点P′的坐标,连接P′Q,那么P′Q 与直线l 的交点即为所求的N 点,可先求出直线P′Q 的解析式,进而可求出N 点的坐标.【巩固】已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与 二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线l 过()01-,点.⑴ 求一次函数与二次函数的解析式;⑵ 判断以线段AB 为直径的圆与直线l 的位置关系,并给出证明;⑶ 把二次函数的图象向右平移2个单位,再向下平移t 个单位()0t >,二次函数的图象与x 轴交于M N ,两点,一次函数图象交y 轴于F 点.当t 为何值时,过F M N ,,三点的圆的面积最小?最小面积是多少?ly x O【例3】如图1,⊙O的半径为1,正方形ABCD顶点B坐标为()50,,顶点D在⊙O上运动.⑴ 当点D运动到与点A、O在同一条直线上时,试证明直线CD与⊙O相切;⑵ 当直线CD与⊙O相切时,求OD所在直线对应的函数关系式;⑶ 设点D的横坐标为x,正方形ABCD的面积为S,求S与x之间的函数关系式,并求出S 的最大值与最小值.图1xyODAB C15【巩固】如图,已知点A 从()10,出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶点作菱形OABC ,使点B C ,在第一象限内,且60AOC ∠=︒;以()03P ,为圆心,PC 为半径作圆.设点A 运动了t 秒,求: ⑴ 点C 的坐标(用含t 的代数式表示);⑵ 当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.PC BOAy x1【例4】已知:如图,抛物线212333y x x m =-+与x 轴交于A B ,两点,与y 轴交于C 点,90ACB ∠=︒⑴ 求m 的值及抛物线顶点坐标;⑵ 过A B C ,,的三点的M ⊙交y 轴于另一点D ,连结DM 并延长交M ⊙于点E ,过E 点的M ⊙的切线分别交x 轴、y 轴于点F G ,,求直线FG 的解析式;⑶ 在条件⑵下,设P 为CBD 上的动点(P 不与C D ,重合),连结PA 交y 轴于点H ,问是否存在一个常数k ,始终满足AH AP k ⋅=,如果存在,请写出求解过程;如果不存在,请说明理由.E y xOG FMDC BA【巩固】如图,已知点A的坐标是(),,以AB为直径作O',90-,,点B的坐标是()10交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.⑴ 求抛物线的解析式;⑵ 点E是AC延长线上一点,BCE∠的平分线CD交O'于点D,连结BD,求直线BD的解析式;⑶ 在⑵的条件下,抛物线上是否存在点P,使得PDB CBD∠=∠?如果存在,请求出点P的坐标;如果不存在,请说明理由.D CEA yxBO O'课后作业:1.如图,直角坐标系中,已知两点()00O ,,()20A ,,点B 在第一象限且OAB ∆为正三角形,OAB ∆的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D .⑴ 求B C ,两点的坐标;⑵ 求直线CD 的函数解析式;⑶ 设E F ,分别是线段ABAD ,上的两个动点,且EF 平分四边形ABCD 的周长.试探究:AEF ∆的最大面积?xy CDOAB参考答案例1【巩固】例2分析:(1)先求出t=1时,AP和OQ的长,即可求得P1,Q1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l的解析式.(2)当直线PQ与圆C相切时,连接CP,CQ则有Rt△CMP∽Rt△QMC(M为PG与圆的切点),因此可设当t=a秒时,PQ与圆相切,然后用a表示出AP,OQ的长即PM,QM的长(切线长定理).由此可求出a的值.(3)本题的关键是确定N的位置,先找出与P点关于直线l对称的点P′的坐标,连接P′Q,那么P′Q 与直线l的交点即为所求的N点,可先求出直线P′Q的解析式,进而可求出N点的坐标.【巩固】例3【巩固】例4【巩固】作业。
二次函数与圆的综合题1.已知:如图,抛物线2y x =x 轴分别交于A B ,两点,与y 轴交于C 点,⊙M 经过原点O 及点A C ,,点D 是劣弧OA 上一动点(D 点与A O ,不重合).(1)求抛物线的顶点E 的坐标;(2)求⊙M 的面积;(3)连CD 交AO 于点F ,延长CD 至G ,使2FG =,试探究当点D 运动到何处时,直线GA 与⊙M 相切,并请说明理由.2.如图,已知二次函数2(3)3y mx m x =+-- (m >0) (1) 求证:它的图象与x 轴必有两个不同的交点,(2) 这条抛物线与x 轴交于两点12(,0),(,0)A x B x (1x <2x ),与y 轴交于点C ,且AB=4,⊙M 过A ,B ,C 三点,求扇形MAC 的面积S 。
(3) 在(2)的条件下,抛物线上是否存在点P ,PD ⊥x 轴于D,使△PBD 被直线BC 分成面积比为1:2的两部分?若存在,请求出P 点的坐标;若不存在,请说明理由。
O x yN C D EF B MA (0, )3.如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.4..如图,已知抛物线y = ax 2 + bx -3与x 轴交于A 、B 两点,与y 轴交于C 点,经过A 、B 、C 三点的圆的圆心M (1,m )恰好在此抛物线的对称轴上,⊙M 的半径为5.设⊙M 与y轴交于D ,抛物线的顶点为E .(1)求m 的值及抛物线的解析式;(2)判断△OBD 与△CEB 是否相似,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCE 相似?若存在,请指出点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.A B C xO yl P P 1 Q Q 1 5.如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y 轴正半轴于点A ,AB 是⊙C 的切线.动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O 点开始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、Q 从点A 和点O 同时出发,设运动时间为t (秒).(1)当t =1时,得到P 1、Q 1两点,求经过A 、P 1、Q 1三点的抛物线解析式及对称轴l ; (2)当t 为何值时,直线PQ 与⊙C 相切?并写出此时点P 和点Q 的坐标;(3)在(2)的条件下,抛物线对称轴l 上存在一点N ,使NP +NQ 最小,求出点N 的坐标并说明理由.6.在直角坐标系中,⊙A 的半径为4,圆心A 的坐标为(2,0),⊙A 与x 轴交于E 、F 两点,与y 轴交于C 、D 两点,过点C 作⊙A 的切线BC ,交x 轴于点B . (1)求直线CB 的解析式;(2)若抛物线y =ax 2+b x +c 的顶点在直线BC 上,与x 轴的交点恰为点E 、F ,求该抛物线的解析式;(3)试判断点C 是否在抛物线上?(4) 在抛物线上是否存在三个点,由它构成的三角形与△AOC 相似?直接写出两组这样的点.(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由; (3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).8.如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y轴交于点C (0,-1),ΔABC 的面积为45。
二次函数压轴题(与圆综合问题)【典例分析】例1 如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C 三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.思路点拨(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b 取何值,点D的坐标均不改变.满分解答(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴42064804a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得14324abc⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩.学#科网∴抛物线的解析式为y=14x2-32x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴804m nn+=⎧⎨=⎩,学&科网解得124mn⎧=-⎪⎨⎪=⎩,(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.考点:圆的综合题例2已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.(1)求抛物线的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB 于点F,当△OEF的面积取得最小值时,求点E的坐标.思路点拨(1)用待定系数法求解;(2) 假设存在,分两种情况讨论(3)根据面积公式,列出二次函数,求函数的最值.满分解答(1)将A(3,0),B(4,1)代人得∴∴∴C(0,3) 学科@网②当∠ABP=90O时,过B作BP∥AC,BP交抛物线于点P. ∵A(3,0),C(0,3)∴直线AC的函数关系式为将直线AC向上平移2个单位与直线BP重合.则直线BP的函数关系式为由,得又B(4,1),∴P2(-1,6).综上所述,存在两点P1(0,3), P2(-1,6).(3)∵∠OAE=∠OAF=45O,而∠OEF=∠OAF=45O, ∠OFE=∠OAE=45O,∴∠OEF=∠OFE=45O,∴OE=OF,∠EOF=90O∵点E在线段AC上,∴设E∴=∴===∴当时,取最小值,此时,∴例3如图,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.(1)求D点的坐标和圆D的半径;(2)求sin∠ACB的值和经过C、A、B三点的抛物线对应的函数表达式;(3)设抛物线的顶点为F,证明直线AF与圆D相切.思路点拨(1)连接CD,过点D作DE⊥AB,垂足为E,连接AD.依据垂径定理可知AE=3,然后依据切线的性质可知CD⊥y轴,然后可证明四边形OCDE为矩形,则DE=4,然后依据勾股定理可求得AD的长,故此可求得⊙D的半径和点D的坐标;学科.网(2)先求得A(2,0)、B(8,0).设抛物线的解析式为y=a(x﹣2)(x﹣8),将点C的坐标代入可求得a 的值.根据三角形面积公式得:S△ABC=BC×AC sin∠ACB=AB×CO,代入计算即可;(3)求得抛物线的顶点F的坐标,然后求得DF和AF的长,依据勾股定理的逆定理可证明△DAF为直角三角形,则∠DAF=90°,故此AF是⊙D的切线.满分解答(2)如图1所示:∵D(5,4),∴E(5,0),∴A(2,0)、B(8,0).设抛物线的解析式为y=a(x﹣2)(x﹣8),将点C的坐标代入得:16a=4,解得:a,∴抛物线的解析式为y x 2x +4.∵S △ABC =BC ×AC sin ∠ACB =AB ×CO ,∴sin ∠ACB ==.例4如图,已知二次函数()22y x m 4m =--(m >0)的图象与x 轴交于A 、B 两点.(1)写出A 、B 两点的坐标(坐标用m 表示);(2)若二次函数图象的顶点P 在以AB 为直径的圆上,求二次函数的解析式; (3)设以AB 为直径的⊙M 与y 轴交于C 、D 两点,求CD 的长. 思路点拨(1)解关于x 的一元二次方程()22x m 4m 0--=,求出x 的值,即可得到A 、B 两点的坐标。
二次函数与圆的综合习题类型一圆的基本性质应用例1:如图,在直角坐标系中,抛物线y=a(x-)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,-2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角时,请求出m的取值范围;(3)点E是抛物线的顶点,⊙M沿CD所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.【答案】(1)A(1,0),B(4,0).(2)m<0或1<m<4或m>5.(3)存在.M′(,-2)【解析】解:(1)∵抛物线y=a(x-)2+经过点C(0,-2),∴-2=a(0-)2+,∴a=-,∴y=-(x-)2+,当y=0时,-(x-)2+=0,∴x1=4,x2=1,∵A、B在x轴上,∴A(1,0),B(4,0).(2)由(1)可知抛物线解析式为y=-(x-)2+,∴C、D关于对称轴x=对称,∵C(0,-2),∴D(5,-2),如图1中,连接AD、AC、CD,则CD=5,∵A(1,0),C(0,-2),D(5,-2),∴AC=,AD=2,∴AC2+AD2=CD2,∴∠CAD=90°,∴CD为⊙M的直径,∴当点P在圆外部的抛物线上运动时,∠CPD为锐角,∴m<0或1<m<4或m>5.(3)存在.如图2中,将线段C′A平移至D′F,则AF=C′D′=CD=5,∵A(1,0),∴F(6,0),作点E关于直线CD的对称点E′,连接EE′正好经过点M,交x轴于点N,∵抛物线顶点(,),直线CD为y=-2,∴E′(,-),连接E′F交直线CD于H,∵AE,C′D′是定值,∴AC′+ED′最小时,四边形AC′D′E的周长最小,∵AC′+D′E=FD′+D′E=FD′+E′D′≥E′F,则当点D′与点H重合时,四边形AC′D′E的周长最小,设直线E′F的解析式为y=kx+b,∵E′(,-),F(6,0),∴可得y=x-,当y=-2时,x=,∴H(,-2),∵M(,-2),∴DD′=5-=,∵-=,∴M′(,-2)针对训练1.已知二次函数y=ax2-2ax+c(a<0)的图像与x轴的负半轴和正半轴分别交于A、B 两点,与y轴交于点C,直线BC与它的对称轴交于点F,且CF:FB=1:3.(1)求A、B两点的坐标;(2)若△COB的内心I在对称轴上,求这个二次函数的关系式;(3)在(2)的条件下,Q(m,0)是x轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连接CN,将△CMN沿直线CN翻折,M的对应点为M′,是否存在点Q,使得M′恰好落在y轴上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)B(4,0),A(-2,0);(2)y=x2+x+3;(3)存在,Q(,0)或Q(,0) 【解析】(1)如图所示:对称轴为:直线,∴OE=1,∵OC∥EF,∴,∴EB=3,由对称性得:BE=AE=3,∴A(−2,0),B(4,0);(2)如图,是△的内切圆,过点I作于点D,∴设,则在Rt△OCB中,OB=4,即解得∴C(0,3),∴c=3,把A(−2,0), C(0,3)代入抛物线y=ax2-2ax+c中得:解得:∴抛物线的解析式为:y=x2+x+3;(3)如图,由题意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴∠CNM =∠NCB,∴MN=CM,∵直线BC解析式为,∴,,作ME⊥OC于E,∵,∴,∴,①当N在直线BC上方时,,解得:m=或0(舍弃),∴Q(,0),②当N在直线BC下方时, ,解得m=或0(舍弃),∴Q(,0)综上所述:点Q坐标为(,0)或Q(,0).2.对于平面直角坐标系xOy中的点P,Q和图形G,给出如下定义:点P,Q都在图形G上,且将点P的横坐标与纵坐标互换后得到点Q,则称点P,Q是图形G的一对“关联点”.例如,点P(1,2)和点Q(2,1)是直线y=﹣x+3的一对关联点.(1)请写出反比例函数y=的图象上的一对关联点的坐标:;(2)抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).点A,B是抛物线y=x2+bx+c的一对关联点,直线AB与x轴交于点D(1,0).求A,B两点坐标.(3)⊙T的半径为3,点M,N是⊙T的一对关联点,且点M的坐标为(1,m)(m>1),请直接写出m的取值范围.【答案】(1)(2,3),(3,2).(2)A,B两点坐标为(﹣1,2)和(2,﹣1).(3)1<m≤1+3.【解析】解:(1)∵2×3=3×2=6,∴点(2,3),(3,2)是反比例函数y=的图象上的一对关联点.故答案为:(2,3),(3,2).(2)∵抛物线y=x2+bx+c的对称轴为直线x=1,∴﹣=1,解得:b=﹣2.∵抛物线y=x2+bx+c与y轴交于点C(0,﹣1),∴c=﹣1,∴抛物线的解析式为y=x2﹣2x﹣1.由关联点定义,可知:点A,B关于直线y=x对称.又∵直线AB与x轴交于点D(1,0),∴直线AB的解析式为y=﹣x+1.联立直线AB及抛物线解析式成方程组,得:=﹣+=﹣﹣,解得:,,∴A,B两点坐标为(﹣1,2)和(2,﹣1).(3)由关联点定义,可知:点M,N关于直线y=x对称,∴⊙T的圆心在直线y=x上.∵⊙T的半径为3,∴M1M2=×2×3=3,∴m的取值范围为1<m≤1+3..类型二与圆有关的位置关系例2.如图,已知点A(2,0),以A为圆心作⊙A与y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A,抛物线与x轴的另一个交点为点C,抛物线的顶点为点E,如果CO=2BE,求此抛物线的解析式;(2)过点C作⊙A的切线CD,D为切点,求此切线长;(3)点F是切线CD上的一个动点,当△BFC与△CAD相似时,求出BF的长.【答案】(1)y=(x-2)(x-6);(2)CD=2;(3)BF的长为或.【解析】(1)∵A(2,0),⊙A与y轴切于原点,∴⊙A的半径为2.∴点B的坐标为为(4,0).∵点A、C关于x=4对称,∴C(6,0).又CO=2BE,∴E(4,-3)设抛物线的解析式为y=a(x-2)(x-6),(a≠0);∵抛物线经过点E(4,-3)∴-3=a(4-2)(4-6),解得:a=.∴抛物线的解析式为y=(x-2)(x-6);(2)如图1所示:连接AD,∵AD是⊙A的切线,∴∠ADC=90°,AD=2,由(1)知,C(6,0).∵A(2,0),∴AC=4,在Rt△ACD中,CD2=AC2-AD2=42-22=12,∴CD=2.(3)如图2所示:当FB⊥AD时,连结AD.∵∠FBC=∠ADC=90°,∠FCB=∠ACD,∴△FBC∽△ADC,∴=,即=.解得:CF=.如图3所示:当BF⊥CD时,连结AD、过点B作BF⊥CD,垂足为F.∵AD⊥CD,∴BF∥AD,∴△BFC∽△ADC,∴=,即=.∴CF=.综上所述,BF的长为或.针对训练1.如图,抛物线y=x2﹣4x﹣1顶点为D,与x轴相交于A、B两点,与y轴相交于点C.(1)求这条抛物线的顶点D的坐标;(2)经过点(0,4)且与x轴平行的直线与抛物线y=x2﹣4x﹣1相交于M、N两点(M 在N的左侧),以MN为直径作⊙P,过点D作⊙P的切线,切点为E,求点DE的长;(3)上下平移(2)中的直线MN,以MN为直径的⊙P能否与x轴相切?如果能够,求出⊙P的半径;如果不能,请说明理由.【答案】(1)点D的坐标为(2,-5);(2)DE=6;(3)能够相切,理由见解析. 【解析】(1)∵y=x2-4x-1=x2-4x+4-5=(x-2)2-5,∴点D的坐标为(2,-5);(2)∵当y=4时,x2-4x-1=4,解得x=-1或x=5,∴M坐标为(-1,4),点N坐标为(5,4),∴MN=6.P的半径为3,点P的坐标为(2,4),连接PE,则PE⊥DE,∵PD=9,PE=3,根据勾股定理得DE=6;(3)能够相切.理由:设⊙P的半径为r,根据抛物线的对称性,抛物线过点(2+r,r)或(2+r,-r),代入抛物线解析式得:(2+r)2-4(2+r)-1=r,解得r=或r=(舍去),把(2+r,-r)代入抛物线得:(2+r)2-4(2+r)-1=-r,解得:r=,或r=(舍去).2.如图,⊙P的圆心P(m,n)在抛物线y=上.(1)写出m与n之间的关系式;(2)当⊙P与两坐标轴都相切时,求出⊙P的半径;(3)若⊙P的半径是8,且它在x轴上截得的弦MN,满足0≤MN≤2时,求出m、n 的范围.【答案】(1)n=m2;(2)⊙P的半径为2;(3)≤m≤4或﹣4≤m≤﹣;7≤ ≤8.【解析】解:(1)∵点P(m,n)在抛物线y=上,∴n=m2;(2)当点P(m,m2)在第一象限时,由⊙P与两坐标轴都相切知m=m2,解得:m=0(舍)或m=2,∴⊙P的半径为2;当点P(m,m2)在第三象限时,由⊙P与两坐标轴都相切知﹣m=m2,解得:m=0或m=﹣2,∴⊙P的半径为2;(3)如图,作PK⊥MN于点K,连接PM,当MN=2时,MK=MN=,∵PM=8,则PK===7,当MN=0时,PK=8,∴7≤PK≤8,即7≤ ≤8,∵n=m2,∴7≤m2≤8,解得:≤m≤4或﹣4≤m≤﹣.类型三构造圆与隐形圆例3:已知:如图1,抛物线与x轴交于,两点,与y 轴交于点C,点D为顶点.求抛物线解析式及点D的坐标;若直线l过点D,P为直线l上的动点,当以A、B、P为顶点所作的直角三角形有且只有三个时,求直线l的解析式;如图2,E为OB的中点,将线段OE绕点O顺时针旋转得到,旋转角为,连接、,当取得最小值时,求直线与抛物线的交点坐标.【答案】(1);(2)或;(3).【解析】抛物线与x轴交于,两点,.,抛物线的顶点坐标为.过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点Q.以AB为直径的如果与直线l相交,那么就有2个点Q;如果圆与直线l相切,就只有1个点Q了.如图所示:以AB为直径作,作QD与相切,则,过Q作.,,..又,.,,.点Q的坐标为.设l的解析式为,则,解得:,,直线l的解析式为.由图形的对称性可知:当直线l经过点时,直线l与相切,则,解得:,,直线l的解析式为.综上所述,直线l的解析式为或.如图所示:取M使,连接.,,,,.又,△∽△,..,当M、、B在一条直线上时,有最小值,的最小值.针对训练1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,求PB+PD的最小值;(3)M(x,t)为抛物线对称轴上一动点①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有个;②连接MA,MB,若∠AMB不小于60°,求t的取值范围.【答案】(1)抛物线解析式为y=x2﹣x﹣,顶点坐标(,﹣);(2)PB+PD 的最小值为;(3)①5;②取值范围是【解析】(1)方法一:设二次函数的表达式为,B(0,-)代入解得∴∴顶点坐标为方法二:也可以用三点式设代入三点或者顶点式设代入两点求得。
1、Rt△ABC中,AC=4,BC=3,DE‖AB,分别与AC、BC相交于D、E,CH⊥AB于点H,交D E于点F,G为AB上任意一点,设CF=x,△DEG的面积为y,限定DE在△ABC的内部平行移动(1)求x的取值范围;(2)求函数y与自变量x的函数关系式;(3)当DE取何值时,△DEG的面积最大,并求出其最大值(1)根据勾股定理易知AB=5因为DE‖AB,CH⊥AB∴CH⊥DE又∠E=∠E,∠ACB=90°∴△CFE∽△DCE∴CF/CD=CE/DE 即CF=CE(CD/DE)=(4/5)CECE最大为3,最小为0∴0<x<12/5(2)由(1)中的结论可知CE=(5/4)CF,DE=(5/3)CE∴DE=(25/12)CF又△DGE,DE边上的高为CH-CF,而易知CH=(4/5)CB=12/5∴△DGE之高为(12/5)-CF∴其面积=y=底乘高的二分之一=((12/5)-x)(25/12)x/2=-(25/24)x²+(5/2)x(3)根据(2)中的结论易知当x等于1.2时,y最大为1.5此时DE=(25/12)CF=(25/12)*1.2=2.52、如图,抛物线y=x2+bx+c(b≤0)的图象与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-2,0);直线x=1与抛物线交于点E,与x轴交于点F,且45°≤∠FAE ≤60度.(1)用b表示点E的坐标;(2)求实数b的取值范围;(3)请问△BCE的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由.(1)∵抛物线y=x2+bx+c过A(-2,0),∴c=2b-4∵点E在抛物线上,∴y=1+b+c=1+2b-4+b=3b-3,∴点E的坐标为(1,3b-3).(1)∵抛物线y=x2+bx+c过A(-2,0),∴c=2b-4∵点E在抛物线上,∴y=1+b+c=1+2b-4+b=3b-3,∴点E的坐标为(1,3b-3).(2)由(1)得EF=3-3b,∵45°≤∠FAE≤60°,AF=3,=3tan60°=3−3b3∴b=1-3∴1-3≤b≤0(3)△BCE的面积有最大值,∵y=x2+bx+c的对称轴为x=-b2,A(-2,0),∴点B的坐标为(2-b,0),由(1)得C(0,2b-4),而S△BCE=S梯形OCEF+S△EFB-S△OCB=12(OC+EF)•OF+12EF•FB--12OB•OC=[(4-2b)+(3-3b)]×1+12(3-3b)(1-b)-12(2-b)•(4-2b)=12(b2-3b+2),∵y=12(b2-3b+2)的对称轴是b=23,1-3≤b≤0∴当b=1-3时,S△BCE取最大值,最大值S=3+324、如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)求证:点D是BC的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)如果⊙O的直径为9,cosB=13,求DE的长.【解析】(1)证明:连接AD ∵AB为半圆O的直径,∴AD⊥BC∵AB=AC∴点D是BC的中点(2)【解析】相切连接OD∵BD=CD,OA=OB,∴OD∥AC∵DE⊥AC∴DE⊥OD∴DE与⊙O相切(3)∵AB为半圆O的直径∴∠ADB=900在Rt△ADB中∵cosB=BDAD∴BD=3∵CD=3在Rt△ADB中∴cosC=CECD∴CE=15、如图所示,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点。
能力型试题专项训练 代数几何综合题
圆与二次函数的综合题
1、抛物线
2y ax bx c =++交x 轴于A 、B 两点,交y 轴于点C ,已知抛物线的对称轴
为1x =,(3,0)B ,(0,3)C -, ⑴求二次函数2
y ax bx c =++的解析式;⑵在抛物线对称轴上是否存在一点P ,使点P 到B 、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由; ⑶平行于x 轴的一条直线交抛物线于M N 、两点,若以MN 为直径的圆恰好与x 轴
相切,求此圆的半径.
解:(1)将(0,3)C -代入c bx ax y ++=2,得 3-=c .将3-
=c ,(3,0)B 代入c bx ax y ++=2,得 039=++c b a .∵1x =是对称轴,∴
12=-
a
b
.将(2)代入(1)得1=a , 2-=b .二次函数得解析式是322--=x x y .(2)AC 与对称轴的交点P 即为到B C 、的距离之差最大的点.∵C 点的坐标为(0,3)-,A 点的坐标为(1,0)-,∴ 直线
AC 的解析式是33--=x y ,又对称轴为1x =,∴ 点P 的坐标(1,6)-. (3)设
1(,)M x y 、2(,)N x y ,所求圆的半径为r ,则 r x x 212=-,.(1) ∵ 对称轴为1x =,∴
212=+x x . .(2)由(1)、(2)得:12+=r x ..(3) 将(1,)N r y +代入解析式
322--=x x y ,得 3)1(2)1(2-+-+=r r y ,.(4)整理得: 42-=r y .由于 r=±y ,
当0>y 时,042
=--r r ,解得,21711+=
r , 2
17
12-=r (舍去),当0<y 时,042=-+r r ,解得,21711+-=r , 21712--=r (舍去).所以圆的半径是
2
17
1+或2
171+-.
2、如图,在直角坐标系中,⊙C 过原点O ,交x 轴于点A (2,0),交y 轴于点B (0
,。
⑴求圆心的坐标; ⑵抛物线y =ax 2
+bx +c 过O 、A 两点,且顶点在正比例函数 y
的图象上,求抛物线的解析式; ⑶过圆心C 作平行于x 轴的直线DE ,交⊙C 于D 、E 两点,试判断D 、E 两点是否在⑵中的抛物线上; ⑷若⑵中的抛物线上存在点P (x 0,y 0),满足∠APB 为钝角,求x 0的取值范围。
解:(1)∵⊙C 经过原点O , ∴AB 为⊙C 的直径。
∴C 为AB 的中点。
过点C 作CH 垂直x 轴于点H ,则有CH =12OB
OH =1
2
OA =1。
∴圆心C 的坐标为(1
,。
(2)∵抛物线过O 、A 两点,∴抛物线的对称轴为x =1。
∵抛物线的顶点在直线y
=-
3x 上, ∴顶点坐标为(1,
-3
)把这三点的坐标代入抛物线抛物线y =ax 2
+bx +c ,得
0420c a b c a b c ⎧
⎪=⎪⎪
++=⎨⎪
⎪++=⎪⎩
解
得
0a b c ⎧⎪⎪⎪⎪
=⎨⎪
=⎪⎪⎪⎩
∴抛物线的解析式
为
2y x =。
(3)∵OA =2,OB =
4AB ==.即⊙C 的半径r =2。
∴D (3
,
,E (-1
2y x x =检验,知点D 、E 均在抛物线上(4)∵AB 为直径,∴当抛物线上的点P 在⊙C 的内部时,满足∠APB 为钝角。
∴-1<x 0<0,或2<x 0
<3。
3、如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x 轴交于A 、B 两点(点
A 在点
B 左侧),与y 轴交于点
C 。
⑴求抛物线的解析式及点A 、B 、C 的坐标; ⑵若直线y=kx+t 经过C 、M 两点,且与x 轴交于点
D ,试证明四边形CDAN 是平行四边形; ⑶点P 在抛物线的对称轴x=1上运动,请探索:在x 轴上方是否存在这样的P 点,使以P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,若存在,请求出点P 的坐标;若不存在,请说明理由。
解:(1)由抛物线的顶点是M (1,4),设解析式为2y a x 1 4 a 0=(-)+(<)
又抛物线经过点N (2,3),所以23a 214=(-)+ 解得a =-1 所以所求抛物线的解析式为y =
22x 14x 2x 3.-(-)+=-++令y =0,得2
x 2x 30-++=,解得:12x 1 x 3.=-,=得A
(-1,0) B (3,0) ;令x =0,得y =3,所以 C (0,3).
(2)直线y=kx+t 经过C 、M 两点,所以t 3
k t 4⎧⎨⎩
=+=即k =1,t =3 直线解析式为y =x
+3. 令y =0,得x =-3,故D (-3,0) CD
=连接AN ,过N 做x
轴的垂线,垂
足为F. 设过A 、N 两点的直线的解析式为y =mx +n , 则m n 0
2m n 3
⎧⎨
⎩-+=+=解得m =1,n =1
所以过A 、N 两点的直线的解析式为y =x +1 所以DC ∥AN. 在Rt △ANF 中,AN =3,NF =3,所以AN
=所以DC =AN 。
因此四边形CDAN 是平行四边形.
(3)假设在x 轴上方存在这样的P 点,使以P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,设P (1,u ) 其中u >0,则PA 是圆的半径且2
2
2
PA u 2=+过P 做直线CD 的垂线,垂足为Q ,则PQ =PA 时以P 为圆心的圆与直线CD 相切。
由第(2)小题易得:△MDE 为等腰直角三角形,故△PQM 也是等腰直角三角形, 由P (1,u )得PE =u , PM =|4-u|, PQ
=
|4-u|22
PQ PA =得方程:2
224u u 22(-)=+
,解得u 4±=-u
=4--,符合题意的u
=4-+P 存在,其坐标为(1
,
4-+.
4、已知:如图,
抛物线233
y x x =-
-x 轴分别交于A B ,两点,与y 轴交于C 点,M 经过原点O 及点A C ,,点D 是劣弧 OA
上一动点(D 点与A O ,不重合).
(1)求抛物线的顶点E 的坐标; (2)求M 的面积;
(3)连CD 交AO 于点F ,延长CD 至G ,使2FG =,试探究当点D 运动到何处时,直线GA 与M 相切,并请说明理由.
[解] (1
)抛物线233y x x =-
(
)22133x x =++
)2
1x =++
E ∴
的坐标为1⎛- ⎝⎭
(说明:用公式求E 点的坐标亦可).
(2)连AC ;M 过90A O C AOC = ,,,∠
AC ∴为O 的直径.
而3OA OC ==,
2
AC
r ∴=
= 23M S r ∴=π=π
(3)当点D 运动到 OA
的中点时,直线GA 与M 相切 理由:在Rt ACO △
中,3OA OC ==,
tan ACO == ∠.
6030ACO CAO ∴== ∠,∠
点D 是 OA
的中点 AD DO
∴= 30ACG DCO ∴== ∠∠
tan 301OF OC ∴== ,60CFO = ∠
在GAF △中,22AF FG ==,
60AFG CFO == ∠∠ AGF ∴△为等边三角形
60GAF ∴= ∠
90CAG GAF CAO ∴=+= ∠∠∠
又AC 为直径,∴当D 为 OA
的中点时,GA 为M 的切线。