2012年普通高等学校招生全国统一考试理科数学(大纲全国卷)
- 格式:doc
- 大小:905.50 KB
- 文档页数:9
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin βcos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
绝密★启用前2013年普通高等学校招生全国统一考试数学(理科)(全国大纲卷)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .6 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B.2.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i 答案:A解析:323=13=8-.故选A.3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-1 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B.4.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭C .(-1,0)D .1,12⎛⎫ ⎪⎝⎭答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B.5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x ≠0) C .2x -1(x ∈R ) D .2x -1(x >0) 答案:A解析:由题意知11+x=2y ⇒x =121y -(y >0),因此f -1(x )=121x-(x >0).故选A.6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ). A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ). A .56 B .84 C .112 D .168 答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D.8.(2013大纲全国,理8)椭圆C :22=143x y +的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦B .33,84⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---. 故12314PA PA k k =-.∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D.10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23B.3 C.3 D .13答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BD CH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD , ∴∠HDC 为CD 与平面BDC 1所成的角.设AA 1=2AB =2,则==22AC OC,1C O =由等面积法,得C 1O ·CH =OC ·CC 1,即222CH ⋅⋅=, ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12B.2 CD .2答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k 2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k(+),x 1x 2=4.① 由112222y k x y k x =(-)⎧⎨=(-)⎩121221212124,[24].y y k x x k y y k x x x x +=(+)-⎧⎨=-(+)+⎩①② ∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0,即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D.12.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f (x )的图像关于点(π,0)中心对称B .y =f (x )的图像关于直线π=2x 对称 C .f (x )D .f (x )既是奇函数,又是周期函数 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =;当3t =时,函数值为9.∴g (t )max,即f (x ).故选C.二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________.答案:解析:由题意知cos α=3==-. 故cot α=cos sin αα14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.(2013大纲全国,理15)记不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是__________.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4, ∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4.16.(2013大纲全国,理16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于__________. 答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点,则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°. 又MN =R ,∴△OMN 为正三角形.∴OER . 又OK ⊥EK ,∴32=OE ·sin 60°R ∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n }的前n 项和为S n .已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.18.(2013大纲全国,理18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac .(1)求B ;(2)若sin A sin C=14,求C . 解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-,因此B=120°.(2)由(1)知A+C=60°,所以cos(A-C)=cos A cos C+sin A sin C=cos A cos C-sin A sin C+2sin A sin C=cos(A+C)+2sinA sin C=1+22=,故A-C=30°或A-C=-30°,因此C=15°或C=45°.19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB和△P AD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.(1)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OE.由△P AB和△P AD都是等边三角形知P A=PB=PD,所以OA=OB=OD,即点O为正方形ABED对角线的交点,故OE⊥BD,从而PB⊥OE.因为O是BD的中点,E是BC的中点,所以OE∥CD.因此PB⊥CD.(2)解法一:由(1)知CD⊥PB,CD⊥PO,PB∩PO=P,故CD⊥平面PBD.又PD⊂平面PBD,所以CD⊥PD.取PD的中点F,PC的中点G,连结FG,则FG∥CD,FG⊥PD.连结AF,由△APD为等边三角形可得AF⊥PD.所以∠AFG为二面角A-PD-C的平面角.连结AG,EG,则EG∥PB.又PB⊥AE,所以EG⊥AE.设AB=2,则AE=EG=12PB=1,故AG3.在△AFG中,FG=12CD=,AF=AG=3,所以cos∠AFG=22223 FG AF AGFG AF+-=-⨯⨯.因此二面角A-PD-C的大小为πarccos3-解法二:由(1)知,OE,OB,OP两两垂直.以O为坐标原点,OE的方向为x轴的正方向建立如图所示的空间直角坐标系O-xyz.设|AB|=2,则A(0,0),D(0,,0),C(0),P(0,0).PC =(2,2-),=(0,,). AP =,0),AD =,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x,y ,z )·(,)=0,n 1·PD =(x ,y ,z )·(0,,=0, 可得2x -y -z =0,y +z =0.取y =-1,得x =0,z=1,故n 1=(0,-1,1). 设平面P AD 的法向量为n 2=(m ,p ,q),则n 2·AP =(m ,p ,q ,0)=0,n 2·AD =(m ,p ,q ,,0)=0,可得m +q =0,m -p =0. 取m =1,得p =1,q =-1,故n 2=(1,1,-1).于是cos〈n 1,n 2〉=1212||||=·n n n n . 由于〈n 1,n 2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为πarccos3-20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望. 解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14. (2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)·P (A 3)=18,P (X =2)=P (1B ·B 3)=P (1B )P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1151848--=,EX =0·P (X =0)+1·P (X =1)+2·P (X =2)=98.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C :2222=1x y a -(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C .(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF2|,|AB |,|BF 2|成等比数列.(1)解:由题设知c a=3,即222a b a +=9,故b 2=8a 2. 所以C 的方程为8x 2-y 2=8a 2.将y=2代入上式,求得x=由题设知,=a2=1.所以a=1,b=(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|==-(3x1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=2 3 -.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|==1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是1 2 .(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111422(1)nn nk na an k k-=⎡⎤-+=+⎢⎥+⎣⎦∑=2121211ln21n nk n k nk kk k k--==++>(+)∑∑=ln 2n-ln n=ln 2.所以21ln 24n n a a n-+>.。
复数【2021年】1.(2021年全国高考乙卷数学(文)试题)设i 43i z =+,则z =( ) A .–34i -B .34i -+C .34i -D .34i +2.(2021年全国高考乙卷数学(理)试题)设()()2346z z z z i ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -3.(2021年全国高考甲卷数学(理)试题)已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --4.(2021年全国新高考Ⅰ卷数学试题)已知2i z =-,则()i z z +=( ) A .62i - B .42i - C .62i + D .42i +【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若312i i z =++,则||=z ( ) A .0 B .1 CD .22.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若z=1+i ,则|z 2–2z |=( ) A .0B .1CD .23.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))(1–i )4=( ) A .–4 B .4 C .–4iD .4i .4.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))若()11+=-z i i ,则z =( ) A .1–iB .1+iC .–iD .i5.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))复数113i -的虚部是( ) A .310-B .110-C .110D .3106.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设3i12iz -=+,则z =A .2BC D .17.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=8.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))设z =i(2+i),则z = A .1+2i B .–1+2i C .1–2iD .–1–2i9.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限10.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i11.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设1i2i 1iz -=++,则||z = A .B .12C .1 D12.(2018年全国普通高等学校招生统一考试文数(全国卷II ))()i 23i +=A .32i -B .32i +C .32i --D .32i -+13.(2018年全国普通高等学校招生统一考试理数(全国卷II ))12i12i +=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+14.(2018年全国卷Ⅲ文数高考试题)(1)(2)i i +-= A .3i --B .3i -+C .3i -D .3i +15.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)16.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))设有下面四个命题1p :若复数z 满足1R z∈,则z R ∈;2p :若复数z 满足2z ∈R ,则z R ∈; 3p :若复数12,z z 满足12z z R ∈,则12z z =; 4p :若复数z R ∈,则z R ∈.其中的真命题为 A .13,p p B .14,p p C .23,p pD .24,p p17.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))(1i)(2i)++= A .1i - B .13i + C .3i +D .33i +18.(2017年全国普通高等学校招生统一考试理科数学)31ii++=( )A .1+2iB .1-2iC .2+iD .2-i19.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限20.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .221.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))设()()12i a i ++的实部与虚部相等,其中a 为实数,则a =A .−3B .−2C .2D .322.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷))设,其中x ,y 是实数,则i =x y +A .1BC D .223.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))设复数z 满足3z i i +=-,则z = A .12i -+B .12i -C .32i +D .32i -24.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知(3)(1)z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 A .(31)-, B .(13)-, C .(1,)+∞ D .(3)-∞-,25.(2016年全国普通高等学校招生统一考试理科数学)若43z i =+,则z z =A .1B .1-C .4355i +D .4355i -26.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))若12z i =+,则41izz =- A .1 B .-1 C .i D .-i27.(2015年全国普通高等学校招生统一考试理科数学)已知复数z 满足(1)1z i i -=+,则z =A .2i --B .2i -+C .2i -D .2i +28.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))设复数z 满足1+z1z-=i ,则|z|=A .1BCD .229.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))若a 为实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .430.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))若a 为实数且(2)(2)4ai a i i +-=-,则a = A .1-B .0C .1D .231.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))设,则A .B .C .D .2.32.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))A .B .C .D .33.(2014年全国普通高等学校招生统一考试理科数学)计算131ii+=- A .12i +B .12i -+C .12i -D .12i --34.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A .- 5B .5C .- 4+ iD .- 4 - i35.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))212(1)i i +=- A .112i -- B .112i -+ C .112i + D .112i - 36.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知复数z 满足(3443i z i -=+),则z 的虚部为 A .-4 B .45- C .4D .4537.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))21i +=A .B .2CD .138.(2013年全国普通高等学校招生统一考试理科数学(新课标2卷))设复数z 满足()12i z i -=,则z= ( ) A .-1+iB .-1-iC .1+iD .1-i39.(2012年全国普通高等学校招生统一考试文科数学(课标卷))复数32iz i-+=+的共轭复数是 A .2i +B .2i -C .1i -+D .1i --40.(2012年全国普通高等学校招生统一考试理科数学(课标卷))下面是关于复数21z i=-+的四个命题:其中的真命题为1:2p z =22:2p z i =3:p z 的共轭复数为1i +4:p z 的虚部为1-A .23,p pB .12,p pC .24,p pD .34,p p。
课标全国(理)1.(2012课标全国,理1)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( ). A .3 B .6 C .8 D .10D 由x ∈A ,y ∈A 得x -y ∈A ,得(x ,y )可取如下:(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4),故集合B 中所含元素的个数为10.2.(2012课标全国,理2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ). A .12种 B .10种 C .9种 D .8种 A 将4名学生均分为2个小组共有224222C C A =3种分法,将2个小组的同学分给两名教师带有22A =2种分法, 最后将2个小组的人员分配到甲、乙两地有22A =2种分法, 故不同的安排方案共有3×2×2=12种. 3.(2012课标全国,理3)下面是关于复数z =21i-+的四个命题:p 1:|z |=2, p 2:z 2=2i ,p 3:z 的共轭复数为1+i , p 4:z 的虚部为-1, 其中的真命题为( ). A .p 2,p 3 B .p 1,p 2 C .p 2,p 4 D .p 3,p 4C z =2(-1i)(-1i)(-1i)-+-=-1-i ,故|zp 1错误;z 2=(-1-i )2=(1+i )2=2i ,p 2正确;z 的共轭复数为-1+i ,p 3错误;p 4正确.4.(2012课标全国,理4)设F 1,F 2是椭圆E :22x a+22y b=1(a >b >0)的左、右焦点,P 为直线x =32a 上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ). A .12B .23C .34D .45C 设直线x =32a 与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,F 2M =32a -c ,故cos 60°=22M F PF =3a c 22c-=12,解得c a=34,故离心率e =34.5.(2012课标全国,理5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ). A .7 B .5 C .-5 D .-7 D ∵{a n }为等比数列,∴a 5a 6=a 4a 7=-8,联立47472,8a a a a +=⎧⎨=-⎩可解得474,2a a =⎧⎨=-⎩或472,4,a a =-⎧⎨=⎩当474,2a a =⎧⎨=-⎩时,q 3=-12,故a 1+a 10=43a q+a 7q 3=-7;当472,4a a =-⎧⎨=⎩时,q 3=-2,同理,有a 1+a 10=-7. 6.(2012课标全国,理6)如果执行下边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则().A .A +B 为a 1,a 2,…,a N 的和B .2A B +为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数C 随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A ,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A ,B 分别是这N 个数中的最大数与最小数.7.(2012课标全国,理7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为().A .6B .9C .12D .18B 由三视图可推知,几何体的直观图如下图所示,可知AB =6,CD =3,PC =3,CD 垂直平分AB ,且PC ⊥平面ACB ,故所求几何体的体积为13×1632⎛⎫⨯⨯ ⎪⎝⎭×3=9.8.(2012课标全国,理8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=则C 的实轴长为( ). AB .C .4D .8C 设双曲线的方程为22x a-22y a=1,抛物线的准线为x =-4,且|AB |=故可得A (-4,B (-4,-将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.9.(2012课标全国,理9)已知ω>0,函数f (x )=sin π4x ω⎛⎫+ ⎪⎝⎭在π,π2⎛⎫⎪⎝⎭单调递减,则ω的取值范围是( ).A .15,24⎡⎤⎢⎥⎣⎦B .13,24⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .(0,2]A 结合y =sin ωx 的图像可知y =sin ωx 在π3π,22ωω⎡⎤⎢⎥⎣⎦单调递减,而y =sin π4x ω⎛⎫+ ⎪⎝⎭=sin π4x ωω⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦,可知y =sinωx 的图像向左平移π4ω个单位之后可得y =sin π4x ω⎛⎫+ ⎪⎝⎭的图像,故y =si n π4x ω⎛⎫+ ⎪⎝⎭在π5π,44ωω⎡⎤⎢⎥⎣⎦单调递减,故应有π,π2⎡⎤⎢⎥⎣⎦⊆π5π,44ωω⎡⎤⎢⎥⎣⎦,解得12≤ω≤54.10.(2012课标全国,理10)已知函数f (x )=1ln (1)-x x+,则y =f (x )的图像大致为().B 当x =1时,y =1ln 21-<0,排除A ;当x =0时,y 不存在,排除D ;f '(x )=1ln (1)-x x ⎡⎤⎢⎥+⎣⎦'=21[ln(1)-]xx x x ++,因定义中要求x >-1,故-1<x <0时,f '(x )<0,故y =f (x )在(-1,0)上单调递减,故选B .11.(2012课标全国,理11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC的直径,且SC =2,A6B 6C 3D 2A ∵SC 是球O 的直径,∴∠CAS =∠CBS =90°.∵BA =BC =AC =1,SC =2,∴AS =BS取AB 的中点D ,显然AB ⊥CD ,AB ⊥SD , ∴AB ⊥平面SCD 在△CDS 中,CD 2DS 2,SC =2,利用余弦定理可得cos ∠CDS =222S S 2 C DD C C D SD+-故sin∠CDS∴S △CDS=12222∴V =V B -CDS +V A -CDS =13×S△CDS ×BD +13S △CDS×AD =13S △CDS ×BA =1321612.(2012课标全国,理12)设点P 在曲线y =12e x 上,点Q 在曲线y =ln (2x )上,则|PQ |的最小值为( ).A .1-ln 2B 1-ln 2)C .1+ln 2D1+ln 2)B 由题意知函数y =12e x 与y =ln (2x )互为反函数,其图像关于直线y =x 对称,两曲线上点之间的最小距离就是y =x 与y =12e x 最小距离的2倍,设y =12e x 上点(x 0,y 0)处的切线与y =x 平行,有01e 2x =1,x 0=ln 2,y 0=1,∴y =x 与y =12e x21-ln 2),∴|PQ |21-ln 2)×21-ln 2).13.(2012课标全国,理13)已知向量a ,b 夹角为45°,且|a |=1,|2a -b则|b |= .∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |×|b |cos 45°2b |,|2a -b |2=4-42b |+|b |2=10,∴|b |=14.(2012课标全国,理14)设x ,y 满足约束条件1,3,0,0,x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z =x -2y 的取值范围为 .[-3,3] 作出不等式组的可行域,如图阴影部分,作直线l 0:x -2y =0,在可行域内平移知过点A 时,z =x -2y 取得最大值,过点B 时,z =x -2y 取最小值.由10,30,x y x y -+=⎧⎨+-=⎩得B 点坐标为(1,2), 由0,30,y x y =⎧⎨+-=⎩得A 点坐标为(3,0).∴z max =3-2×0=3,z min =1-2×2=-3. ∴z ∈[-3,3].15.(2012课标全国,理15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为 .38设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .∴该部件的使用寿命超过1 000小时的概率为P =12⎛ ⎝×12+12×12+12×12⎫⎪⎭×12=38.16.(2012课标全国,理16)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 . 1 830 ∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60) =10+26+42+…+234=15(10234)2⨯+=1 830.17.(2012课标全国,理17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C sin C -b -c =0. (1)求A ;(2)若a =2,△ABC 求b ,c .解:(1)由a cos C sin C -b -c =0及正弦定理得sin A cos C n A sin C -sin B -sin C =0. -A -C ,A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin π6A ⎛⎫- ⎪⎝⎭=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A 故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.18.(2012课标全国,理18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式; (2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; ②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 解:(1)当日需求量n ≥16时,利润y =80.当日需求量n <16时,利润y =10n -80. 所以y 关于n 的函数解析式为y =1080,16,80,16n n n -<⎧⎨≥⎩(n ∈N ).(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7.X 的数学期望为EX =60×0.1+70×0.2+80×0.7=76.X 的方差为DX =(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44. ②答案一:花店一天应购进16枝玫瑰花.理由如下:Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4.Y 的方差为DY =(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04. 由以上的计算结果可以看出,DX <DY ,即购进16枝玫瑰花时利润波动相对较小. 另外,虽然EX <EY ,但两者相差不大. 故花店一天应购进16枝玫瑰花. 答案二:花店一天应购进17枝玫瑰花.理由如下:Y的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX <EY ,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.19.(2012课标全国,理19)如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.解:(1)证明:由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得D 21C +DC 2=C 21C ,所以DC1⊥DC .而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD . BC ⊂平面BCD ,故DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1, 则BC ⊥平面ACC 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,C A 的方向为x 轴的正方向,|C A|为单位长,建立如图所示的空间直角坐标系C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2).则1D A=(0,0,-1),BD =(1,-1,1),1D C =(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则1·B D 0,·A D 0,n n ⎧=⎪⎨=⎪⎩即0,0.x y z z -+=⎧⎨=⎩ 可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,则1·B D 0,·D C 0.m m ⎧=⎪⎨=⎪⎩可取m =(1,2,1). 从而cos <n ,m >=·||||n m n m2故二面角A 1-BD -C 1的大小为30°.20.(2012课标全国,理20)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C,求坐标原点到m ,n 距离的比值. 解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径|FA.由抛物线定义可知A 到l 的距离d =|FA. 因为△ABD 的面积为所以12|BD|·d =即12·2p =解得p =-2(舍去),p =2.所以F (0,1),圆F 的方程为x 2+(y -1)2=8. (2)因为A ,B ,F 三点在同一直线m 上, 所以AB 为圆F的直径,∠ADB =90°. 由抛物线定义知|AD|=|FA |=12|AB |,所以∠ABD =30°,m 3当m 3,由已知可设n :y 3+b ,代入x 2=2py 得x 23-2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0. 解得b =-6p .因为m 的截距b 1=2p ,1||||b b =3,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为3,由图形对称性可知,坐标原点到m ,n 距离的比值为3.21.(2012课标全国,理21)已知函数f (x )满足f (x )=f '(1)e x -1-f (0)x +12x 2.(1)求f (x )的解析式及单调区间;(2)若f (x )≥12x 2+ax +b ,求(a +1)b 的最大值.解:(1)由已知得f '(x )=f '(1)e x -1-f (0)+x .所以f '(1)=f '(1)-f (0)+1,即f (0)=1. 又f (0)=f '(1)e -1,所以f '(1)=e .从而f (x )=e x -x +12x 2.由于f '(x )=e x -1+x ,故当x ∈(-∞,0)时,f '(x )<0; 当x ∈(0,+∞)时,f '(x )>0.从而,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)由已知条件得e x -(a +1)x ≥b .①(ⅰ)若a +1<0,则对任意常数b ,当x <0,且x <11b a -+时,可得e x -(a +1)x <b ,因此①式不成立.(ⅱ)若a +1=0,则(a +1)b =0.(ⅲ)若a +1>0,设g (x )=e x -(a +1)x , 则g '(x )=e x -(a +1).当x ∈(-∞,ln (a +1))时,g '(x )<0; 当x ∈(ln (a +1),+∞)时,g '(x )>0.从而g (x )在(-∞,l n (a +1))单调递减,在(ln (a +1),+∞)单调递增. 故g (x )有最小值g (ln (a +1))=a +1-(a +1)ln (a +1). 所以f (x )≥12x 2+ax +b 等价于b ≤a +1-(a +1)ln (a +1).②因此(a +1)b ≤(a +1)2-(a +1)2ln (a +1). 设h (a )=(a +1)2-(a +1)2ln (a +1), 则h '(a )=(a +1)(1-2ln (a +1)).所以h (a )在(-1,12e -1)单调递增,在(12e -1,+∞)单调递减,故h (a )在a =12e -1处取得最大值. 从而h (a )≤e 2,即(a +1)b ≤e 2.当a =12e -1,b =12e 2时,②式成立,故f (x )≥12x 2+ax +b .综合得,(a +1)b 的最大值为e 2.22.(2012课标全国,理22)选修4—1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD =BC ;(2)△BCD ∽△GBD .证明:(1)因为D ,E 分别为AB ,AC 的中点,所以DE ∥BC .又已知CF ∥AB ,故四边形BCFD 是平行四边形, 所以CF =BD =AD . 而CF ∥AD ,连结AF ,所以ADCF 是平行四边形,故CD =AF . 因为CF ∥AB ,所以BC =AF ,故CD =BC . (2)因为FG ∥BC ,故GB =CF . 由(1)可知BD =CF ,所以GB =BD .而∠DGB =∠EFC =∠DBC ,故△BCD ∽△GBD .23.(2012课标全国,理23)选修4—4:坐标系与参数方程已知曲线C 1的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π2,3⎛⎫⎪⎝⎭.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围. 解:(1)由已知可得A ππ2cos ,2sin 33⎛⎫ ⎪⎝⎭,B ππππ2cos ,2sin 3232⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,C ππ2cos π,2sin π33⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, D π3ππ3π2cos ,2sin 3232⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 即A (1B1),C (-1D1). (2)设P (2cos φ,3sin φ),令S =|PA |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20si n 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52]. 24.(2012课标全国,理24)选修4—5:不等式选讲 已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.解:(1)当a =-3时,f (x )=25,2,1,23,25, 3.x x x x x -+≤⎧⎪<<⎨⎪-≥⎩当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a | ⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0].。
专题16 选修4-5不等式选讲【2021年】1.(2021年全国高考乙卷数学(文)试题)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.2.(2021年全国高考甲卷数学(理)试题)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +≥,求a 的取值范围.3.(2021年全国新高考Ⅰ卷数学试题)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.2.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.3.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .4.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.5.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 7.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知()11f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.8.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤恒成立,求a 的取值范围.9.(2018年全国卷Ⅰ理数高考试题)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求+a b 的最小值.10.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.11.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.12.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.13.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲已知函数f (x )=|x +1|−|2x −3|.(Ⅰ)画出y =f (x )的图象;(Ⅰ)求不等式|f (x )|>1的解集.14.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ; (Ⅰ)证明:当a ,b M ∈时,1a b ab +<+.15.(2016年全国普通高等学校招生统一考试)已知函数()|2|f x x a a =-+.(1)当a=2时,求不等式()6f x ≤的解集;(2)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.16.(2015年全国普通高等学校招生统一考试理科数学(新课标))已知函数()|1|2||,0f x x x a a =+-->.(1)当1a =时,求不等式()1f x >的解集;(2)若()f x 的图象与x 轴围成的三角形面积大于6,求a 的取值范围.17.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))选修4-5不等式选讲设a b c d ,,,均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>;(Ⅰ>是a b c d -<-的充要条件.18.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))若且 (I )求的最小值; (II )是否存在,使得?并说明理由.19.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.20.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))选修4—5:不等式选讲 已知函数f (x )=|2x -1|+|2x +a|,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当xⅠ1,22a ⎛⎫-⎪⎝⎭时,f (x )≤g (x ),求a 的取值范围.21.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))设a ,b ,c 均为正数,且a+b+c=1,证明:(Ⅰ)ab+bc+ac ≤13; (Ⅰ)2221a b c b c a++≥.22.(2012年全国普通高等学校招生统一考试文科数学(课标卷))已知函数()f x =2x a x ++-. (Ⅰ)当3a =-时,求不等式()f x ≥3的解集;(Ⅰ) 若()f x ≤4x -的解集包含[1,2],求a 的取值范围.(命题意图)本题主要考查含绝对值不等式的解法,是简单题.。
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. m},B={1,m} ,A B=A, 则m=A0或3 B 0或3 C 1或3 D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=22E为CC1的中点,则直线AC1与平面BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβ=33,则cos2α=(A)5-3(B)5-9(C)59(D)53(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年普通高等学校招生全国统一考试(全国卷) [理科数学](新课标)含答案一.选择题:本大题共12小题:每小题5分。
1.已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 102.将2名教师:4名学生分成2个小组:分别安排到甲、乙两地参加社会实践活动:每个小组由1名教师和2名学生组成:不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种3.下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 344.设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点:P 为直线32a x =上一点:∆21F P F 是底角为30 的等腰三角形:则E的离心率为( )()A 12()B23()C 34()D 455.已知{}n a 为等比数列:472a a +=:568a a =-: 则110a a +=( )()A 7 ()B 5 ()C -5 ()D -76.如果执行右边的程序框图:输入正整数(2)N N ≥和实数12,,...,n a a a :输出,A B :则( )()A A B +为12,,...,n a a a 的和()B2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数7.如图:网格纸上小正方形的边长为1:粗线画出的是某几何体的三视图:则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 188.等轴双曲线C 的中心在原点:焦点在x 轴上:C 与抛物线x y 162=的准线交于,A B 两点:AB =C 的实轴长为( )()A ()B()C 4 ()D 89.已知0ω>:函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2024年普通高等学校招生全国统一考试数学(理科)试卷(全国甲卷)一、选择题1.若,则( )5i z =+i()z z +=A. B. C.10D.-210i2i2.已知集合,,则( ){1,2,3,4,5,9}A={}B A =()A A B = ðA. B. C. D.{1,4,9}{3,4,9}{1,2,3}{2,3,5}3.若实数x ,y 满足约束条件,则的最小值为( )4330,220,2690,x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩5z x y =-724.记等差数列的前n 项和,若,,则( )n S {}n a 510S S =51a =1a =7115.已知双曲线的两个焦点分别为,,点在该双曲线上,则该双曲线的离心率(0,4)(0,4)-(6,4)-为( )6.设函数在点处的切线与两坐标轴所围成的三角形的()f x =()y f x =(0,1)面积为( )7.函数在区间的大致图像为( )()2e e sin xx y x x -=-+-[ 2.8,2.8]-A. B.C. D.( )=π4α⎛⎫+= ⎪⎝⎭A. B.19.已知向量,,则( )(1,)x x =+a (,2)x =b A.是的必要条件 B.是的必要条件3x =-⊥a b 3x =-//a bC.是的充分条件D.是的充分条件0x =⊥a b 1x =-+//a b 10.设,为两个平面,m ,n 为两条直线,且.下述四个命题:αβm αβ= ①若,则或//m n //n α//n β②若,则或m n ⊥n α⊥n β⊥③若且,则//n α//n β//m n④若n 与,所成的角相等,则.αβm n ⊥其中所有真命题的编号是( )A.①③B.②④C.①②③D.①③④11.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知,,则ABC △60B =︒294b ac =( )sin sin A C +=12.已知b 是a ,c 的等差中项,直线与圆交于A ,B 两点,则0ax by c ++=22410x y y ++-=A.1B.2C.4D.二、填空题13.的展开式中,各项系数中的最大值为_________.1013x ⎛⎫+ ⎪⎝⎭14.已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,1r 2r ()212r r -,则圆台甲与乙的体积之比为_________.()213r r -15.已知_________.a >1log 4a -==16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的三、解答题17.某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率p =p >+)12.247≈附:2K =(1)求的通项公式;{}n a(2)设,求数列的前n 项和.1(1)n n n b na -=-{}n b n T 19.如图,已知,//AB CD,,,//CD EF 2AB DE EF CF ====4CD =AD BC ==AE =点.(1)证明:平面BCF ;//EM (2)求二面角的正弦值.A EM B --20.已知函数.()(1)ln(1)f x ax x x =-+-(1)若,求的极值;2a =-()f x (2)当时,,求a 的取值范围.0x ≥()0f x ≥21.设椭圆的右焦点为F ,点在C 上,且轴.2222:1(0)x y C a b a b +=>>31,2M ⎛⎫⎪⎝⎭MF x ⊥(1)求C 的方程;(2)过点的直线交C 于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q .证(4,0)P 明:轴.AO y ⊥22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.cos 1ρρθ=+(1)写出C 的直角坐标方程;(2)设直线l :(t 为参数),若C 与l 相交于A ,B 两点,且,求a .,x t y t a=⎧⎨=+⎩||2AB =23.[选修4-5:不等式选讲]已知实数a ,b 满足.3a b +≥(1)证明:;2222a b a b +>++-≥b b a226答案1.答案:A解析:因为,所以,故选A.5i z =+i()10i z z +=2.答案:D解析:因为,,所以,{1,2,3,4,5,9}A ={}{1,4,9,16,25,81}B A ==(){2,3,5}A A B = ð故选D.3.答案:D解析:将约束条件两两联立可得3个交点:,和,经检验都符合约束条件.代(0,1)-3,12⎛⎫ ⎪⎝⎭13,2⎛⎫⎪⎝⎭入目标函数可得:min z =4.答案:B解析:因为,所以,,又因为,所以公差510S S =718S S =80a =51a =d =187a a d =-=5.答案:C 解析:,故选C.12212F F c e a PF PF ===-6.答案:A解析:因为,所以,,563y x '=+3k =31y x =-11123S =⨯⨯=7.答案:B 解析:8.答案:B,故选=1α=πtan 1141tan ααα+⎛⎫+== ⎪-⎝⎭B.9.答案:C解析:,则,解得:或-3,故选C.⊥a b (1)20x x x ++=0x =10.答案:A 解析:11.答案:C解析:因为,所以B =294ac =24sin sin sin 9A C B ==,即:,22294b a c ac ac =+-=22134a c ac +=22sin sin A C +=222(sin sin )sin sin 2sin sin A C A C A C+=++=sin A +12.答案:C解析:因为a ,b ,c 成等差数列,所以,直线恒过.当20a b c -+=0ax by c ++=(1,2)P -,,故选C.PC ⊥|1PC =||4AB =13.答案:5解析:展开式中系数最大的项一定在下面的5项:、、、、55101C 3⎛⎫ ⎪⎝⎭46101C 3⎛⎫ ⎪⎝⎭37101C 3⎛⎫ ⎪⎝⎭28101C 3⎛⎫ ⎪⎝⎭,计算可得:系数的最大值为.19101C 3⎛⎫ ⎪⎝⎭28101C 53⎛⎫= ⎪⎝⎭h h ===15.答案:64,所以,而,221315log log 4log 22a a a -=-=-()()22log 1log 60a a +-=1a >故,.2log 6a =64a =解析:记前三个球的号码分别为a 、b 、c ,则共有种可能.令36A 120=可得:,根据对称性:或6时,2||0.5236a b a b c a b cm n ++++-=≤-=-|2|3a b c +-≤1c =均有2种可能;或5时,均有10种可能;或4时,均有16种可能;故满足条件的共有2c =3c =56种可能,56120P ==17.答案:(1)没有的把握99%(2)有优化提升解析:(1),没有的把握;22150(70242630) 6.635965450100x ⨯-⨯=<⨯⨯⨯99%p >+18.答案:(1)14(3)n n a -=⋅-(2)(21)31n n T n =-+解析:(1)因为,所以,434n n S a =+11434n n S a ++=+两式相减可得:,即:,11433n n n a a a ++=-13n n a a +=-又因为,所以,11434S a =+14a =故数列是首项为4,公比为-3的等比数列,;{}n a 14(3)n n a -=⋅-(2)解法1:,11(1)43n n n n b na n --=-=⋅所以,.()012141323333n n T n -=⋅+⋅+⋅++⋅ 12334(1323)333n n T n =⋅+⋅+⋅++⋅ 两式相减可得:,()12113241333343(24)3213n n nn n n T n n n -⎛⎫--=++++-⋅=-⋅=-- ⎪-⎝⎭.(21)31n n T n =-+解法2:,所以,11(1)43n n n n b na n --=-=⋅1143n n n T T n --=+⋅两边同时减去可得:,(21)3nn -11(21)3(23)3n n n n T n T n ----=--故为常数列,即:,.{}(21)3n n T n --(21)31n n T n --=(21)31n n T n =-+19.答案:(1)证明见解析解析:(1)由题意:,,//EF CM EF CM =而平面,平面ADO ,CF ÜADO EM Ú所以平面BCF ;//EM(2)取DM 的中点O ,连结OA ,OE ,则,,,,OA DM ⊥OE DM⊥3OA =OE =AE =故.OA OE ⊥以O 为坐标原点建立如图所示的空间直角坐标系,则,,,,,,(0,0,3)A E (0,1,0)M (0,2,3)B 3)AE =- (EM =,(0,1,3)MB =设平面AEM 的法向量为,(,,)n x y z =由可得:,00n AE n EM ⎧⋅=⎪⎨⋅=⎪⎩300z y -=+=⎪⎩令,则,1z =,1)3n =同理:取平面BEM 的法向量为,1)m =-则cos ,||||m n m n m n ⋅〈〉==,m n 〈〉= 故二面角A EM B --20.答案:(1)极小值为,无极大值(0)0f =(2)1,2⎛⎤-∞- ⎥⎝⎦解析:(1)当时,,.2a =-()(12)ln(1)f x x x x =++-1x >-时,,当时,,()2ln(1)f x x =+0>()0f x >10x -<<()0f x <所以在上递增,()f x (-)+∞故的极小值为,无极大值;()f x (0)0f =(2),()(1)ln(1)f x ax x x =-+-()ln(1)f x a x =-+-令,则.()()g x f x =21()1(1)a a g x x x +'=--++因为当时,,且,,0x ≥()0f x ≥(0)0f =(0)0f '=所以,(0)120g a '=--≥a ≤当,在上递增,a ≤2211()02(1)2(1)2(1)x g x x x x '≥-=≥+++()g x [0,)+∞,()()(0)0g x f x g =≥=故在上递增,恒成立,即a 的取值范围为.()f x [0,)+∞()(0)0f x f ≥=1,2⎛⎤-∞- ⎥⎝⎦213y =(2)证明见解析解析:(1)设椭圆C 的左焦点为,.F 23||2MF =因为,MF ⊥1MF =1||4a MF MF =+=解得:,,24a =2213b a =-=;213y =(2)解法1:设,,,()11,A x y ()22,B x y ,AP PB λ=则,即.12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩212144x x y y λλ=+-⎧⎨=-⎩又由可得,()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-结合上式可得.25230x λλ-+=,,,则,故轴.(4,0)P (1,0)F 5,02N ⎛⎫⎪⎝⎭222122335252Q y y y y y x x λλλ===-=--AQ y ⊥解法2:设,,()11,A x y (22,B x y =()1221214y x y y y -=-所以()()2222122112211221x y x y x y x y x y x y -+=-,()()()()22221221212121122144444433y y y y y y y y y y x y x y ⎛⎫⎛⎫=+-+=-+=-+ ⎪ ⎪⎝⎭⎝⎭即:,.122121x y x y y y +=+2112253x y y y =-,,,则,故轴.(4,0)P (1,0)F 5,02N ⎛⎫ ⎪⎝⎭21212112335252Q y y y y y x y y x ===--AQ y ⊥22.答案:(1)221y x =+(2)34a =解析:(1)因为,所以,cos 1ρρθ=+22(cos 1)ρρθ=+故C 的直角坐标方程为:,即:;222(1)x y x +=+221y x =+(2)将代入可得:,x t y t a=⎧⎨=+⎩221y x =+222(1)10t a ta +-+-=,解得.2||2AB t ===34a =23.答案:(1)证明见解析(2)证明见解析解析:(1)因为,所以;3a b +≥22222()a b a b a b +≥+>+222222222222()b b a a b b a a b a b +-≥-+-=+-+.22222()()()()(1)6a b a b a b a b a b a b =+-+≥+-+=++-≥。
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数=CA 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,AB=A, 则m=BA 0或B 0或3C 1或D 1或33椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为CA +=1B +=1C +=1D +=14已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1= E为CC1的中点,则直线AC1与平面BED的距离为AA 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为A(A) (B) (C) (D)(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则D(A)(B) (C) (D)(7)已知α为第二象限角,sinα+sinβ=,则cos2α=A(A) (B) (C) (D)(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=C(A)(B) (C) (D)(9)已知x=lnπ,y=log52,,则D(A)x<y<z(B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=A(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有A(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=。
大纲全国理科1.(2012大纲全国,理1)复数13i 1i-++=( ).A.2+iB.2-iC.1+2iD.1-2iC 13i 1i -++=(-13i)(1i)(1i)(1i)+-+-=21i 3i 3i 2-++-=24i 2+=1+2i .2.(2012大纲全国,理2)已知集合A=B={1,m },A ∪B=A ,则m=( ).A.0B.0或3C.1D.1或3B ∵A=B={1,m },A ∪B=A ,∴m=3或 ∴m=3或m=0或m=1.当m=1时,与集合中元素的互异性不符,故选B .3.(2012大纲全国,理3)椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为( ).A.216x +212y =1B.212x +28y =1C.28x +24y =1D.212x +24y =1C ∵焦距为4,即2c=4,∴c=2.又∵准线x=-4,∴-2a c=-4.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为28x +24y =1,故选C .4.(2012大纲全国,理4)已知正四棱柱ABCD-A 1B 1C 1D 1中,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为( ).A.2 D.1D 连结AC 交BD 于点O ,连结OE ,∵AB=2,∴AC=又CC 1=则AC=CC 1.作CH ⊥AC 1于点H ,交OE 于点M.由OE 为△ACC 1的中位线知,CM ⊥OE ,M 为CH 的中点. 由BD ⊥AC ,EC ⊥BD 知,BD ⊥面EOC , ∴CM ⊥BD.∴CM ⊥面BDE.∴HM 为直线AC 1到平面BDE 的距离. 又△ACC 1为等腰直角三角形,∴CH=2.∴HM=1.5.(2012大纲全国,理5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为( ). A.100101 B.99101C.99100D.101100 A S 5=155()2a a +=15(5)2a +=15,∴a 1=1.∴d=5151a a --=5151--=1.∴a n =1+(n-1)×1=n.∴11n n a a +=1(1)n n +. 设11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为T n , 则T 100=112⨯+123⨯+…+1100101⨯ =1-12+12-13+…+1100-1101=1-1101=100101.6.(2012大纲全国,理6)△ABC 中,AB 边的高为CD.若CB =a ,CA=b ,a ·b=0,|a|=1,|b|=2,则AD =( ). A.13a-13b B.23a-23b C.35a-35b D.45a-45bD ∵a ·b=0,∴a ⊥b.又∵|a|=1,|b|=2,∴|AB∴|CD∴|AD∴AD=4AB 5 =45(a-b )=45a-45b.7.(2012大纲全国,理7)已知α为第二象限角,sin α+cos α则cos 2α=( ).A.B.A ∵sin α+cos α且α为第二象限角,∴α∈32k ,2k 24ππππ⎛⎫++ ⎪⎝⎭(k ∈Z ).∴2α∈34k ,4k 2ππππ⎛⎫++ ⎪⎝⎭(k ∈Z ).由(sin α+cos α)2=1+sin 2α=1,∴sin 2α=-23.∴cos 2α8.(2012大纲全国,理8)已知F 1,F 2为双曲线C:x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ).A.14B.35C.34D.45C 设|PF 2|=m,则|PF 1|=2m,由双曲线定义:|PF 1|-|PF 2|=2a,∴∴又∴由余弦定理可得cos ∠F 1PF 2=2221212|PF||PF |4c 2|PF||PF |+-=34. 9.(2012大纲全国,理9)已知x=ln π,y=log 52,z=12e -,则( ). A.x<y<z B.z<x<y C.z<y<xD.y<z<xD ∵x=ln π>1,y=log 52>log12,z=12e -12,且12e -<e 0=1,∴y<z<x.10.(2012大纲全国,理10)已知函数y=x 3-3x+c 的图象与x 轴恰有两个公共点,则c=( ). A.-2或2 B.-9或3 C.-1或1 D.-3或1 A y'=3x 2-3=3(x+1)(x-1).当y'>0时,x<-1或x>1; 当y'<0时,-1<x<1.∴函数的递增区间为(-∞,-1)和(1,+∞),递减区间为(-1,1). ∴x=-1时,取得极大值;x=1时,取得极小值. 要使函数图象与x 轴恰有两个公共点,只需: f(-1)=0或f(1)=0,即(-1)3-3×(-1)+c=0或13-3×1+c=0, ∴c=-2或c=2.11.(2012大纲全国,理11)将字母a,a,b,b,c,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( ). A.12种 B.18种 C.24种 D.36种A 当第一行为a b 时,有a b b c c b 和a bc a b c 两种情况,∴当第一行为a,b 时,共有4种情况. 同理当第一行为a,c 时,共有4种情况; 当第一行为b,c 时,共有4种情况; ∴不同的排列方法共有12种.12.(2012大纲全国,理12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE=BF=37.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A.16B.14C.12D.10B 结合已知中的点E,F 的位置,由反射与对称的关系,可将点P 的运动路线展开成直线,如图.当点P 碰到E 时,m 为偶数,且m 33n 77+-=34,即4m=3n. 故m 的最小值为6.n=8,线段PE 与网格线交点的个数为(除E 点外)6+8=14个. (PE 的方程为:y=34x-928,即4y=3x-97,x,y 不能同时为整数,所以PE 不过网格交点)13.(2012大纲全国,理13)若x,y 满足约束条件x y 10,x y 30,x 3y 30,-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y 的最小值为 .-1 由题意画出可行域,由z=3x-y 得y=3x-z,要使z 取最小值,只需截距最大即可,故直线过A(0,1)时,z 最小.∴z min =3×0-1=-1.14.(2012大纲全国,理14)当函数y=sinx(0≤x<2π)取得最大值时,x= .56π y=sinx=21x x 2sin ⎛⎫ ⎪ ⎪⎝⎭=2sin x 3π⎛⎫- ⎪⎝⎭. 当y 取最大值时,x-3π=2k π+2π, ∴x=2k π+56π.又∵0≤x<2π,∴x=56π.15.(2012大纲全国,理15)若n1x x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则该展开式中21x 的系数为 .56 ∵2n C =6n C ,∴n=8.T r+1=r 8C x 8-rr1x ⎛⎫ ⎪⎝⎭=r 8C x 8-2r ,当8-2r=-2时,r=5.∴系数为58C =56.16.(2012大纲全国,理16)三棱柱ABC-A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB与BC 1所成角的余弦值为 .取BC 的中点O,连结AO,A 1O,BA 1,CA 1,易证BC ⊥AO,BC ⊥A 1O,从而BC ⊥AA 1,又BB 1∥AA 1,BB 1⊥BC.延长CB 至D,使BD=BC,连结B 1D,则B 1D ∥BC 1,设BC=1,则B 11所以,17.(2012大纲全国,理17)△ABC 的内角A,B,C 的对边分别为a,b,c,已知cos (A-C)+cos B=1,a=2c,求C. 解:由B=π-(A+C),得cos B=-cos (A+C).于是cos (A-C)+cos B=cos (A-C)-cos (A+C)=2sin A sin C, 由已知得sin A sin C=12.①由a=2c 及正弦定理得sin A=2sin C.② 由①,②得sin 2C=14,于是sin C=-12(舍去),或sin C=12.又a=2c,所以C=6π.18.(2012大纲全国,理18)如图,四棱锥P-ABCD 中,底面ABCD 为菱形,PA ⊥底面是PC 上的一点,PE=2EC. (1)证明:PC ⊥平面BED;(2)设二面角A-PB-C 为90°,求PD 与平面PBC 所成角的大小.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC.又PA ⊥底面ABCD,所以PC ⊥BD. 设AC ∩BD=F,连结EF.因为故从而PC FCAC EC因为PC FC =AC EC,∠FCE=∠PCA,所以△FCE ∽△PCA,∠FEC=∠PAC=90°, 由此知PC ⊥EF.PC 与平面BED 内两条相交直线BD,EF 都垂直,所以PC ⊥平面BED. (2)在平面PAB 内过点A 作AG ⊥PB,G 为垂足. 因为二面角A-PB-C 为90°,所以平面PAB ⊥平面PBC. 又平面PAB ∩平面PBC=PB,故AG ⊥平面PBC,AG ⊥BC. BC 与平面PAB 内两条相交直线PA,AG 都垂直, 故BC ⊥平面PAB,于是BC ⊥AB,所以底面ABCD 为正方形设D 到平面PBC 的距离为d.因为AD ∥BC,且AD ⊄平面PBC,BC ⊂平面PBC,故AD ∥平面PBC,A,D 两点到平面PBC 的距离相等,即设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A-xyz.设其中b>0,则P(0,0,2),E 23⎫⎪⎪⎝⎭于是PC BE =2b,3⎫⎪⎪⎝⎭,DE =23⎫⎪⎪⎝⎭, 从而PC ·BE =0,PC ·DE=0, 故PC ⊥BE,PC ⊥DE.又BE ∩DE=E,所以PC ⊥平面BDE.(2)AP =(0,0,2),AB设m=(x ,y ,z )为平面PAB 的法向量,则m ·AP =0,m ·AB =0,即2z=0令x=b ,则m=(b .设n=(p ,q ,r )为平面PBC 的法向量,则n ·PC=0,n ·BE =0,即23r=0,令p=1,则n=⎛ ⎝.因为面PAB ⊥面PBC ,故m ·n=0,即b-2b=0,故于是n=(1,-DP=(cos <n,DP >=n |n||DP |DP ⋅ =12,<n,DP >=60°. 因为PD 与平面PBC 所成角和<n,DP>互余,故PD 与平面PBC 所成的角为30°.19.(2012大纲全国,理19)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)ξ表示开始第4次发球时乙的得分,求ξ的期望.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i=0,1,2;A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2. (1)B=A 0·A+A 1·A ,P(A)=0.4,P(A 0)=0.42=0.16,P(A 1)=2×0.6×0.4=0.48, P(B)=P(A 0·A+A 1·A ) =P(A 0·A)+P(A 1·A )=P(A 0)P(A)+P(A 1)P(A ) =0.16×0.4+0.48×(1-0.4)=0.352. (2)P(A 2)=0.62=0.36.ξ的可能取值为0,1,2,3.P(ξ=0)=P(A 2·A)=P(A 2)P(A)=0.36×0.4=0.144, P(ξ=2)=P(B)=0.352,P(ξ=3)=P(A 0·A )=P(A 0)P(A )=0.16×0.6=0.096, P(ξ=1)=1-P(ξ=0)-P(ξ=2)-P(ξ=3)=1-0.144-0.352-0.096=0.408. E(ξ)=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3) =0.408+2×0.352+3×0.096=1.400.20.(2012大纲全国,理20)设函数f(x)=ax+cos x,x ∈[0,π]. (1)讨论f(x)的单调性;(2)设f(x)≤1+sin x,求a 的取值范围. 解:(1)f'(x)=a-sin x.①当a ≥1时,f'(x)≥0,且仅当a=1,x=2π时,f'(x)=0,所以f (x )在[0,π]是增函数;②当a ≤0时,f'(x)≤0,且仅当a=0,x=0或x=π时,f'(x)=0, 所以f(x)在[0,π]是减函数;③当0<a<1时,由f'(x)=0解得x 1=arcsin a,x 2=π-arcsin a. 当x ∈[0,x 1)时,sin x<a,f'(x)>0,f(x)是增函数; 当x ∈(x 1,x 2)时,sin x>a,f'(x)<0,f(x)是减函数; 当x ∈(x 2,π]时,sin x<a,f'(x)>0,f(x)是增函数. (2)由f(x)≤1+sin x 得f(π)≤1,a π-1≤1, 所以a ≤2π.令g(x)=sin x-20x 2x ππ⎛⎫≤≤ ⎪⎝⎭,则g'(x)=cos x-2π.当x ∈20,arccos π⎛⎫⎪⎝⎭时,g'(x )>0,当x ∈2,2arccos ππ⎛⎫ ⎪⎝⎭时,g'(x )<0.又g(0)=g 2π⎛⎫ ⎪⎝⎭=0,所以g(x)≥0,即2πx ≤sin x 0x 2π⎛⎫≤≤ ⎪⎝⎭.当a ≤2π时,有f (x )≤2πx+cos x.①当0≤x ≤2π时,2πx ≤sin x,cos x ≤1,所以f(x)≤1+sin x;②当2π≤x ≤π时,f(x)≤2πx+cos x=1+2x 2ππ⎛⎫- ⎪⎝⎭-sin x 2π⎛⎫- ⎪⎝⎭≤1+sin x.综上,a 的取值范围是2,π⎛⎤-∞⎥⎝⎦.21.(2012大纲全国,理21)已知抛物线C:y=(x+1)2与圆M:(x-1)2+21y 2⎛⎫-⎪⎝⎭=r 2(r>0)有一个公共点A,且在A 处两曲线的切线为同一直线l. (1)求r;(2)设m,n 是异于l 且与C 及M 都相切的两条直线,m,n 的交点为D,求D 到l 的距离. 解:(1)设A(x 0,(x 0+1)2),对y=(x+1)2求导得y'=2(x+1),故l 的斜率k=2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M 11,2⎛⎫ ⎪⎝⎭,MA 的斜率k'=2001(x 1)2x 1+--.由l ⊥MA 知k ·k'=-1, 即2(x 0+1)·2001(x 1)2x 1+--=-1,解得x 0=0,故A(0,1),即(2)设(t,(t+1)2)为C 上一点,则在该点处的切线方程为y-(t+1)2=2(t+1)(x-t), 即y=2(t+1)x-t 2+1.若该直线与圆M 相切,则圆心M化简得t 2(t 2-4t-6)=0,解得t 0=0,t 12.抛物线C 在点(t i ,(t i +1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为y=2x+1,①y=2(t 1+1)x-21t +1,②y=2(t 2+1)x-22t +1,③ ②-③得x=12t t 2+=2.将x=2代入②得y=-1,故D(2,-1).所以D 到l 的距离22.(2012大纲全国,理22)函数f(x)=x 2-2x-3,定义数列{x n }如下:x 1=2,x n+1是过两点P(4,5),Q n (x n ,f(x n ))的直线PQ n 与x 轴交点的横坐标. (1)证明:2≤x n <x n+1<3; (2)求数列{x n }的通项公式.解:(1)用数学归纳法证明:2≤x n <x n+1<3.①当n=1时,x 1=2,直线PQ 1的方程为y-5=f (2)-524-(x-4),令y=0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n=k 时,结论成立,即2≤x k <x k+1<3. 直线PQ k+1的方程为y-5=k 1k 1f (x )-5x 4++-(x-4),令y=0,解得x k+2=k 1k 134x 2x ++++,由归纳假设知x k+2=k 1k 134x 2x ++++=4-k 152x ++<4-523+=3;x k+2-x k+1=k 1k 1k 1(3x )(1x )2x +++-++>0,即x k+1<x k+2.所以2≤x k+1<x k+2<3,即当n=k+1时,结论成立. 由①、②知对任意的正整数n,2≤x n <x n+1<3. (2)由(1)及题意得x n+1=n n34x 2x ++.设b n =x n -3,则n 11b +=n5b +1,n 11b ++14=5n 11b 4⎛⎫+ ⎪⎝⎭,数列n 11b 4⎧⎫+⎨⎬⎩⎭是首项为-34,公比为5的等比数列. 因此n 1b +14=-34·5n-1,即b n =-n 14351-⋅+,所以数列{x n }的通项公式为x n =3-n 14351-⋅+.。