专题13 圆锥曲线中的定点、定值、定直线问题
- 格式:doc
- 大小:337.52 KB
- 文档页数:7
圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法: (1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。
例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e −+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积;(2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .圆锥曲线中的定点、定值问题解析一、题型选讲例1【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +−=−,可得121227(3)(3)y y x x =−++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++−=所以12229mn y y m +=−+,212299n y y m −=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +−−++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =−.由2,22,p y x y px ⎧=−⎪⎨⎪=⎩得22304p x px −+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =−(0k ≠),由()22,8,y k x y x ⎧=−⎨=⎩得()22224840k x k x k −++=,()22222484464640k k k k ∆=+−⋅⋅=+>,212248k x x k++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a −=−,()222PNk x k x a−=−. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+−−+−−=−+++=−=⎡⎤⎣⎦, ∴2a =−时,此时()2,0P −.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P −,使直线PM ,PN 关于x 轴对称. 例3、【解析】(1)由抛物线2:2C x py =−经过点(2,1)−,得2p =.所以抛物线C 的方程为24x y =−,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F −. 设直线l 的方程为1(0)y kx k =−≠.由21,4y kx x y=−⎧⎨=−⎩得2440x kx +−=.设()()1122,,,M x y N x y ,则124x x =−. 直线OM 的方程为11y y x x =. 令1y =−,得点A 的横坐标11A x x y =−. 同理得点B 的横坐标22B x x y =−. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=−−−=−−− ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫−− ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =−++.令0DA DB ⋅=,即24(1)0n −++=,则1n =或3n =−. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)−.例4、【解析】(1)由题设得22411a b +=,22212a b a −=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++−=. 于是2121222426,1212km m x x x x k k −+=−=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y −−+−−=,可得221212(1)(2)()(1)40k x x km k x x m ++−−++−+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k−+−−−+−+=++. 整理得(231)(21)0k m k m +++−=.因为(2,1)A 不在直线MN 上,所以210k m +−≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =−−≠.所以直线MN 过点21(,)33P −.若直线MN 与x 轴垂直,可得11(,)N x y −.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y −−+−−−=.又2211163x y +=,可得2113840x x −+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P −.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP =. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、【解析】(1)由2220e −+=解得2e =或e =,∴a =,又222a b c =+,a ∴=,又()020AC k a −−==−a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =−,设()()1122,,,P x y Q x y ,由22212y kx x y =−⎧⎪⎨+=⎪⎩得()2221860k x kx +−+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k −−⨯⨯+=216240k −> 232k ∴>, ∴()121224421y y k x x k −+=+−=+,()()121222y y kx kx =−−()21212=24k x x k x x −++=224221k k −+, 直线BP 的方程为1111y y x x −=+,令0y =解得111x x y =−,则11,01x M y ⎛⎫⎪−⎝⎭,同理可得22,01x N y ⎛⎫⎪−⎝⎭, 12123411BOMBCNx x SSy y ∴=−−=()()()12121212123341141x x x x y y y y y y =−−−++=22226321444212121k k k k +−++++=12, BOM BON S S∆∴为定值12. 例6、 (1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PAPB=|x P-x A||x P-x B|=|x P-x A||x P+x A|=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x0,y0),所以直线l1的方程为y-y0=k1(x-x0),即y=k1x-k1x0+y0,记t=-k1x0+y0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k21+1)x2+8k1tx+4t2-4=0,因为直线l1与椭圆C1有且只有一个公共点,所以Δ=(8k1t)2-4(4k21+1)(4t2-4)=0,即4k21-t2+1=0,将t=-k1x0+y0代入上式,整理得,(x20-4)k21-2x0y0k1+y20-1=0,(12分)同理可得,(x20-4)k22-2x0y0k2+y20-1=0,所以k1,k2为关于k的方程(x20-4)k2-2x0y0k+y20-1=0的两根,从而k1·k2=y20-1x20-4.(14又点在P(x0,y0)椭圆C2:x28+y22=1上,所以y20=2-14x20,所以k1·k2=2-14x20-1x20-4=-14为定值.(16分)二、达标训练1、【解析】(I) 椭圆22:14xC y+=,故)F,1 ||22FP x ====−.(II)设()33,A x y,()44,B x y,则将y kx m=+代入2214xy+=得到:()222418440k x kmx m+++−=,故2121222844,4141km mx x x xk k−−+==++,21241x xk−=+,OA OB=,故()3434343421k x x my yx x x x k+++==−++,得到34221kmx xk−+=+,PA PF=13122x x−=−42222x x−=−,由已知得:3124x x x x<<<或3124x x x x>>>,)()123421x x x x x+−+=−,2228241141km kmk k k−+=+++,化简得到221m k=+.故原点O到直线l的距离为1d==为定值.2、【解析】(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由241y xy kx⎧=⎨=+⎩得22(24)10k x k x+−+=.依题意22(24)410k k∆=−−⨯⨯>,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知12224kx xk−+=−,1221x xk=.直线P A的方程为1122(1)1yy xx−−=−−.令x=0,得点M的纵坐标为1111212211My kxyx x−+−+=+=+−−.同理得点N的纵坐标为22121Nkxyx−+=+−.由=QM QOλ,=QN QOμ得=1Myλ−,1Nyμ=−.所以2212121212122224112()111111=2111(1)(1)11M Nkx x x x x x k ky y k x k x k x x kk λμ−+−−−++=+=+=⋅=⋅−−−−−−.所以11λμ+为定值.3、规范解答(1)设椭圆的半焦距为c,由已知得,ca=32,则a2c-c=33,c2=a2-b2,(3分)解得a=2,b=1,c=3,(5分)所以椭圆E的标准方程是x24+y2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD →=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)4规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分)连结BF ,则直线BF :x 3+y1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37.故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m , 则直线PM 的方程为y =-1m x -1,联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分) 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分) (3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分) (不考虑直线与x 轴垂直的情形扣1分)。
圆锥曲线中的“三定问题”(定点、定值、定直线)1.定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.2.定点问题解决步骤:①设直线代入二次曲线方程,整理成一元二次方程;②根与系数关系列出两根和及两根积;③写出定点满足的关系,整体代入两根和及两根积;④整理③所得表达式探求其恒成立的条件.3.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.4.存在型定值问题的求解,解答的一般思路如下:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.5.求定线问题常见的方法有两种:①从特殊入手,求出定直线,再证明这条线与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.1.在平面直角坐标系xOy 中,已知动点P 到 0,1F 的距离比它到直线2y 的距离小1. (1)求动点P 的轨迹C 的方程;(2)过点F 的直线与曲线C 交于A ,B 两点, 2,1Q ,记直线QA ,QB 的斜率分别为1k ,2k ,求证:1211k k为定值.2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2.(1)求抛物线的方程;(2)过点P(1,1)作两条动直线l1,l2分别交抛物线于点A,B,C,D.设以AB为直径的圆和以CD为直径的圆的公共弦所在直线为m,试判断直线m是否经过定点,并说明理由.3.已知椭圆22221(0)x y a b a b 的一个焦点到双曲线2212x y 渐近线的距离为3,且点2M 在椭圆上.(1)求椭圆的方程;(2)若四边形ABCD 的顶点在椭圆上,且对角线AC 、BD 过原点O ,直线AC 和BD 的斜率之积-22b a,证明:四边形ABCD 的面积为定值.4.已知点(1,2)P 在抛物线2:2C y px 上,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A 、B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO ,QN QO uuu r uuu r ,试判断11+ 是否为定值,若是,求11+ 值;若不是,求11+的取值范围.5.已知双曲线的对称中心在直角坐标系的坐标原点,焦点在坐标轴上,双曲线的一条渐近线的方程为4,6,过双曲线上的一点P(P在第一象限)作斜率不为l,l与直线y ,且双曲线经过点x 交于点Q且l与双曲线有且只有一个交点.1(1)求双曲线的标准方程;(2)以PQ为直径的圆是否经过一个定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.6.已知双曲线C :22221x y a b 0,0a b 的两条渐近线互相垂直,且过点D.(1)求双曲线C 的方程;(2)设P 为双曲线的左顶点,直线l 过坐标原点且斜率不为0,l 与双曲线C 交于A ,B 两点,直线m 过x 轴上一点Q (异于点P ),且与直线l 的倾斜角互补,m 与直线PA ,PB 分别交于,M N (,M N 不在坐标轴上)两点,若直线OM ,ON 的斜率之积为定值,求点Q 的坐标.7.已知椭圆2222:1x y C a b,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为2x a ,过点M 作ME 垂直于直线m 交直线m 于点E . (1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.22a b 122一点.(1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t 引两条切线,分别交椭圆C 于点,P Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k 为定值.22a b 12221:()1F x c y 与圆222:()9F x c y 相交,两圆交点在椭圆E 上.(1)求椭圆E 的方程;(2)设直线l 不经过 0,1P 点且与椭圆E 相交于,A B 两点,若直线PA 与直线PB 的斜率之和为2 ,证明:直线l 过定点.10.已知抛物线2:4C y x 的焦点为F ,斜率为k 的直线与抛物线C 交于A 、B 两点,与x 轴交于 ,0P a (1)当1k ,3a 时.求AF BF 的值;(2)当点P 、F 重合时,过点A 的圆 2220x y r r 与抛物线C 交于另外一点D .试问直线BD 是否过x轴上的定点Q ?若是,请求出点Q 坐标;若不是,请说明理由.11.已知抛物线22(0)y px p 上一点 4,t 到其焦点的距离为5. (1)求p 与t 的值;(2)过点 21M ,作斜率存在的直线l 与拋物线交于,A B 两点(异于原点O ),N 为M 在x 轴上的投影,连接AN 与BN 分别交抛物线于,P Q ,问:直线PQ 是否过定点,若存在,求出该定点,若不存在,请说明理由.12.已知抛物线 21:20C y px p 的焦点是椭圆 22222:10x y C a b a b的右焦点,且两条曲线的一个交点为 000,2p E x y x,若E 到1C 的准线的距离为53,到2C 的两焦点的距离之和为4.(1)求椭圆2C 的方程;(2)过椭圆2C 的右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C ,点B ,D ,且12l l ,M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.13.已知抛物线C : 220y px p 的焦点到准线的距离是12.(1)求抛物线方程;(2)设点 ,1P m 是该抛物线上一定点,过点P 作圆O : 2222x y r (其中01r )的两条切线分别交抛物线C 于点A ,B ,连接AB .探究:直线AB 是否过一定点,若过,求出该定点坐标;若不经过定点,请说明理由.14.已知抛物线 2:20C y px p 的焦点为F ,点M 在抛物线C 上,O 为坐标原点,OMF 是以OF 为底边的等腰三角形,且OMF 的面积为 (1)求抛物线C 的方程.(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点.若是,求出所过定点的坐标;若否,请说明理由.15.如图,已知抛物线 2:20C y px p 与圆 22:412M x y 相交于A ,B ,C ,D 四点.(1)若8OA OD ,求抛物线C 的方程;(2)试探究直线AC 是否经过定点,若是,求出定点坐标;若不是,请说明理由.16.已知抛物线 2:20C y px p 上一点01,4y到焦点的距离为54.(1)求抛物线C 的标准方程;(2)若点A ,B 为抛物线位于x 轴上方不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足1212444k k k k ,求证:直线AB 过定点.17.如图,已知抛物线2:2(0)C y px p 与圆22:(4)12M x y 相交于A ,B ,C ,D 四点. (1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.18.设双曲线22221x y a b ,其虚轴长为(1)求双曲线C 的方程;(2)过点 3,1P 的动直线与双曲线的左右两支曲线分别交于点A 、B ,在线段AB 上取点M 使得AM APMB PB,证明:点M 落在某一定直线上.19.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b 的左右焦点分别为F 1(-c ,0),F 2(c ,0),离心率为e ,且点(e ,3),b )都在双曲线C 上. (1)求双曲线C 的标准方程;(2)若A ,B 是双曲线C 上位于x 轴上方的两点,且AF 1//BF 2.证明:1211AF BF 为定值.20.已知双曲线2222:1(0,0)x y C a b a b2,1F ,2F为其左右焦点,Q 为其上任一点,且满足120QF QF,122QF QF .(1)求双曲线C 的方程;(2)已知M ,N 是双曲线C 上关于x 轴对称的两点,点P 是C 上异于M ,N 的任意一点,直线PM 、PN 分别交x 轴于点T 、S ,试问:||||OS OT 是否为定值,若不是定值,说明理由,若是定值,请求出定值(其中O 是坐标原点).21.已知双曲线 2222:10,0x y C a b a b ,四点13M , 2M ,32,3M ,43M中恰有三点在C 上. (1)求C 的方程;(2)过点 3,0的直线l 交C 于P ,Q 两点,过点P 作直线1x 的垂线,垂足为A .证明:直线AQ 过定点.22.已知动点P 与定点(1,0)F 的距离和它到定直线:4l x 的距离之比为12,记P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.23.在平面直角坐标系xOy 中,椭圆C : 22210xy a a的左右顶点为A ,B ,上顶点K 满足3AK KB .(1)求C 的标准方程:(2)过点 1,0的直线与椭圆C 交于M ,N 两点.设直线MA 和直线NB 相交于点P ,直线NA 和直线MB 相交于点Q ,直线PQ 与x 轴交于S .①求直线PQ 的方程; ②证明:SP SQ 是定值.24.已知椭圆C : 222210x y a b a b ,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,四边形1122A B A B 的面积为(1)求椭圆C 的方程;(2)过点 0,1D 且斜率存在的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.25.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB uu u r uu r ,3AF FB. (1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若 121k k k ,证明直线l 过定点,并求出定点的坐标.26.已知O 为坐标原点,椭圆2222Γ:1(0)x y a b a b 的右顶点为A ,动直线1:(1)l y x m 与相交于,B C 两点,点B 关于x 轴的对称点为B ,点B 到 的两焦点的距离之和为4.(1)求 的标准方程;(2)若直线B C 与x 轴交于点M ,,OAC AMC 的面积分别为12,S S ,问12S S 是否为定值?若是,求出该定值;若不是,请说明理由.。
定点、定直线、定值专题1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l : y = kx + m 与椭圆C 相交于A ,B 两点( A ,B 不是左右顶点),且以AB 为直径的圆过椭 圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.22【标准答案】(I)由题意设椭圆的标准方程为 x + y =1(ab0)a 2b 2 22 x 2y2a + c= 3, a - c = 1 , a = 2, c = 1, b = 3 + = 1.43y =kx +m x 2y 2得(3+4k 2)x 2 + 8mkx + 4(m 2-3) =0, += 1 43= 64m 2k 2 -16(3+4k 2)(m 2 -3)0,3+4k 2-m 20.8mk4(m 2 - 3)x 1 + x 2 = - ,x 1 x 2 = 1 2 3+4k 21 23+4k 2 y y =(kx +m )(kx +m ) = k 2x x +mk (x + x )+m 2Q 以AB 为直径的圆过椭圆的右顶点D (2,0), k AD k BD =-1, y1 y2=-1, AD BD x -2x -2(最好是用向量点乘来) y 1y 2 + x 1x 2 -2(x 1 + x 2)+4 =0,3(m 2 -4k 2) 4(m 2 -3) 16mk 3+4k 2 + 3+4k 2 +3+4k 2+4=0,2k7m 2+16mk +4k 2=0,解得m = -2k ,m = -,且满足3+4k 2-m 20.当m =-2k 时,l :y =k (x -2),直线过定点(2,0),与已知矛盾; 2k 2 2当m =-2k 时,l : y = k (x - 2) ,直线过定点(2 ,0).2综上可知,直线l 过定点,定点坐标为(2,0).2、已知椭圆C 的离心率e = 3 ,长轴的左右端点分别为A 1(-2,0),A 2(2,0)。
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,由y =x -2x 2-4y 2=4解得x =2或x =103,因此点E ,F 的横坐标x E ,x F 有x E =x F =103,即直线EF 过定点M 103,0 ,综上得直线EF 过定点M 103,0 ,由于DG ⊥EF ,即点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.【点睛】思路点睛:与圆锥曲线相交的直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.【答案】(1)x 2-y 23=1;(2)证明见解析;(3)存在λ=2,理由见解析.【分析】(1)根据离心率,以及a ,结合b 2=c 2-a 2,即可求得曲线C 方程;(2)设出直线PQ 的方程,联立双曲线方程,得到关于点P ,Q 坐标的韦达定理;再分别求得AP ,AQ 的方程,以及点M ,N 的坐标,利用数量积的坐标运算,即可证明;(3)求得直线PQ 不存在斜率时满足的λ,当斜率存在时,将所求问题,转化为直线PA ,PF 2斜率之间的关系,结合点P 的坐标满足曲线C 方程,求解即可.【详解】(1)由题可得a =1,ca =2,故可得c =2,则b 2=c 2-a 2=4-1=3,故C 的标准方程为x 2-y23=1.(2)由(1)中所求可得点A ,F 2的坐标分别为-1,0 ,(2,0),又双曲线渐近线为y =±3x ,显然直线PQ 的斜率不为零,故设其方程为x =my +2,m ≠±33,联立双曲线方程x 2-y 23=1可得:3m 2-1 y 2+12my +9=0,设点P ,Q 的坐标分别为x 1,y 1 ,(x 2,y 2),则y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,x 1+x 2=m y 1+y 2 +4=-43m 2-1,x 1x 2=m 2y 1y 2+2m y 1+y 2 +4=-3m 2-43m 2-1;又直线AP 方程为:y =y 1x 1+1(x +1),令x =12,则y =32⋅y 1x 1+1,故点M 的坐标为12,32⋅y 1x 1+1;直线AQ 方程为:y =y 2x 2+1(x +1),令x =12,则y =32⋅y 2x 2+1,故点N 的坐标为12,32⋅y 2x 2+1;则MF 2 ⋅NF 2 =32,-32⋅y 1x 1+1 ⋅32,-32⋅y 2x 2+1=94+94⋅y 1y 2x 1x 2+x 1+x 2+1=94+94⋅93m 2-1-3m 2-43m 2-1-43m 2-1+1=94+94⋅9-9=0故MF 2 ⋅NF 2为定值0.(3)当直线PQ 斜率不存在时,对曲线C :x 2-y 23=1,令x =2,解得y =±3,故点P 的坐标为(2,3),此时∠PF 2A =90°,在三角形PF 2A 中,AF 2 =3,PF 2 =3,故可得∠PAF 2=45°,则存在常数λ=2,使得∠PF 2A =2∠PAF 2成立;当直线PQ 斜率存在时,不妨设点P 的坐标为(x ,y ),x ≠2,直线PF 2的倾斜角为α,直线PA 的倾斜角为β,则∠PF 2A =π-α,∠PAF 2=β,假设存在常数λ=2,使得∠PF 2A =2∠PAF 2成立,即π-α=2β,则一定有:tan π-α =-tan α=tan2β=2tan β1-tan 2β,也即-k PF2=2k PA 1-k 2PA;又-k PF 2=-yx -2;2k PA 1-k 2PA=2yx +11-y 2x +12=2y (x +1)x +1 2-y2;又点P 的坐标满足x 2-y 23=1,则y 2=3x 2-3,故2k PA1-k 2PA=2y x +1 x +1 2-y 2=2y x +1 x +1 2-3x 2+3=2y (x +1)-2x 2+2x +4=2y (x +1)-2(x -2)(x +1)=-y x -2=-k PF 2;故假设成立,存在实数常数λ=2,使得∠PF 2A =2∠PAF 2成立;综上所述,存在常数λ=2,使得∠PF 2A =2∠PAF 2恒成立.【点睛】关键点点睛:本题考察双曲线中定值以及存在常数满足条件的问题;其中第二问证明的关键是能够快速,准确的进行计算;第三问处理的关键是要投石问路,找到特殊情况下的参数值,再验证非特殊情况下依旧成立,同时还要注意本小题中把角度关系,转化为斜率关系;属综合困难题.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.【答案】(1)x 2=12y(2)证明见详解【分析】(1)设M x ,y ,由题意可得y +14=x 2+y -18 2+18,化简整理即可;(2)设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,结合导数的几何意义分析可得x 1,x 2为方程2x 2-4tx +t -1=0的两根,结合韦达定理求直线AB 的方程,即可得结果.【详解】(1)设M x ,y ,则MF =x 2+y -18 2,d =y +14 ,因为d =MF +18,即y +14 =x 2+y -18 2+18,当y +14≥0,即y ≥-14时,则y +14=x 2+y -18 2+18,整理得x 2=12y ;当y +14<0,即y <-14时,则-y -14=x 2+y -18 2+18,整理得x 2=y +18<0,不成立;综上所述:M 点的轨迹C 的方程x 2=12y .(2)由(1)可知:曲线C :x 2=12y ,即y =2x 2,则y =4x ,设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,可知切线QA 的斜率为4x 1,所以切线QA :y -2x 21=4x 1x -x 1 ,则t -1-2x 21=4x 1t -x 1 ,整理得2x 21-4tx 1+t -1=0,同理由切线QB 可得:2x 22-4tx 2+t -1=0,可知:x 1,x 2为方程2x 2-4tx +t -1=0的两根,则x 1+x 2=2t ,x 1x 2=t -12,可得直线AB 的斜率k AB =2x 21-2x 22x 1-x 2=2x 1+x 2 =4t ,设AB 的中点为N x 0,y 0 ,则x 0=x 1+x 22=t ,y 0=2x 21+2x 222=x 1+x 2 2-2x 1x 2=4t 2-t +1,即N t ,4t 2-t +1 ,所以直线AB :y -4t 2-t +1 =4t x -t ,整理得y -1=4t x -14,所以直线AB 恒过定点P 14,1 .【点睛】方法点睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk +n ,得y =k x +m +n ,故动直线过定点-m ,n ;(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB,证明点N 在定直线上,并求该定直线的方程.【答案】(1)x 2=12y ;(2)证明见解析,y =3.【分析】(1)设直线l 1的方程为y =x +p2,再根据直线和圆相切求出p 的值得解;(2)依题意设M (m ,-3),求出切线l 2的方程和B 点坐标,求出MN =x 1-2m ,6 ,ON=x 1-m ,3 即可求解作答.【详解】(1)依题意得,物线C 1:x 2=2py 的焦点坐标为0,p 2 ,设直线l 1的方程为y =x +p2,而圆C 2:x +1 2+y 2=2的圆心C 2(-1,0),半径r =2,由直线l 1与圆C 2相切,得d =-1+p212+-12=2,又p >0,解得p =6,所以抛物线C 1的方程为x 2=12y .(2)由(1)知抛物线C 1:x 2=12y 的准线为y =-3,设M (m ,-3),由y =x 212,求导得y =x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,于是切线l 2的方程为y =16x 1x -x 1 +y 1,令x =0,得y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即l 2交y 轴于点B (0,-y 1),因此MA =(x 1-m ,y 1+3),MB =-m ,-y 1+3 ,MN =MA +MB =x 1-2m ,6 ,则ON =OM +MN=x 1-m ,3 ,设N 点坐标为(x ,y ),从而y =3,所以点N 在定直线y =3上.3已知直线l 1:x -y +1=0过椭圆C :x 24+y 2b2=1(b >0)的左焦点,且与抛物线M :y 2=2px (p >0)相切.(1)求椭圆C 及抛物线M 的标准方程;(2)直线l 2过抛物线M 的焦点且与抛物线M 交于A ,B 两点,直线OA ,OB 与椭圆的过右顶点的切线交于M ,N 两点.判断以MN 为直径的圆与椭圆C 是否恒交于定点P ,若存在,求出定点P 的坐标;若不存在,请说明理由.【答案】(1)x 24+y 23=1,y 2=4x(2)存在,-2,0【分析】(1)由直线l 1过椭圆C 的左焦点,求出c 得出椭圆方程,利用直线l 1与抛物线M 相切,联立两个方程,通过判别式为零进行求解;(2)分成直线l 2斜率存在与不存在两种情况进行讨论,斜率存在时可设直线方程y =k x -1 ,与椭圆方程联立得出韦达定理,表示M ,N 两点坐标,利用PM ⋅PN=0进行求解.【详解】(1)由y 2=2px x -y +1=0 ,得x 2+2-2p x +1=0,因为直线x -y +1=0与抛物线M 只有1个公共点,所以Δ=2-2p 2-4=0,解得p =2,故抛物线C 的方程为y 2=4x .由直线x -y +1=0过椭圆C 的左焦点得得c =1,所以,4-b 2=1,b 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)如图1,设A x 1,y 1 ,B x 2,y 2 ,当直线l 2斜率存在时,可设直线方程:y =k x -1由y 2=4x y =k x -1 得k 2x 2-2k 2+4 x +k 2=0,所以Δ=2k 2+4 2-4k 4=16k 2+16>0,x 1+x 2=2k 2+4k2,x 1x 2=1. 所以y 1y 2=k 2x 1-1 x 2-1 =k 2x 1x 2-x 1+x 2 +1 =-4,x 2y 1+x 1y 2=kx 2x 1-1 +kx 1x 2-1 =k 2x 1x 2-x 1+x 2 =-4k,直线OA 的方程为y =y 1x 1x ,同理可得,直线OB 的方程为y =y 2x 2x ,令x =2得,M 2,2y 1x 1 ,N 2,2y 2x 2,假设椭圆C 上存在点P x 0,y 0 ,恒有PM ⊥PN .则PM ⋅PN =2-x 0,2y 1x 1-y 0 ⋅2-x 0,2y 2x 2-y 0=0即2-x 0 2+2y 1x 1-y 0 2y 2x 2-y 0=0,即2-x 0 2+y 20-2x 2y 1+2x 1y 2x 1x 2y 0+4y 1y 2x 1x 2=0,即2-x 0 2+y 20+8ky 0-16=0,令y 0=0,可得x 0=6或x 0=-2.由于点6,0 不在椭圆C 上,点-2,0 在椭圆D 上,所以椭圆C 上存在点P -2,0 ,使PM ⊥PN 恒成立如图2,当直线斜率不存在时,直线过抛物线的右焦点,则直线方程为x =1,与抛物线交于A 1,2 ,B 1,-2 ,则直线OA 方程为:y =2x ,直线OB 方程为:y =-2x ,椭圆的过右顶点的切线方程为x =2,切线方程x =2与直线OA 交于M 2,4 ,与直线OB 交于N 2,-4 ,由上面斜率存在可知恒过P -2,0 ,经验证满足PM ⋅PN=0,所以当斜率不存在时候也满足以MN 为直径的圆恒过定点-2,0 .4在平面直角坐标系中,已知圆心为点Q 的动圆恒过点F (0,1),且与直线y =-1相切,设动圆的圆心Q 的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P 为直线l :y =y 0y 0<0 上一个动点,过点P 作曲线Γ的切线,切点分别为A ,B ,过点P 作AB 的垂线,垂足为H ,是否存在实数y 0,使点P 在直线l 上移动时,垂足H 恒为定点?若不存在,说明理由;若存在,求出y 0的值,并求定点H 的坐标.【答案】(1)x 2=4y(2)存在这样的y 0,当y 0=-1时,H 坐标为(0,1).【分析】(1)依题意,由几何法即可得出圆心的轨迹Γ是以F (0,1)为焦点,l :y =-1为准线的抛物线.(2)设直线AP 的方程y -y 1=k x -x 1 ,对抛物线方程求导化简也可得直线AP 的方程,由恒等思想可得y 0+y 1=x 1x 02,y 0+y 2=x 2x 02,构造直线方程为y +y 0=x 0x2,故AB 两点代入化简可得恒过点0,-y 0 ,再由PH ⊥AB 得x =-x02y -y 0-2 ,PH 恒过点0,y 0+2 ,从而可得结论.。
定点定直线问题一、基础知识:1、处理定点问题的思路:(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y = 的联系,得到有关k 与,x y 的等式 (3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立。
此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y 。
常见的变形方向如下: ① 若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号的部分为零即可② 若等式为含k 的分式, 00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式) 2、一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线)。
然后再验证该点(或该直线)对一般情况是否符合。
属于“先猜再证”。
(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件。
所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点。
尤其在含参数的直线方程中,要能够找到定点,抓住关键条件。
例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转二、典型例题:例1:椭圆()2222:10x y C a b a b +=>>的离心率为12,其左焦点到点()2,1P (1)求椭圆C 的标准方程(2)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标解:(1)1::22c e a b c a ==⇒=,设左焦点()1,0F c -1PF ∴==1c =2,a b ∴==∴椭圆方程为22143x y +=(2)由(1)可知椭圆右顶点()2,0D设()()1122,,,A x y B x y ,Q 以AB 为直径的圆过()2,0DDA DB ∴⊥即DA DB ⊥u u u r u u u r0DA DB ∴⋅=u u u r u u u r()()11222,,2,DA x y DB x y =-=-u u u r u u u rQ()()()121212*********DA DB x x y y x x x x y y ∴⋅=--+=-+++=u u u r u u u r①联立直线与椭圆方程:223412y kx m x y =+⎧⇒⎨+=⎩()()222348430k x mkx m +++-= ()2121222438,4343m mkx x x x k k -∴+=-=++ ()()()2212121212y y kx m kx m k x x mk x x m ∴=++=+++()22222222438312434343k m mk mk m k m k k k -⋅-=-+=+++,代入到① ()222222438312240434343m mk m k DA DB k k k --⋅=+⋅++=+++u u u r u u u r 22222412161612312043m mk k m k k -++++-∴=+ ()()22716407220m mk k m k m k ∴++=⇒++= 27m k ∴=-或2m k =-当27m k =-时,22:77l y kx k k x ⎛⎫=-=- ⎪⎝⎭ l ∴恒过2,07⎛⎫ ⎪⎝⎭当2m k =-时,():22l y kx k k x =-=- l ∴恒过()2,0,但()2,0为椭圆右顶点,不符题意,故舍去l ∴恒过2,07⎛⎫⎪⎝⎭例2:已知椭圆()2222:10x y C a b a b +=>>经过点2-⎭,且椭圆的离心率为12e = (1)求椭圆的方程(2)过椭圆的右焦点F 作两条互相垂直的直线,分别交椭圆于,A C 和,B D ,设线段,AC BD 的中点分别为,P Q ,求证:直线PQ 恒过一个定点解:(1)12c e a ==::2a b c ∴= 2222143x y c c ∴+=代入2-⎭可得:2233111443c c c +⋅=⇒=2,a b ∴==∴椭圆方程为22143x y +=(2)由(1)可得:()1,0F当直线AC 斜率不存在时,:1,:0AC x BD y == 所以可得:()()1,0,0,0P Q PQ ∴为x 轴当AC 斜率存在时,设():1,0AC y k x k =-≠,则()1:1BD y x k=-- 设()()1122,,,A x y C x y ,联立方程可得:()()222222143841203412y k x k x k x k x y ⎧=-⎪⇒+-+-=⎨+=⎪⎩ 2122843k x x k ∴+=+()()()1212122611243ky y k x k x k x x k k ∴+=-+-=+-=-+ 212122243,,224343x x y y kk P k k ⎛⎫++-⎛⎫∴= ⎪ ⎪++⎝⎭⎝⎭同理,联立()22113412y x kx y ⎧=--⎪⎨⎪+=⎩,可得:22222114343,,3443114343k k k Q k k k k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭ ⎪∴== ⎪ ⎪++⎝⎭⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()222222337434344414334PQk k k k k k k k k k --++∴==--++ PQ ∴的方程为:()222374434341k k y x k k k ⎛⎫-=-- ⎪++-⎝⎭,整理可得: ()()()224744044740yk x k y y k k x +--=⇒-+-= 470x y ⎧=⎪∴⎨⎪=⎩时,直线方程对k R ∀∈均成立 ∴直线PQ 恒过定点4,07⎛⎫ ⎪⎝⎭而AC 斜率不存在时,直线PQ 也过4,07⎛⎫ ⎪⎝⎭∴直线PQ 过定点4,07⎛⎫⎪⎝⎭例3:如图,已知椭圆()2222:10x y C a b a b+=>>的左右焦点为12,F F ,其上顶点为A ,已知12F AF V 是边长为2的正三角形 (1)求椭圆C 的方程(2)过点()4,0Q -任作一动直线l 交椭圆C 于,M N 两点,记MQ QN λ=u u u u r u u u r,若在线段MN上取一点R 使得MR RN λ=-u u u r u u u r ,试判断当直线l 运动时,点R是否在某一定直线上运动?若在,请求出该定直线;若不在请说明理由解:(1)由椭圆方程可得()()()12,0,,0,0,F c F c A b -12F AF Q V 为边长是2的三角形122221F F c c ∴=⇒=⇒=OA b ==2224a b c ∴=+= 22143x y ∴+= (2)设():4MN y k x =+设()()1122,,,M x y N x y , ()()11224,,4,MQ x y QN x y =---=+u u u u r u u u r由MQ QN λ=u u u u r u u u r 可得:()()11224444x x x x λλ+--=+⇒=-+设()00,R x y ,则()()01012020,,,MR x x y y RN x x y y =--=--u u u r u u u r由MR RN λ=-u u u r u u u r可得:()0120x x x x λ-=-()()()112212121201122442441814x x x x x x x x x x x x x x x λλ++⋅+++-∴===+-++++ ① 联立方程组()2234124x y y k x ⎧+=⎪⎨=+⎪⎩,消去y 整理可得:()2222343264120k xk x k +++-=22121222326412,3434k k x x x x k k --∴+==++代入到①可得:22222022264123224243434341243283434k k k k k x k k k ---⋅+⋅+++===--+++ R ∴在定直线1x =-上例4:已知椭圆C 的中心在坐标原点,左,右焦点分别为12,F F ,P 为椭圆C 上的动点,12PF F V 的面积最大值为,以原点为中心,椭圆短半轴长为半径的圆与直线3450x y -+=相切(1)求椭圆的方程(2)若直线l 过定点()1,0且与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点,直线,AM BM 分别与y 轴交于,P Q 两点,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由 解:(1)()1212max12PF F S F F b bc =⋅==V 因为圆与直线相切1O l d b b -∴==⇒=c ∴=2224a b c ∴=+= ∴椭圆方程为:2214x y +=(2)当直线l 的斜率存在时,设():1l y k x =-,由椭圆方程可得点()2,0M设()()1122,,,A x y B x y ,联立方程可得:()22441x y y k x ⎧+=⎪⎨=-⎪⎩()2222148440k xk x k +-+-=22121222844,1414k k x x x x k k-∴+==++ 由()2,0M ,()()1122,,,A x y B x y 可得:()()1212:2,:222y yAM y x BM y x x x =-=---,分别令0x =,可得: 1212220,,0,22y y P Q x x ⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭,设x 轴上的定点为()0,0N x若PQ 为直径的圆是否过()0,0N x ,则0PN QN ⋅=u u u r u u u r12001222,,,22y y PN x QN x x x ⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭u u u r u u u r Q∴问题转化为()()212124022y y x x x +=--恒成立即()212012124024y y x x x x x +=-++ ①由22121222844,1414k k x x x x k k -+==++及()1y k x =-可得:()()()2212121212111y y k x x k x x x x =--=-++⎡⎤⎣⎦22341k k -=+代入到①可得:2220222234410448241414k k x k k k k -⋅++=--+++2220212304k x x k-⇒+=-=解得:03x =± ∴圆过定点()3,0±当直线斜率不存在时,直线方程为1x =,可得PQ 为直径的圆223x y +=过点()3,0± 所以以线段PQ 为直径的圆过x 轴上定点()3,0±例5:如图,在平面直角坐标系xOy 中,离心率为22的椭圆()2222:10x y C a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点,当直线PQ 的斜率为22时,23PQ = (1)求椭圆C 的标准方程(2)试问以MN 为直径的圆是否过定点(与PQ 的斜率无关)?请证明你的结论解:(1)由22PQ k =可得:2:2PQ y x =002,2P x x ⎛⎫∴ ⎪ ⎪⎝⎭由对称性可知:132OP PQ ==0x ==)P∴由2c e a ==可得::a b c = ∴椭圆方程为222212x y b b +=代入)P,可得:222,4b a ==22:142x y C ∴+=(2)设()00,P x y 由对称性可知()00,Q x y --,由(1)可知()2,0A - 设():2AP y k x =+,联立直线与椭圆方程:()()22222222424y k x x k x x y ⎧=+⎪⇒++=⎨+=⎪⎩,整理可得: ()2222218840kx k x k +++-=2028421A k x x k -∴=+解得:2022421k x k -=+,代入()2y k x =+可得:202224422121k k y k k k ⎛⎫-=+= ⎪++⎝⎭ 222244,2121k k P k k ⎛⎫-∴ ⎪++⎝⎭ 从而222244,2121k k Q k k ⎛⎫--- ⎪++⎝⎭22222244012121822422121AQk k k k k k k k k k ⎛⎫-- ⎪+⎝⎭+∴===--⎛⎫---- ⎪++⎝⎭()1:22AQ y x k∴=-+,因为,M N 是直线,PA QA 与y 轴的交点 ()10,2,0,M k N k ⎛⎫∴- ⎪⎝⎭ ∴以MN 为直径的圆的圆心为2210,2k k ⎛⎫- ⎪⎝⎭,半径2212k r k += ∴圆方程为:22222212122k k x y k k ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭,整理可得:222222222221212121222k k k k x y y x y y k k k k ⎛⎫⎛⎫--+-+-+=⇒+-= ⎪ ⎪⎝⎭⎝⎭所以令0y =,解得x =∴以MN为直径的圆恒过()例6:已知椭圆()2222:10x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切,过点()4,0P 且不垂直x 轴的直线l 与椭圆C 相交于,A B 两点(1)求椭圆C 的方程(2)若B 点关于x 轴的对称点是E ,求证:直线AE 与x 轴相交于定点 解:(1)12c e a == 已知圆方程为:222x y b += 因为与直线相切d b b ∴==⇒=222212a a c b c a c=⎧-=⎧∴⇒⎨⎨==⎩⎩ ∴椭圆C 的方程为:22143x y += (2)设直线():4l y k x =-,()()1122,,,A x y B x y ()22,E x y ∴-联立方程可得:()221434x y y k x ⎧+=⎪⎨⎪=-⎩,消去y 可得: ()22234412x k x +-=()2222433264120k x k x k ∴+-+-=22121222326412,4343k k x x x x k k -∴+==++ 考虑直线:AE ()12121212AE y y y y k x x x x --+==--∴直线AE 的方程为:()121112y y y y x x x x +-=--令0y =可得:()()()112121y x x y y x x --=+-()122112x y x y x y y ∴+=+122112x y x y x y y +=+,而()()11224,4y k x y k x =-=-,代入可得:()()()()()1221121212124424448x k x x k x x x x x x k x k x x x -+--+==-+-+-,代入22121222326412,4343k k x x x x k k -+==++可得:2222222264123224244343431243284343k k k k k x kk k --⋅-⋅+++===--++ AE ∴与x 轴交于定点()1,0例7:在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>与直线():l x m m R =∈,四个点()()()(3,1,,3,1,---中有三个点在椭圆C 上,剩余一个点在直线l 上 (1)求椭圆C 的方程(2)若动点P 在直线l 上,过P 作直线交椭圆C 于,M N 两点,使得PM PN =,再过P 作直线'l MN ⊥,求证:直线'l 恒过定点,并求出该定点的坐标解:(1)因为四个点中有三点在椭圆上,由椭圆的对称性可知:()()3,1,3,1--必在椭圆上若()-在椭圆上,则为椭圆的左顶点。
圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。
圆锥曲线---定值问题一:方法与技巧常见的类型(1)直线恒过定点问题; (2)动圆恒过定点问题; (3)探求定值问题; (4)证明定值问题.定点、定值问题:通常有两种处理方法:第一种方法⇒是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法⇒是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。
二:典型例题例1:椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.例2:设椭圆2222:11x y E a a +=-的焦点在x 轴上. (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11F P F Q ,证明:当a 变化时,点p 在某定直线上.例3:如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.练习:已知椭圆C :x 2a 2+y 2b 2=1经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B两点,点A 、F 、B 在直线x =4上的射影依次为D 、K 、E . (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;(3)连结AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.练习:已知椭圆E 的中心在原点,焦点在x 1,离心率为e = (Ⅰ)求椭圆E 的方程;(Ⅱ)过点()1,0作直线 交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅ 为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒课后作业:1、已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y kx m=+与椭圆C相交于A,B两点(A B,不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.2.已知,椭圆C以过点A(1,32),两个焦点为(-1,0)(1,0)。
圆锥曲线中的定点定值问题前几节课已经学习过圆锥曲线的椭圆、双曲线、抛物线的相关知识点与题型,那么这节课我们来学习圆锥曲线的综合应用之定点定值题型。
圆锥曲线是解析几何的重要内容之一,也是高考重点考查的内容和热点,知识综合性较强,对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.定值问题与定点问题是这类题目的典型代表,为了提高解题效率,特别是高考备考效率,本次课讲解一些典型的定点和定值问题。
1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.[探究] 直线与圆锥曲线只有一个公共点时,是否是直线与圆锥曲线相切?提示:直线与圆锥曲线只有一个公共点时,未必一定相切,还有其他情况,如抛物线与平行或重合于其对称轴的直线,双曲线与平行于其渐近线的直线,它们都只有一个公共点,但不是相切,而是相交.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+1k2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. 3.弦中点问题对于弦中点问题常用“根与系数的关系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件是Δ≥0.(1)在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0.(2)在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0.(3)在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =py 0.斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.解析 F 1(1,0),直线AB 的方程为y =2(x -1),即2x -y -2=0,由⎩⎪⎨⎪⎧2x -y -2=0x 25+y 24=1得3x 2-5x =0,设A (x 1,y 1)B (x 2,y 2),则x 1+x 2=53,x 1x 2=0,∴|AB |=(1+k 2AB )[(x 1+x 2)2-4x 1x 2]=(1+2)2⎣⎡⎭⎫532-4×0=553.答案 553涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解直线l 过定点P (0,1)且与抛物线y 2=2x 只有一个公共点,则直线l 的方程为________.解析 当直线的斜率不存在即直线方程为x =0时.符合题意,当直线的斜率存在设直线l 方程为y =kx +1,代入y 2=2x 得k 2x 2+2(k -1)x +1=0,当k =0时,y =1符合题意;当k ≠0时,由Δ=0得k =12,直线方程为y =12x +1, 即x -2y +2=0.答案 x =0或y =1或x -2y +2=0解决直线与圆锥曲线相交,相切,相离等问题时,一定要注意直线垂直于x 轴的情形,此时直线的斜率不存在;以免漏解学法总结:证明定点和定值问题的方法重难点解析:重难点解析:定点和定值问题的证明方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.圆锥曲线中的定值、定点问题要善于从运动中寻找不变的要素,可以先通过特例、极限位置等探求定值、定点,然后利用推理证明的方法证明之.备注:学法总结部分是本次课知识点的学习方法和记忆方式等(总结本次课的复习策略)题型一、定点问题例1、【2017全国I 卷(理)】已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.解:(1)根据椭圆对称性,必过、又横坐标为1,椭圆必不过,所以过三点 将代入椭圆方程得,解得, ∴椭圆的方程为:.(2)当斜率不存在时,设 得,此时过椭圆右顶点,不存在两个交点,故不满足.2222=1x y a b+32323P 4P 4P 1P 234P P P ,,()2330112P P ⎛⎫- ⎪⎝⎭,,,222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩24a =21b =C 2214x y +=①()():A A l x m A m y B m y =-,,,,221121A A P A P B y y k k m m m ----+=+==-2m =l满足.的轨迹方程;=-3上,且.证明:过点在椭圆上.∴,即,,,∴. 设直线: 2NP NM =1OP PQ ⋅=0),(0NP =,102NM NP ⎛== ⎝,212x ⎛+=222x y +=(0)Q y ≠(P OP PQ x ⋅=()21OP OQ OP OP OQ OP ⋅-=⋅-=21OP OQ OP ⋅=+=3Q y =OQ 3Q y y x =⋅-3Qy =故直线方程为, 令,得,,∴,∵,∴,若,则,,,直线方程为,直线方程为,直线过点,为椭圆的左焦点.求解直线和曲线过定点问题的基本思路是:把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点,或者可以通过特例探求,再用一般化方法证明.题型二、定值问题例1、(2016·全国Ⅰ,20)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.(1)证明 因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0).(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2l 3()P P Qy x x y y =-+0y =3()P Q P y y x x -=-13P Q P y y x x -⋅=-13P Q P x y y x =-⋅+33P Q P y y x =+1(33)13P P x x x =-++=-0Q y =33P x -=1P x =-1P y =±OQ 0y =l 1x =-l (10)-,C例3、 (2014·江西)如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2.证明:|MN 2|2-|MN 1|2为定值,并求此定值.证明:(1)依题意可设AB 方程为y =kx +2,代入x 2=4y ,得x 2=4(kx +2),即x 2-4kx -8=0. 设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8,直线AO 的方程为y =y 1x 1x ,BD 的方程为x =x 2,解得交点D 的坐标为⎩⎪⎨⎪⎧x =x 2,y =y 1x 2x 1.注意到x 1x 2=-8及x 21=4y 1,则有y =y 1x 1x 2x 21=-8y 14y 1=-2.因此D 点在定直线y =-2(x ≠0)上. (2)依题设,切线l 的斜率存在且不等于0,设切线l 的方程为y =ax +b (a ≠0),代入x 2=4y 得x 2=4(ax +b ),即x 2-4ax -4b =0,由Δ=0得16a 2+16b =0,化简整理得b =-a 2.故切线l 的方程可写为y =ax -a 2.分别令y =2,y =-2得N 1,N 2的坐标为N 1⎝⎛⎭⎫2a +a ,2,N 2⎝⎛⎭⎫-2a +a ,-2, 则|MN 2|2-|MN 1|2=⎝⎛⎭⎫-2a +a 2+42-⎝⎛⎭⎫2a +a 2=8,即|MN 2|2-|MN 1|2为定值8.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.与定点定值结合的探索性问题例1、(2015·四川,20)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为2 2. (1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得|QA ||QB |=|P A ||PB |恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)由已知,点(2,1)在椭圆E 上,因此⎩⎨⎧2a 2+1b 2=1,a 2-b 2=c 2,c a =22,解得a =2,b =2,所以椭圆E 方程为x 24+y 22=1.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点, 如果存在定点Q 满足条件,则有|QC ||QD |=|PC ||PD |=1,即|QC |=|QD |, 所以Q 点在y 轴上,可设Q 点的坐标为(0,y 0),当直线l 与x 轴垂直时,设直线l 与椭圆相交于M ,N 两点,则M ,N 的坐标分别为(0,2),(0,-2), 由|QM ||QN |=|PM ||PN |,有|y 0-2||y 0+2|=2-12+1,解得y 0=1,或y 0=2, 所以,若存在不同于点P 的定点Q 满足条件,则Q 点坐标只可能为(0,2), 下面证明:对任意直线l ,均有|QA ||QB |=|P A ||PB |,当直线l 的斜率不存在时,由上可知,结论成立,当直线l 的斜率存在时,可设直线l 的方程为y =kx +1,A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1,因此1x 1+1x 2=x 1+x 2x 1x 2=2k ,易知,点B 关于y 轴对称的点B ′的坐标为(-x 2,y 2),又k QA =y 1-2x 1=kx 1-1x 1=k -1x 1,k QB ′=y 2-2-x 2=kx 2-1-x 2=-k +1x 2=k -1x 1,所以k QA =k QB ′,即Q ,A ,B ′三点共线,所以|QA ||QB |=|QA ||QB ′|=|x 1||x 2|=|P A ||PB |,故存在与P 不同的定点Q (0,2),使得|QA ||QB |=|P A ||PB |恒成立.例2、(2012·福建高考)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.解:(1)因为|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8,⇨(1分)又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a ,⇨(2分)所以4a =8,a =2. 又因为e =12,即c a =12,所以c =1,⇨(3分)所以b =a 2-c 2= 3.故椭圆E 的方程是x 24+y 23=1.⇨(4分)(2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(4k 2+3)x 2+8kmx +4m 2-12=0.⇨(5分)因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且Δ=0,⇨(6分)易忽视定义的应用.即64k 2m 2-4(4k 2+3)(4m 2-12)=0, 化简得4k 2-m 2+3=0. (*)⇨(7分)此时x 0=-4km 4k 2+3=-4k m ,y 0=kx 0+m =3m ,所以P ⎝⎛⎭⎫-4k m ,3m .⇨(8分) 由⎩⎪⎨⎪⎧x =4,y =kx +m ,得Q (4,4k +m ).⇨(9分) 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.⇨(10分) 设M (x 1,0),则MP ·MQ =0对满足(*)式的m ,k 恒成立. 因为MP =⎝⎛⎭⎫-4k m-x 1,3m , MQ =(4-x 1,4k +m ),由MP ·MQ =0,得-16k m +4kx 1m -4x 1+x 21+12km +3=0, 整理,得(4x 1-4)k m +x 21-4x 1+3=0.(**)⇨(11分)由于(**)式对满足(*)式的m ,k 恒成立,所以⎩⎪⎨⎪⎧4x 1-4=0,x 21-4x 1+3=0,解得x 1=1.⇨(12分)故存在定点M (1,0),使得以PQ 为直径的圆恒过点M .⇨(13分)解决圆锥曲线中与定点定值结合的探索性问题的一般步骤:课后作业忽视圆的对称性,判断不出M 必在x 轴上.对于方程(4x 1-4)·km +x 12-4x 1+3=0不会利用对m ,k 恒成立,求解x 1.第一步 提假设⇒第二步 作推理⇒第三步 来证明 ⇒第四步 下结论假设结论成立以假设为条件,进行推理求解明确规范结论,若能推出合理结果,经验证成立即可肯定正确.若推出矛盾,即否定假设回顾反思解题过程O是坐标原点,FA与x轴正OA|为(C.136p D.1336p 解析:选B 如图,过A 作AD ⊥x 轴于D ,令|FD |=m ,则|F A |=2m ,|AD |=3m ,由抛物线定义知|F A |=|AB |,即p +m =2m ,∴m =p . ∴|OA |=⎝⎛⎭⎫p 2+p 2+(3p )2=212p .5、(2015·重庆,10)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D ,若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-2,0)∪(0,2)D.(-∞,-2)∪(2,+∞)5.A [由题意A (a ,0),B ⎝⎛⎭⎫c ,b 2a ,C ⎝⎛⎭⎫c ,-b2a ,由双曲线的对称性知D 在x 轴上,设D (x ,0),由BD ⊥AC 得b 2a -0c -x ·b 2a a -c =-1,解得c -x =b 4a 2(c -a ),所以c -x =b 4a 2(c -a )<a +a 2+b 2=a +c ,所以b 4a 2<c 2-a 2=b 2⇒b 2a 2<1⇒0<ba<1,因此渐近线的斜率取值范围是(-1,0)∪(0,1),选A.]6、已知椭圆x 2a 2+y 2b 2=1(a >0,b >0)的左焦点F 为圆x 2+y 2+2x =0的圆心,且椭圆上的点到点F 的距离的最小值为2-1.(1)求椭圆方程;(2)已知经过点F 的动直线l 与椭圆交于不同的两点A ,B ,点M ⎝⎛⎭⎫-54,0,证明:MA →·MB →为定值. 解:(1)圆的标准方程为(x +1)2+y 2=1,则圆心为(-1,0),半径r =1,∴椭圆的半焦距c =1. 又椭圆上的点到点F 的距离的最小值为2-1,∴a -c =2-1,即a =2,则b 2=a 2-c 2=1.故所求椭圆的方程为x 22+y 2=1.(2)证明:∴当直线l 与x 轴垂直时,l 的方程为x =-1.可求得A ⎝⎛⎭⎫-1,22,B ⎝⎛⎭⎫-1,-22.此时MA →·MB →=⎝⎛⎭⎫14,22·⎝⎛⎭⎫14,-22=-716.∴当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.∴MA →·MB →=⎝⎛⎭⎫x 1+54,y 1·⎝⎛⎭⎫x 2+54,y 2=⎝⎛⎭⎫x 1+54⎝⎛⎭⎫x 2+54+y 1y 2=x 1x 2+54(x 1+x 2)+⎝⎛⎭⎫542+k (x 1+1)·k (x 2+1)=(1+k 2)x 1x 2+⎝⎛⎭⎫k 2+54(x 1+x 2)+k 2+2516=(1+k 2)·2k 2-21+2k 2+⎝⎛⎭⎫k 2+54⎝⎛⎭⎫-4k 21+2k 2+k 2+2516=-4k 2-21+2k 2+2516=-2+2516=-716.综上得MA →·MB →为定值,且定值为-716.7、椭圆C :22221x y a b +=(a >b >0)的离心率为35,P (m ,0)为C 的长轴上的一个动点,过P 点斜率为45的直线l 交C 于A 、B 两点.当m =0时,412PA PB ⋅=- (1)求C 的方程;(2)证明:22||||PA PB +为定值.8、(2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∴PBQ 的角平分线,证明直线l 过定点.解:(1)如图,设动圆圆心O 1(x ,y ),由题意,||O 1A =||O 1M ,当O 1不在y 轴上时,过O 1作O 1H ∴MN 交MN 于点H ,则H 是MN 的中点,||MH =12||MN =4,∴||O 1M =x 2+42.又||O 1A =(x -4)2+y 2,∴(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0);当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:如图,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2kb -8)x +b 2=0,其中Δ=(2kb -8)2-4k 2b 2=64-32kb >0,得kb <2.由根与系数的关系知x 1+x 2=8-2kbk 2,∴x 1x 2=b 2k2,∴∴x 轴是∴PBQ 的角平分线,∴-y 1x 1+1=y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0,2kx 1x 2+(b +k )(x 1+x 2)+2b =0,∴ 将∴∴代入∴得2kb 2+(k +b )(8-2bk )+2k 2b =0, 化简得k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),且过定点(1,0).9、如图所示,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q ,求证:以PQ 为直径的圆恒过y 轴上某定点.解:(1)依题意,得|OB |=83,∴BOy =30°.设B (x ,y ),则x =|OB |sin30°=43,y =|OB |cos30°=12. ∴点B (43,12)在x 2=2py (p >0)上,∴(43)2=2p ×12,解得p =2.∴抛物线E 的方程为x 2=4y .(2)证法一:由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x-14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1,∴Q ⎝⎛⎭⎫x 20-42x 0,-1. 设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的点(x 0,y 0)恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝⎛⎭⎫x 20-42x 0,-1-y 1,。
高考数学复习:圆锥曲线的定点、定值、定直线【热点聚焦】纵观近几年的高考试题,圆锥曲线的定点、定值、定直线问题是热点之一.从命题的类型看,主要是大题.一般说来,考查直线与椭圆、双曲线、抛物线的位置关系问题,综合性较强,涉及方程组联立,根的判别式、根与系数的关系、弦长、面积、参数、几何量为定值,或定点在某直线上、定直线过某点等.难度往往大些.【重点知识回眸】(一)定值问题1.定义:定值问题是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.3.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.4.定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)定点问题1.求解圆锥曲线中的定点问题的两种思路:(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组()0g()0f x y x y =⎧⎨=⎩,,;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.2.求解圆锥曲线中的定点问题的方法(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y .常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可②若等式为含k 的分式,00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)3.一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转.(三)定直线问题探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T 的坐标(包含参数),再消去参数,即得动点T 在定直线上;方法二是相关点法,即先设出动点T 的坐标为(x,y),根据题设条件得到已知曲线上的动点R 的坐标,再将动点R 的坐标代入已知的曲线方程,即得动点T 在定直线上.【典型考题解析】热点一定值问题【典例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.【典例2】如图,已知抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||MN MN -为定值,并求此定值.【典例3】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值.【典例4】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH = .证明:直线HN 过定点.【典例5】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【典例6】已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).【典例7】设椭圆的焦点在x 轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.【典例8】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅= ,证明:直线PQ 过定点.【典例9】设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右两个焦点,O 为坐标原点,若点P 在双曲线C 的右支上,且1122,OP OF PF F == 的面积为3.(1)求双曲线C 的渐近线方程;(2)若双曲线C 的两顶点分别为()()12,0,,0A a A a -,过点2F 的直线l 与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.1.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2.在平面直角坐标系中,动点(),M x y 与定点()5,0F 的距离和M 到定直线16:5l x =的距离的比是常数54,设动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设()2,0P ,垂直于x 轴的直线与曲线C 相交于,A B 两点,直线AP 和曲线C 交于另一点D ,求证:直线BD 过定点.3.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,右焦点F.(1)求双曲线C 的方程;(2)若12,A A 分别是C 的左、右顶点,过F 的直线与C 交于,M N 两点(不同于12,A A ).记直线12,A M A N 的斜率分别为12,k k ,请问12k k 是否为定值?若是定值,求出该定值;若不是,请说明理由.4.已知椭圆C :()222210x y a b a b+=>>的左焦点为()11,0F -,上、下顶点分别为A ,B ,190AF B ∠=︒.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM OP OQ =+uuu r uu u r uuu r ,证明:四边形OPMQ 的面积为定值.5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.6.已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.7.在直角坐标系xOy 中,已知定点(0,1)F ,定直线:3l y =-,动点M 到直线l 的距离比动点M 到点F 的距离大2.记动点M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设0(2,)P y 在C 上,不过点P 的动直线1l 与C 交于A ,B 两点,若90APB ∠=︒,证明:直线1l 恒过定点.8.椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,M 为直线3x =-上任意一点,过F 作MF 的垂线交椭圆C 于点P ,Q .证明:OM 经过线段PQ 的中点N .(其中O 为坐标原点)9.已知椭圆E :()222210x y a b a b +=>>的离心率为2,短轴长为2.(1)求E 的方程;(2)过点()4,0M -且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MB NBMC NC =,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为1k ,2k ,求证:12k k 为定值.10.已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标11.已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,圆O :222x y a +=,过F 且垂直于x 轴的直线被椭圆C 和圆O.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线1l ,2l ,记1l ,2l 的斜率分别为1k ,2k ,直线OP 的斜率为3k ,证明:()123k k k +为定值.12.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.圆锥曲线的定点、定值、定直线答案【典例1】解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2),所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x .由题意可知直线l 的斜率存在且不为0,设直线l 的方程为y =kx +1(k ≠0).由241y x y kx ⎧=⎨=+⎩得()222410k x k x +-+=.依题意()2224410k k ∆=--⨯⨯>,解得k<0或0<k<1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =.直线PA 的方程为()112211y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--.同理得点N 的纵坐标为22121N kx y x -+=+-.由=QM QO λ ,=QN QO μ得=1M y λ-,1N y μ=-.所以()()()2212121212122224211111111=21111111M N k x x x x x x k k y y k x k x k x x k k λμ-+-+--+=+=+=⋅=⋅------.所以11λμ+为定值.【典例2】(1)依题意可设AB 的方程为2y kx =+,代人24x y =,得()242x kx =+,即2480x kx --=,设()()1122,,,A x y B x y ,则有128x x =-,直线AO 的方程为11,y y x BD x =的方程为2x x =,解得交点D 的坐标为1221,y x x x ⎛⎫⎪⎝⎭,注意到128x x =-及2114x y =,则有1121211824y x x y y x y -===-,因此D 点在定直线2y =-上()0x ≠.(2)依题意,切线l 的斜率存在且不等于0.设切线l 的方程为()0y ax b a =+≠,代人24x y =得,即2440x ax b --=.由0∆=得()24160a b +=,化简整理得2b a =-.故切线l 的方程可写为2y ax a =-.分别令2,2y y ==-,得12,N N 的坐标为1222,2,,2N a N a a a ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭,则22222212248MN MN a a a a ⎛⎫⎛⎫-=-+-+= ⎪ ⎪⎝⎭⎝⎭,即2221MN MN -为定值8.【典例3】(1)由题意得:(,0)2pF ,因为点B 的横坐标为4,且B 在x 轴的上方,所以B ,因为AB 的斜率为43,4342=-,整理得:80p +=,即0=,得2p =,抛物线C 的方程为:24y x =.(2)由(1)得:(4,4)B ,(1,0)F ,淮线方程1x =-,直线l 的方程:4(1)3y x =-,由24(1)34y x y x⎧=-⎪⎨⎪=⎩解得14x =或4x =,于是得1(,1)4A -.设点2(,)4n P n ,又题意1n ≠±且4n ≠±,所以直线PA :41114y x n ⎛⎫+=- ⎪-⎝⎭,令1x =-,得41n y n +=--,即41n HE n +=--,同理可得:444n HG n -=+,444414n n HG HE n n +-⋅=-⋅=-+.热点二定点问题【典例4】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T ,由MT TH =得到(5,H -+.求得HN 方程:(2)23y x =+-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【典例5】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)[方法一]:设而求点法证明:设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022*******22000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.[方法二]【最优解】:数形结合设(6,)P t ,则直线PA 的方程为(3)9ty x =+,即930-+=tx y t .同理,可求直线PB 的方程为330--=tx y t .则经过直线PA 和直线PB 的方程可写为(93)(33)0-+--=tx y t tx y t .可化为()22292712180-+-+=txy txy ty .④易知A ,B ,C ,D 四个点满足上述方程,同时A ,B ,C ,D 又在椭圆上,则有2299x y -=-,代入④式可得()2227912180--+=t y txy ty .故()227912180⎡⎤--+=⎣⎦y t y tx t ,可得0y =或()227912180--+=t y tx t .其中0y =表示直线AB ,则()227912180--+=t y tx t 表示直线CD .令0y =,得32x =,即直线CD 恒过点3,02⎛⎫ ⎪⎝⎭.【整体点评】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.第二问的方法一最直接,但对运算能力要求严格;方法二曲线系的应用更多的体现了几何与代数结合的思想,二次曲线系的应用使得计算更为简单.【典例6】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =.(Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=.故:12124,4x x k x x +=-=-.设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-,直线OM 的方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭,易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+- ⎪⎝⎭,圆的半径为:1222x x -,且:()1212122222x x k x x x x ++==,12222x x -==,则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).热点三定直线问题【典例7】(1)由题意21c =,得12c =,而221(1)4a a --=,所以2253,88a b ==所以椭圆的标准方程为2288153x y +=(2)设0000(,)(0,0)P x y x y >>,12(,0),(,0)F c F c -直线2PF 的直线方程为00y x c y x c -=-,当0x =时,00cy y x c-=⋅-,故Q 点坐标00(0,)cy x c-⋅-,由题意110F P FQ ⋅=得0000(,)(,)0cx c y c y x c-+⋅=-即2000()0cy x c c x c+-=-解得又P 点在曲线上,22002211x y a a +=-,解得2200,1x a y a ==-则P 点在定直线1x y +=.【典例8】(1)由题设1c =,又12||2F F c =,112||||AF A F a ==,若内切圆半径为r ,则外接圆半径为2r ,所以112()222r a c c b ⨯+=⨯⨯,即()r a c bc +=,222(2)4c r b r +-=,而222a b c =+,即24a rb =,综上,22()4a a c b c +=,即222(1)444a a b a +==-,可得2a =,所以24a =,23b =,则22:143x y C +=.(2)当直线斜率都存在时,令DE 为1x ky =-,联立22:143x y C +=,整理得:22(34)690k y ky +--=,且2144(1)0k ∆=+>,所以2634D E k y y k +=+,则28()234D E D E x x k y y k +=+-=-+,故2243,33)44(kk k P -++,由0DE MN ⋅= ,即DE MN ⊥,故MN 为1y x k =--,联立22:143x y C +=,所以2236(4)90y y k k ++-=,有2634M N k y y k +=-+,则228234M N M N y y k x x k k ++=--=-+,故22243,(34)34k kQ k k +--+,所以274(1)PQ k k k =-,则PQ 为222374()344(1)34k k y x k k k -=++-+,整理得2(74)4(1)k x k y +=-,所以PQ 过定点4(,0)7-;当一条直线斜率不存在时,P Q 对应1,O F ,故PQ 即为x 轴,也过定点4(,0)7-;综上,直线PQ 过定点.【典例9】(1)由12OP OF ==得2c =,且12PF PF ⊥所以12122,1.32PF PF a PF PF ⎧-=⎪⎨=⎪⎩()22221212124162PF PF c PF PF PF PF +===-+即241216a +=解得1,a =又2224,a b c b +===故双曲线的渐近线方程为by x a=±=.(2)由(1)可知双曲线的方程为2213y x -=.(i )当直线l 的斜率不存在时,()()2,3,2,3M N -,直线1A M 的方程为1y x =+,直线2A N 的方程为33y x =-+,联立直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫⎪⎝⎭,(ii )当直线l 的斜率存在时,易得直线l 不和渐近线平行,且斜率不为0,设直线l 的方程为()(()()112220,,,,,y k x k k M x y N x y =-≠≠,联立()22213y k x y x ⎧=-⎪⎨-=⎪⎩得()222234430,k x k x k -+--=221212224430,,33k k x x x x k k +∴>+==-- ∴直线1A M 的方程为()1111y y x x =++,直线2A N 的方程为()2211yy x x =--,联立直线1A M 与直线2A N 的方程可得:()()21121111y x x x y x ++=--,两边平方得()()2222122121111y x x x y x ++⎛⎫= ⎪-⎝⎭-,又()()1122,,,M x y N x y 满足2213yx -=,()()()()()()()()()()()()222221212112122222121212121231111111111311x x y x x x x x x x x x x x x x y x xx-+++++++∴===---++---.22222222222222434143433394344343133k k k k k k k k k k k k k k ++++++---===++-+--+--,2119,12x x x +⎛⎫∴=∴= ⎪-⎝⎭,或2x =,(舍去).综上,Q 在定直线上,且定直线方程为12x =.解答题1.(Ⅰ)因为椭圆的右焦点为(1,0),所以1225;因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=.(Ⅱ)设1122(,),(,)P x y Q x y 联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k -=+++=+.直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-.因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0=t ,所以直线方程为y kx =,所以直线l 恒过定点(0,0).2.(154=,即222162516(5)5x y x ⎛⎫-+=- ⎪⎝⎭,整理得221169x y -=;(2)解:设()11,A x y ,()11,B x y -,()22,D x y ,显然直线AP 斜率不为0,设直线AP 方程为2x my =+,联立2211692x y x my ⎧-=⎪⎨⎪=+⎩,消去x 并整理得()22916361080m y my -+-=,由题设29160m -≠且()22Δ(36)41089160m m =+⨯->,化简得243m >且2169m ≠,由韦达定理可得12236916m y y m -+=-,122108916y y m -=-,直线BD 的方程是()211121y y y y x x x x ++=--,令0y =得()()()21112212112112121222x x y y my y my x y x y x xy y y y y y -++++=+==+++()1212121212221082222836my y y y y y m m y y y y m++==⨯+=⨯+=++,所以直线BD 过定点()8,0.3.(1)设C 的半焦距为c ,由题意可知32c e a ==,又222+=a b c ,双曲线C 的一条渐近线方程为b y x a=bc a b =,故2225b c a =-=,所以229,4c a ==,所以双曲线C 的方程为22145x y -=.(2)由(1)可知()()()123,0,2,0,2,0F A A -.设直线MN 的方程为3x my =+,点()11,M x y ,点()22,N x y ,则11223,3x my x my =+=+.由221,453,x y x my ⎧-=⎪⎨⎪=+⎩得()225430250,m y my -++=,所以1212223025,5454m y y y y m m -+==--.121212,22y yk k x x ==+-,所以()()()()121211112122121212222122552y x y my y k x my y y y k x y my y my y y x -+++====+++-.又1212222530,5454my y y y m m -==---,所以22212222530545425554m my k m m m k y m -+---=+-22225154.255554my m m y m ---==-+-综上,12k k 为定值,且1215k k =-.4.(1)解:依题意1c =,又190AF B ∠=︒,所以1b c ==,所以a ,所以椭圆方程为2212x y +=.(2)证明:设(),M x y ,()11,P x y ,()22,Q x y ,因为OM OP OQ =+uuu r uu u r uuu r,所以四边形OPMQ 为平行四边形,且1212x x x y y y =+⎧⎨=+⎩,所以()()22121212x x y y +++=,即2212112122221222x x y y x x y y ⎛⎫⎛⎫+++ ⎪⎭+ ⎝⎝+⎭=⎪,又221112x y +=,222212x y +=,所以121212x x y y +=-,若直线PQ 的斜率不存在,M 与左顶点或右顶点重合,则P Q x x =P Q y y ==所以12222OPMQ P P S x y =⨯⨯,若直线PQ 的斜率存在,设直线PQ 的方程为y kx t =+,代入椭圆方程整理得()222124220k xktx t +++-=,所以()228210k t∆=+->,122412kt x x k -+=+,21222212t x x k -=+,所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t222222241212t kt k kt t k k --⎛⎫=⋅+⋅+ ⎪++⎝⎭所以()22222224212211212t kt k kt t k k --⎛⎫+⋅+⋅+=- ⎪++⎝⎭,整理得22412t k =+,又12PQ x =-=又原点O 到PQ的距离d所以12POQS PQ d==,将22412t k=+代入得4POQS==,所以2POOP Q QMSS==综上可得,四边形OPMQ的面积为定值2.5.(1)解:设圆心(),C x y,圆的半径为R,则()()22222220R x x y=+=-+-,整理得24y x=.所以动圆圆心的轨迹方程为24y x=.(2)证明:抛物线的方程为24y x=,设2,4yD y⎛⎫⎪⎝⎭,121,4yE y⎛⎫⎪⎝⎭,222,4yF y⎛⎫⎪⎝⎭,则直线EF的方程为()1211221244y yy y x xy y--=--,得2111211121212124444x y y y xx xy yy y y y y y y y+-=-+=+++++,又2114y x=,所以直线EF的方程为1212124y yxyy y y y=+++.同理可得直线DE的方程为1010104y yxyy y y y=+++,直线DF的方程为022024y yxyy y y y=+++因为直线DE过点()3,2B--,所以()1101222y y y-=+;因为直线DF过点()2,1C,所以()22081y y y-=-.消去0y,得()121210433y y y y=++.代入EF的方程,得12411033y xy y⎛⎫=++⎪+⎝⎭,所以直线EF恒过一个定点110,33⎛⎫- ⎪⎝⎭.6.(1)由2y=-,可得()1F,∴c=,∴2a=,22b=,∴椭圆C 的方程为22142x y +=.(2)设()()1122,,,A x y B x y ,由22142y kx m x y =+⎧⎪⎨+=⎪⎩,可得()222214240+++-=k x mkx m ,∴()()()2224421240mk k m ∆=-+->,可得2242m k <+,2121222424,2121mk m x x x x k k -+=-=++,由直线1F A 与1F B 关于x 轴对称,∴110F A F B k k +=0=,∴((()(()(122112210y x y x kx m x kx m x ++=+++++,即()12122)0kx x m x x ++++=,∴2222442)202121m mk k m k k -⎛⎫⨯++-+= ++⎝⎭,可得m =,所以直线l方程为(y k x =+,恒过定点()-.7.(1)因为动点M 到直线l 的距离比到F 的距离大2,故M 到F 的距离与M 到直线:1m y =-的距离相等,所以M 的轨迹C 是以F 为焦点m 为准线的抛物线,因此2:4C x y =,C 是顶点为原点开口向上的抛物线.(2)因为P 在C 上故()2,1P ,设221212:,,,,44x x AB y kx b A x B x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,联立方程24y kx bx y=+⎧⎨=⎩,可得2440x kx b --=,()()21212161601,4,42k b x x k x x b =+>+==- ,2212121144122PA PBx x k k x x --⋅=⋅=---,将(2)代入化简得:25b k =+或21b k =-+,以上均可满足(1)式,所以直线方程为:()25y k x =++或()21y k x =-+,直线分别过定点()2,5-或()2,1,又()2,1P ,所以直线1l 恒过定点()2,5-.8.(1)解:由题意可得2c =,短轴的两个端点与长轴的一个端点构成正三角形,可得2a b,即有a =,又2224c a b =-=,解得a =,b ,所以椭圆方程为22162x y +=;(2)证明:设(3,)M m -,11(,)P x y ,22(,)Q x y ,PQ 的中点为00(,)N x y ,MF k m =-,由(2,0)F -,可设直线PQ 的方程为2x my =-,代入椭圆方程可得22(3)420m y my +--=,即有12243m y y m +=+,12223y y m =-+,则()212121222412224433m x x my my m y y m m -+=-+-=+-=-=++,于是2262,33m N m m ⎛⎫-⎪++⎝⎭,则直线ON 的斜率3ON mk =-,又3OM mk =-,可得OM ON k k =,则O ,N ,M 三点共线,即有OM 经过线段PQ 的中点.9.(1)由椭圆E :()222210x y a b a b +=>>2,可知22c b a =,则22231,44b a a -=∴=,故E 的方程为2214x y +=;(2)证明:由题意可知直线l 的斜率一定存在,故设直线l 的方程为(4)y k x =+,设11223300(,),(,),(,),(,)B x y C x y N x y P x y ,联立2214(4)x y y k x ⎧+=⎪⎨⎪=+⎩,可得2222(41)326440k x k x k +++-=,22116(112)0,012k k ∆=->∴<<,则2212122232644,4141k k x x x x k k --+==++,所以220002222164164,,(,)414114)4(41k k k kx y x P k k k k k --==∴++++=+,又MB NBMCNC=,所以31122344x x x x x x -+=+-,解得2222121233212264432424()41411,3328841k k x x x x k k x y k k x x k --⨯+⨯++++===-=-++++,从而(1,3)N k -,故03120313(3)44y y k k k x x k ⋅=⋅=-⨯-=,即12k k 为定值.10.(1)由线段RS22b a =又c a =22212a b a -=,解得222,1,a b ⎧=⎨=⎩所以C 的标准方程为2212x y +=.(2)由PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭,可知PF 平分APB ∠,∴0PA PB k k +=.设直线AB 的方程为x my t =+,()11,A my t y +,()22,B my t y +,由2222x my t x y =+⎧⎨+=⎩得()2222220m y mty t +++-=,()22820m t ∆=-+>,即222m t >-,∴12222mt y y m -+=+,212222t y y m -=+,∴1212022PA PB y y k k my t my t +=+=+-+-,∴()()1212220my y t y y +-+=,∴()()222220m t t mt ---⋅=,整理得()410m t -=,∴当1t =时,上式恒为0,即直线l 恒过定点()1,0Q .11.(1)设椭圆C 的半焦距为()0c c >,过F 且垂直于x 轴的直线被椭圆C 所截得的弦长分223b a =;过F 且垂直于x 轴的直线被圆O所截得的弦长分别为=,又222a cb -=,解得a b ⎧⎪⎨⎪⎩C 的方程为22132x y +=.(2)设()()0000,0≠P x y x y ,则22003x y +=.①设过点P 与椭圆C 相切的直线方程为()00y y k x x -=-,联立()2200236x y y y k x x ⎧+=⎪⎨-=-⎪⎩得()()()2220000326320k x k y kx x y kx ⎡⎤++-+--=⎣⎦,则()()()22200006432320k y kx k y kx ⎡⎤∆=--⨯+⨯--=⎡⎤⎣⎦⎣⎦,整理得()22200003220x k x y k y --+-=.②由题意知1k ,2k 为方程②的两根,由根与系数的关系及①可得0000012220002223x y x y x k k x y y +===---.又因为030OP y k k x ==,所以()001230022x y k k k y x +=-⋅=-,所以()123k k k +为定值2-.12.(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()222124260k x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m kmk km k m k k-⎛⎫++---+-+= ⎪++⎝⎭,整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由·0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.[方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny +=.将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--.代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法三]:建立曲线系A 点处的切线方程为21163x y⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k ×=-.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数).用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭.对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -.因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+-- 2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =.又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP ==所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法;方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny +=,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.。
第三章解析几何专题13 圆锥曲线中的定点、定值、定直线问题【压轴综述】纵观近几年的高考试题,高考对圆锥曲线的考查,一般设置一大一小两道题目,主要考查以下几个方面:一是考查椭圆、双曲线、抛物线的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查圆锥曲线的标准方程,结合基本量之间的关系,利用待定系数法求解;三是考查圆锥曲线的几何性质,小题较多地考查椭圆、双曲线的几何性质;四是考查直线与椭圆、抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式、范围、最值、定值、定点、定直线、存在性和探索性问题等.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求解定点、定值、定直线问题.一、定点问题1.求解(或证明)直线和曲线过定点的基本思路是:把直线或曲线方程中的变量x,y视作常数,把方程一边化为零,既然是过定点,那么这个方程就是对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.2.常用方法:一是引进参数法,引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点;二是特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.二、定值问题1.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.2. 定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算三、定直线问题定直线问题是证明动点在 定直线上,其实质是求动点的轨迹方程,所以所用的方法即为 求轨迹方程的方法,如定义法、消参法、交轨法等.【压轴典例】例1.(2017·全国高考真题(理))已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,,P 4(1C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.例2.(2019·全国高考真题(文))已知曲线2:,2x C y D =,为直线12y =-上的动点,过D 作C 的两条切线,切点分别为,A B . (1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 例3.(2019·全国高考真题(文))已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.例4.(2017新课标全国Ⅱ文理)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 例5.(2018·北京高考真题(理))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.例6. (2019·全国高考真题(理))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 例7.(2019·北京高考真题(文))已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.例8. 已知椭圆()2222:10x y C a b a b+=>>的右焦点1F 与抛物线24y x =的焦点重合,原点到过点()(),0,0,A a B b -的直线距离是7(1)求椭圆C 的方程(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,过1F 作1PF 的垂线与直线l 交于点Q ,求证:点Q 在定直线上,并求出定直线的方程【压轴训练】1.(2019·北京高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.2.(2016·北京高考真题(理))已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.3.(2017·全国高考真题(文))在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.4.(2018·湖南宁乡一中高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为12F F 、,该椭圆的离心率为22,以原点为圆心,椭圆的短半轴长为半径的圆与直线2y x =+相切.(I )求椭圆C 的方程;(Ⅱ)如图,若斜率为()0k k ≠的直线l 与x 轴,椭圆C 顺次交于,,(P Q R P 点在椭圆左顶点的左侧)且121RF F PFQ ∠=∠,求证:直线l 过定点;并求出斜率k 的取值范围. 5.(2019·湖北高考模拟(理))已知动点P 到直线:2l x =-的距离比到定点(1,0)F 的距离多1. (1)求动点P 的轨迹E 的方程(2)若A 为(1)中曲线E 上一点,过点A 作直线l 的垂线,垂足为C ,过坐标原点O 的直线OC 交曲线E 于另外一点B ,证明直线AB 过定点,并求出定点坐标.6.(2019·贵州高三开学考试(文))已知椭圆C 的中心在原点,一个焦点为1(3,0)F -,且C 经过点1(3,)2P .(1)求C 的方程;(2)设C 与y 轴的正半轴交于点D ,直线l :y kx m =+与C 交于A 、B 两点(l 不经过D 点),且AD BD ⊥.证明:直线l 经过定点,并求出该定点的坐标.7.(2019·江西高三月考(文))在平面直角坐标系xOy 中,已知()()1,2,1,0Q F -,动点P 满足PQ OF PF •=(1)求动点P 的轨迹E 的方程;(2)过点F 的直线与E 交于,A B 两点,记直线,QA QB 的斜率分别为12,k k ,求证:12k k +为定值.8.(2019·河北高三月考(理))已知椭圆()2222:10x y C a b a b+=>>的长轴长为22,焦距为2,抛物线()2:20M y px p =>的准线经过C 的左焦点F .(1)求C 与M 的方程;(2)直线l 经过C 的上顶点且l 与M 交于P ,Q 两点,直线FP ,FQ 与M 分别交于点D (异于点P ),E (异于点Q ),证明:直线DE 的斜率为定值. 9.(2020·浙江高三月考)已知椭圆2222:1x y C a b+=(0a b >>)的焦距为23,且过点(2,0)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)若点(0,1)B ,设P 为椭圆C 上位于第三象限内一动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值,并求出该定值.10.(2019·安徽高三开学考试(理))如图,已知()1,0A -、()10B ,,Q 、G 分别为ABC △的外心,重心,//QG AB .(1)求点C 的轨迹E 的方程;(2)是否存在过()0,1P 的直线L 交曲线E 于M ,N 两点且满足2MP PN =,若存在求出L 的方程,若不存在请说明理由.11.(2019·河南高三月考(文))已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(I )求证:MAB ∆是直角三角形;(II )x 轴上是否存在一定点P ,使,,A P B 三点共线.12.(2019·湖南雅礼中学高三月考(理))已知椭圆()2222:10x y C a b a b+=>>的左顶点为A ,右焦点为F ,上顶点为B ,过F 的直线l 交椭圆C 于P 、Q .当P 与B 重合时,APF ∆与AQF ∆的面积分别为332、9310.(1)求椭圆C 的方程;(2)在x 轴上找一点M ,当l 变化时,MP MQ ⋅为定值.13.(2019·广东广雅中学高三开学考试(文))在平面直角坐标系xOy 中,过定点()0,C p 作直线与抛物线()220x py p =>相交于A 、B 两点.(1)已知1p =,若点N 是点C 关于坐标原点O 的对称点,求ANB ∆面积的最小值;(2)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.14.(2019·浙江高三学业考试)如图,直线10l x ty -+=:和抛物线2:4C y x =相交于不同两点A ,B .(I )求实数t 的取值范围;(Ⅱ)设AB 的中点为M ,抛物线C 的焦点为F .以MF 为直径的圆与直线l 相交于另一点N ,且满足||22||3MN MF =,求直线l 的方程. 15.(2019·四川高三月考(理))已知抛物线28x y =,过点04M (,)的直线与抛物线交于,A B 两点,又过,A B 两点分别作抛物线的切线,两条切线交于P 点. (1)证明:直线,PA PB 的斜率之积为定值; (2)求PAB △面积的最小值16.(2019·江苏高三月考)在平面直角坐标系xOy 中,己知椭圆C :22221(0)43x y t t t-=>的左、右顶点为A ,B ,右焦点为F .过点A 且斜率为k (0k >)的直线交椭圆C 于另一点P .(1)求椭圆C 的离心率;(2)若12k =,求22PA PB的值; (3)设直线l :2x t =,延长AP 交直线l 于点Q ,线段BO 的中点为E ,求证:点B 关于直线EF 的对称点在直线PF 上.。