铸造多晶硅锭常见异常问题浅析
- 格式:doc
- 大小:22.00 KB
- 文档页数:5
多晶硅铸锭炉常见故障维护浅析作者:许高升孙玉虎张阳来源:《硅谷》2013年第14期摘要本文重点介绍了太阳能级多晶硅铸锭炉的常见故障和突发事件的应急处理办法。
关键词多晶硅;光伏;铸锭炉;设备维护中图分类号:TN304 文献标识码:A 文章编号:1671-7597(2013)14-0092-021 概述近年来,太阳能光伏企业作为一种绿色无污染的新能源产业,在我国得到了快速的发展。
多晶硅铸锭炉作为太阳能级多晶硅锭的主要和关键生产设备,正在被各大光伏企业广泛使用。
作为一种自动化程度较高的智能化大型生产设备,它价格昂贵、维护成本高。
一旦投料运行,它连续运行时间长,中间故障维修时间短,稍有不慎,将会造成重大生产损失。
因此,熟练掌握多晶硅铸锭炉常见故障的快速识别和解决方法,可对保证设备安全运行,提高产品质量,节约成本起到积极作用。
国内外生产多晶硅铸锭炉企业众多,在我国知名度和市场占有率较高的企业有美国极特先进太阳能有限公司,北京京运通特技股份有限公司,浙江精功科技等。
下面,我们就以极特DSS45OHP铸锭炉为例来阐述多晶硅铸锭炉常见故障的维护问题。
2 铸锭炉的常见故障分析多晶硅铸锭炉在自动运行时,必须保证机械和电器元件的各组成部分都有效、平稳、可靠、无故障。
因此,做好设备的日常合理的维护和保养,是非常必要的。
对设备的维护和保养,主要分为两个部分:一是定期的保养和维护;二是运行时发生事故的应急处理。
其中,第一条最重要,平时的维护和保养做好了,就能达到防患于未然,提前将潜在的问题发现和排除,杜绝和减少自动运行时故障的发生。
2.1 定期的保养和维护每炉检查项目:电阻、水流量、溢流丝、加热器螺丝松紧度、报警器是否正常、机械泵油位油压、进水温度及压力、TC管检漏、下炉体水平及清洁等。
周期性(3个月)检查和维护项目:比例阀清洁,隔热笼内部清洁,加热器清洁、高温计清洁、电柜内电器元件除尘、slimpaks电流校准、真空压力计校准等。
缺陷和杂质2023-11-09•铸造多晶硅太阳电池概述•铸造多晶硅的结构缺陷•铸造多晶硅中的杂质目录•铸造多晶硅结构缺陷和杂质的表征与检测方法•铸造多晶硅结构缺陷和杂质的控制与优化•展望与未来发展趋势01铸造多晶硅太阳电池概述铸造多晶硅太阳电池的制造工艺已经非常成熟,可以实现大规模生产。
制造工艺成熟转换效率较高制造成本较低铸造多晶硅太阳电池的转换效率较高,可以满足大部分应用需求。
铸造多晶硅太阳电池的制造成本较低,具有较好的经济性。
030201吸光层由多晶硅材料构成,能够吸收太阳光并将其转化为电能。
吸光层导电层由掺杂的多晶硅材料构成,能够将吸光层产生的电流导出并传输到外部电路中。
导电层背反射器用于将太阳光反射回吸光层,以增加光吸收效果。
背反射器导电层制备将掺杂的多晶硅材料通过热处理和加工等工艺制成导电层。
铸造多晶硅太阳电池的制造过程原材料准备制造铸造多晶硅太阳电池需要准备多晶硅材料、掺杂剂、反射器等原材料。
吸光层制备将多晶硅材料通过热处理和掺杂等工艺制成吸光层。
背反射器制备将反射器材料通过加工等工艺制成背反射器。
组装将吸光层、导电层和背反射器组装在一起,形成完整的铸造多晶硅太阳电池。
02铸造多晶硅的结构缺陷在铸造多晶硅中,晶界是常见的结构缺陷。
晶界是指不同晶粒之间的交界,通常会对材料的性能产生负面影响。
在太阳电池中,晶界会降低载流子的迁移率,导致光电转换效率下降。
晶界位错是指晶体结构中的原子排列错位。
在铸造多晶硅中,位错会破坏晶体结构的周期性,导致能带结构发生变化。
位错还会影响载流子的散射和复合,进一步降低太阳电池的性能。
位错铸造多晶硅中的晶界与位错杂质陷阱在铸造多晶硅中,杂质原子通常会聚集在晶界或位错等缺陷处。
这些杂质原子会捕获电子或空穴,形成杂质能级,从而影响载流子的迁移和复合过程。
杂质陷阱对太阳电池的光电转换效率产生负面影响。
热处理与杂质陷阱通过热处理可以部分消除杂质陷阱的影响。
在高温下,杂质原子有机会从缺陷处扩散出去,从而减少杂质陷阱的数量。
一般而言,硬质点指的就是碳化硅吧,那么在铸锭炉中它是如何形成的呢?有何分布规律可循?硬质点的存在严重影响硅锭的合格率,有何办法可以解决呢?请大家踊跃发言探讨。
硬质点指的就是碳化硅,硬质点片即所谓的线痕片。
来源2个方面1)硅材料的含碳量高2)炉子的热场碳的挥发但是如何形成机理不清楚,请大家发言根据我的理解:C的分凝系数为0.07,远小于1,铸锭好后,C应该集中在顶部,锭子中心按道理含碳量很低,不会出现晶粒比较大的SIC, 该物质是否在长晶阶段生成,还是在退火和冷却阶段由于扩散进入到中部的?近段时间,铸锭后,红外探伤未有大的影阴区,但切片后,有一些线痕片,报告为硬质点片,郁闷啊?;;疑问;疑问;疑问;;抓狂;抓狂;抓狂C的来源:热区,硅料SiC的分布及形成:硅锭顶部,硅料内部炭排杂到顶部,热区炭的落入。
硅锭内部,炭浓度高的区域由于固态扩散在长晶过程中形成大颗粒SiC,这些C来源于硅料中剩余的炭及表面SiC溶解的C。
请教beyya 大侠先生:1)DSS450 炉子顶部装了CC板,热场使用还不到3个月,铸锭用的80%的原生硅,问题在何地方?2)与炉子分凝及工艺长晶时间和冷却时间有关系吗?发表于2009-5-14 09:31 |只看该作者个人理解:多晶锭中的硬质点主要为SIC和Si3N4杂质,主要聚集在顶部10 mm范围内;硅锭内部的硬质点为SiC。
一般来说,多晶硅锭中多少都会有点硬质夹杂,我们铸锭的主要目的就是减小SiC硬质点的数量和大小,主要是不影响切片就行。
除了对原料进行控制之外,转述他人的一些解决方法:1)在装料后执行严格的开炉程序以排除氧和水分,因为它们可以和石墨件反应生成CO溶于硅熔体,使得碳含量增加;2)将石英坩埚和石墨托隔开或选取适当的气流方式使CO不能到达熔硅表面,减少晶体生长过程中的碳污染;3)尽量缩短硅锭生长周期,以抑制SiC的长大和聚集,它们在较细小、未聚集的情况下不会对硅片切割生产造成危害。
多晶硅铸锭中的杂质分布及其影响因素摘要近年来,太阳电池发电受到了人们的日益重视。
硅是当前用来制造太阳能电池的主要材料,由于低成本、低耗能和少污染的优势,目前铸造多晶硅已经成功取代直拉单晶硅而成为最主要的太阳能电池材料。
深入地研究材料中的杂质分布利于生产出高成品率的铸造多晶硅锭,降低铸造多晶硅太阳能电池的制造成本,同时也是制备高效率铸造多晶硅太阳能电池的前提。
本文对多晶硅中的杂质及其分布作了深入的研究。
多晶硅中出现的杂质是影响其太阳能电池转换效率的重要因素之一。
本文利用微波光电导衰减仪(μ—PCD),,以及扫描电镜等测试手段,对铸造多晶硅中的杂质及分布情况以及少子寿命的分布特征进行了系统的研究。
主要包括以下三个方面:氧、铁、碳在铸造多晶硅中的分布规律;铸造多晶硅所测区域内杂质的种类及分布情况;铸造多晶硅中杂质浓度的分布与材料少子寿命的关系。
采用μ—PCD测得了沿硅锭生长方向(从底部至顶部)的少寿命分布图。
结果显示距离硅锭底部3-4 cm,以及顶部3 cm的范围内存在一个少子寿命值过低的区域,而硅锭中间区域少子寿命值较高且分布均匀。
进一步通过理论分析得出多晶硅杂质分布的情况以及杂质的来源和影响杂质分布的因素。
关键词:多晶硅,碳,氧,金属Polysilicon ingots in the distribution and determinantsof impuritiesABSTRACTIn recent years, it was becoming more end more important to utilize solar energythrough solar cells.Because low-cost, low energy consumption and less pollution of the advantages of polysilicon has been successfully replaced by the current cast Czochralski silicon solar cells become the main material. In-depth study of the distribution of impurities in materials help to produce high yields of casting sil icon ingots, cast polycrystalline silicon solar cells reduce manufacturing costs, but also highly efficient preparation of cast polycrystalline silicon solar cells premise.In this paper, and distribution of impurities in silicon in depth study. Polysilicon impurities appear to influence the solar cell conversion efficiency of one of the important factors. By using microwave photoconductivity decay meter (μ-PCD),, and scanning electron microscope test means of casting silicon impurities and minority carrier lifetime distribution and the distribution of characteristics of the system. Include the following three aspects: oxygen, iron, carbon in the casting of the Distribution of polysilicon; cast polycrystalline silicon measured in the region and the distribu tion of the types of impurities; cast pol ycrystalline silicon in the impurity concentration distribution of minority carrier lifetime relationship with the material. Won by μ-PCD measurements along the ingot growth direction (from bottom to top) less life distribution. The results showed that the bottom of silicon ingots from 3-4 cm, and 3 cm at the top of therange of memory in the minority carrier lifetime value of a low area, while the middle region of silicon ingots and high minority carrier lifetime value distribution. Further obtained by theoretical analysis as well as the distribution of polysilicon impurity impurity impurity distribution of the sources and effects of the factorsKEY WORDS: polycrystalline silicon,carbon, oxygen, metals目录第一章绪论 (1)§1.1 引言 (1)§1.2 太阳能利用开发的发展趋势 (2)§1.3 铸造多晶硅的生产工艺 (2)§1.3.1 铸锭浇注法 (3)§1.3.2 定向凝固法 (3)§1.3.3 电磁感应加热连续铸造( EMCP) (4)§1.4 铸造多晶硅中主要杂质及影响 (6)§1.4.1 硅中的氧 (6)§1.4.2 硅中的碳 (8)§1.4.3 硅中的过渡金属 (9)§1.5 检测杂质的主要指标 (10)§1.5.1 少子寿命 (10)§1.6 本文研究的目的及主要内容 (10)第二章实验过程 (12)§2.1 样品制备 (12)§2.1.1 实验锭的原料组成 (12)§2.1.2 实验用坩埚及涂层 (12)§2.1.3 铸锭的运行 (12)§2.1.4 多晶铸锭的剖方及取样 (12)§2.2 样品检测 (13)§2.2.1 杂质种类及含量的检测 (13)§2.2.2 少子寿命的检测所用仪器μ—PCD (14)第三章样品检测结果及分析 (15)§3.1样品检测结果及分析 (15)§3.2 分布情况及影响因素 (16)结论 (19)参考文献 (20)致谢 (22)第一章绪论§1.1 引言随着人类社会的高速发展,环境恶化与能源短缺己成为全世界最为突出的问题。
铸造多晶硅锭常见问题铸造多晶硅锭常见问题本文介绍了多晶硅锭生产过程中遇到的各种异常情况,分析这些异常产生的原因,提出了一些相关的预防及改善措施。
1、硅液溢流多晶硅铸锭包括加热、熔化、长晶、退火、冷却五个工艺步骤,其中硅料在熔化过程中或熔化完以后可能会因其盛放的石英陶瓷坩埚破裂,从坩埚内流出,常简称硅液溢流。
高温硅液体流到溢流丝上面,使溢流丝熔断,触发溢流报警,系统进入紧急冷却。
一般溢流发生在熔化阶段及长晶阶段,特别是在熔化后期及长晶初期发生的溢流最为常见。
溢流以后不但意味着该炉次没有硅锭产出,而且轻则损失几公斤硅料,重则造成热场部件的重大损失甚至安全事故,因此溢流是多晶硅铸造最严重也是较为常见的生产异常。
造成硅液溢流的可能原因大概有以下几点。
1)坩埚隐裂。
用来盛放硅锭的坩埚为石英陶瓷材料,其制作方式有注浆成型和注凝成型两种方式,但不论哪种方式制作的坩埚,都会存在隐裂,气孔等缺陷,这些坩埚在出厂以前一般都会经历两道以上的采用显影液透光检查过程,但仍可能会有漏检的坩埚,另外坩埚在运输过程中或搬运过程中会遇到震动或磕碰,都会导致坩埚产生隐裂,如果这些缺陷在装料前没有检测到,很有可能在熔化过程中出现硅液溢流现象。
因此,坩埚拆箱以后,在喷涂前应该严格检测,使用强光灯源对坩埚五个面透光检测是一种较为方便有效的方法。
2)装料挤压。
装料过程中,靠近坩埚边角的位置特别是四个竖棱角位置,如果有大块儿的硅料靠近坩埚,硅料之间特别注意需要留有一定空隙,一般以2cm以上最佳,一旦装料过挤,可能引发溢流产生。
这是因为,硅料熔化从中上部开始,而硅的固体密度为2.33g/cm3,液体密度为2.53 g/cm3。
一旦装料过于拥挤,液体硅流到坩埚底部以后可能会因温度过冷而凝固,如果没有空间供其膨胀,会对坩埚壁产生挤压作用,导致坩埚破裂溢流。
越是靠近边角的位置,应力越集中,越容易因装料不合理而溢流,溢流的部位实际上也往往出现在坩埚四个立棱处附近,硅锭脱模后仔细观察溢流位置对应坩埚内壁,经常会发现硅料挤压氮化硅涂层和坩埚内壁的痕迹。
铸造多晶硅锭常见异常问题浅析作者:王建立张呈沛张华利颜颉颃来源:《硅谷》2014年第06期摘要介绍多晶硅锭在铸造生产过程中遇到的各类异常问题,分析产生各种异常的原因。
关键词多晶硅;铸造;异常中图分类号:TM911 文献标识码:A 文章编号:1671-7597(2014)06-0014-02光伏太阳能行业作为一种绿色无污染的新能源产业,近年来发展迅猛。
通过定向凝固方法生产的铸造多晶硅晶体(硅锭),因其低廉的成本和较高的产出,已经成为光伏电池制造行业重要的基体材料。
多晶硅定向凝固系统(Directional Solidification System),简称为DS炉,是生产硅锭的主要设备,从2005年左右开始,经过不断升级,多晶硅锭的发展经历了G4、G5到G6的历程,投料重量也分别从240 kg、450 kg发展到800 kg,2013年,有厂家推出了G7铸锭炉和投料量达1200 kg的硅锭。
不论哪一代的多晶硅锭,其品质受热场设计和工艺影响重大,还会受原料、辅料、操作等诸多因素影响,硅锭检测也会各种异常或缺陷问题。
本文介绍了多晶硅锭生产过程中遇到的各种异常情况,分析这些异常产生的原因,提出了一些相关的预防及改善措施。
1 硅液溢流多晶硅铸锭包括加热、熔化、长晶、退火、冷却五个工艺步骤,其中硅料在熔化过程中或熔化完以后可能会因其盛放的石英陶瓷坩埚破裂,从坩埚内流出,常简称硅液溢流。
高温硅液体流到溢流丝上面,使溢流丝熔断,触发溢流报警,系统进入紧急冷却。
一般溢流发生在熔化阶段及长晶阶段,特别是在熔化后期及长晶初期发生的溢流最为常见。
溢流以后不但意味着该炉次没有硅锭产出,而且轻则损失几公斤硅料,重则造成热场部件的重大损失甚至安全事故,因此溢流是多晶硅铸造最严重也是较为常见的生产异常。
造成硅液溢流的可能原因大概有以下几点。
1)坩埚隐裂。
用来盛放硅锭的坩埚为石英陶瓷材料,其制作方式有注浆成型和注凝成型两种方式,但不论哪种方式制作的坩埚,都会存在隐裂,气孔等缺陷,这些坩埚在出厂以前一般都会经历两道以上的采用显影液透光检查过程,但仍可能会有漏检的坩埚,另外坩埚在运输过程中或搬运过程中会遇到震动或磕碰,都会导致坩埚产生隐裂,如果这些缺陷在装料前没有检测到,很有可能在熔化过程中出现硅液溢流现象。
因此,坩埚拆箱以后,在喷涂前应该严格检测,使用强光灯源对坩埚五个面透光检测是一种较为方便有效得方法。
2)装料挤压。
装料过程中,靠近坩埚边角的位置特别是四个竖棱角位置,如果有大块儿的硅料靠近坩埚,硅料之间特别注意需要留有一定空隙,一般以2 cm以上最佳,一旦装料过挤,可能引发溢流产生。
这是因为,硅料熔化从中上部开始,而硅的固体密度为2.33 g/cm3,液体密度为2.53 g/cm3。
一旦装料过于拥挤,液体硅流到坩埚底部以后可能会因温度过冷而凝固,如果没有空间供其膨胀,会对坩埚壁产生挤压作用,导致坩埚破裂溢流。
越是靠近边角的位置,应力越集中,越容易因装料不合理而溢流,溢流的部位实际上也往往出现在坩埚四个立棱处附近,硅锭脱模后仔细观察溢流位置对应坩埚内壁,经常会发现硅料挤压氮化硅涂层和坩埚内壁的痕迹。
3)工艺参数不合理。
铸锭工艺过程中,在加热及熔化初期,热场内部温度纵向梯度相对较大,坩埚中下部温度很长一段时间较低。
而石英坩埚陶瓷材料在1300℃以上晶相转化速率较快,过高的加热功率或升温速度会导致坩埚在纵向上晶相转化速度相差较大,坩埚壁产生较大应力,长时间拉伸作用容易产生裂纹,从而引发溢流。
因此,很多铸锭工艺会在1200℃左右保温一段时间,等待坩埚上下温度相对均匀后再继续升温,过大的温度梯度设置会极易引发溢流的产生。
2 硅锭氧化正常硅锭表面呈现钢灰色,但一些硅锭在出炉以后表面有会变彩色,这是由于铸造过程中有氧气进入导致的硅锭氧化。
轻微的氧化硅锭上表面会淡黄色或彩色,重一些的氧化不但硅锭表面呈彩色,而且会有会在硅锭表面及石墨材料上附有一些白色颗粒物。
造成氧化最主要的原因是漏气,漏气常见的位置是进出气阀门及长晶棒处。
一些硅锭因测量长晶速率使用石英棒,石英棒在铸锭过程中经常移动,如果密封不好,很容易漏气导致氧化。
另外,铸锭使用的保护气体为氩气,如果氩气的氧含量过高,也会引起硅锭氧化变色现象发生,所以一些公司在灌装使用前要检测氩气中的氧含量。
3 硅锭粘埚坩埚在装料使用前需要喷涂一层氮化硅涂层,作为硅锭的脱模剂。
但生产过程中仍会出现不同程度的粘锅现象,轻则使硅锭粘掉一小部分,重的可能会使硅锭掉角,甚至整个硅锭开裂,严重影响产出。
影响粘埚的原因大概可以概括为以下几种情况。
1)氮化硅涂层过薄。
一般氮化硅涂层厚度为150 μm左右,如果涂层过薄,在数十个小时与硅液接触的过程中,硅液很有可能从涂层的针孔或缝隙穿刺进去,与坩埚接触反应,一旦大面积出现硅液穿刺反应现象,很容易造成粘锅发生。
2)氮化硅涂层开裂。
在喷涂过程中,如果氮化硅在坩埚壁上沉积过快,水分不能及时挥发,氮化硅涂层在后续干燥过程中很容易产生细小开裂,一旦装料铸锭后,硅液很容易渗入引起粘锅。
为避免粘埚,常规的做法是将肉眼可见的开裂涂层部分刷掉,重新喷涂。
3)氩气流量过大。
熔化过程中,氩气流量过大会引起硅液波动较大,特别是熔化末期,较大的氩气流量,加上硅液沸腾,会对氮化硅涂层特别是三相交界面出的氮化硅产生剧烈冲刷作用,导致涂层脱落,如果硅锭上表面固液分界面处出现粘锅,很有可能是气流量较大,硅液冲刷引起的。
所以,在很多铸锭工艺配方中,熔化末尾阶段会适当降低氩气的供给比例。
4)装料剐蹭。
装料过程中,如果操作不当,较锋利的硅料对坩埚壁的剐蹭会对氮化硅涂层造成破坏,进而引起粘锅。
近些年来,发展起来一种氮化硅中会添加适量的硅溶胶的新方法,不但坩埚涂层不用烧结,而且其涂层在坩埚壁上的附着力也得到加强,粘埚情况得到较大改善。
5)氮化硅质量。
目前氮化硅硅生产品牌市面上主要有德国Starck、日本UBE、烟台同立等。
其氮化硅粒度基本是几个微米范围内,90%以上是α晶相。
如果氮化硅粉体颗粒过大或过细,均可能出现较大概率的粘锅问题。
β相氮化硅因热膨胀系数较大,如其含量较大,也可能引起粘锅问题的发生。
4 硅锭裂纹生产上,常常有些硅锭出炉以后,外观上看虽然没有异常,但经过红外探伤检测,可能会发现一些裂纹,轻微些的几个厘米长度,偶尔出现在其中一个硅方中,重则是贯穿性裂纹,一半以上的硅方出现报废,严重影响铸锭收率。
产生隐裂可能是以下几个方面的原因。
1)铸锭过程中异物掉入。
热场材料长时间使用会产生老化,螺栓螺母等一些石墨或C/C 复合材料容易脱落掉入坩埚内,另外,测量长晶用的石英棒有可能被粘在硅锭内部。
因为热膨胀系数不同,掉入异物的硅锭,会在后续降温冷却过程中发生开裂。
生产过程中为赶产量,常常采用每生产几炉,才入炉检查一次的方式。
上一个硅锭刚出炉,炉温还有几百摄氏度,下一炉硅料就投了进去。
每炉铸锭完成后进入热场内部检查,能够大大避免该现象的发生。
2)出炉温度过高。
一般硅锭铸造完成以后,炉温降低到400℃以下,方可以开炉取锭,如果取锭过早,炉温过高,硅锭出炉后因为与环境温差较大,特别是在寒冬季节,硅锭内部热应力来不及释放,导致硅锭产生隐裂。
3)工艺设置不合理。
定向生长完成后,因为硅锭底部与顶部温差较大,需要关闭钢笼,炉温保持1300℃左右进行退火,如果退火时间过短,硅锭内部存在较大热应力得不到有效释放,后续冷却过程中可能产生内部裂纹。
另外,对于较大投料量的硅锭来讲,过快的冷却工艺设置也容易导致隐裂的产生。
4)高温硅锭与金属接触。
硅锭出炉以后,其表面温度还有几百摄氏度,一般等温度冷却到100℃左右开始拆除坩埚,使硅锭脱模,然后将硅锭转移到下一个喷砂工序。
在这一过程中,避免不了用到工装夹具与硅锭接触,如果此时硅锭温度仍较高,热传导率较高的金属与硅锭接触,也可能会诱发硅锭隐裂。
因此,硅锭出炉以后尽量避免“高温作业”,特别是在寒冬季节,能够有效减少硅锭隐裂的产生,对于后续切片硅片碎片率的降低也是有益的。
5)粘埚隐裂。
粘埚是导致硅锭裂纹最多、最常见的原因,即使有些硅锭虽然出现很轻微的粘埚,外观上表现为有几个厘米甚至更小的坩埚片粘连在硅锭上,但硅锭仍然出现裂纹,特别是粘埚位置出现在硅锭底部及侧下部时,出现概率最大。
另外,生长大晶粒硅锭(类单晶硅锭)时,粘埚所致裂锭的问题更加容易发生,而且硅锭常常是贯穿性开裂。
5 红外探伤出现阴影以及硬质夹杂等硅锭开方成小硅块儿以后,要经红外探伤仪检测硅锭的缺陷情况。
红外探伤的原理是,经特定光源发出的红外光线能够穿透200 mm深度的硅块,然后被红外探测器捕捉成像。
纯多晶硅晶体几乎不吸收这个波段的波长,但是,如果硅块里面有微晶、杂质团、硬质夹杂、隐裂等缺陷,这些缺陷将吸收红外光,并将在成像系统中呈现暗区,其中一些呈现条带状、团状或弥撒的点状的暗区通常被称作阴影。
阴影的形成大概有以下几个方面的因素导致。
1)长晶速度过快产生微晶阴影。
定向凝固开始以后,如果温度过低或者纵向温度梯度过大形成大量形核中心,硅锭迅速生长,进而产生微晶,红外成像上表现为大面积条带状阴影。
生产上最普遍的阴影往往出现在靠硅锭中央的硅块中,纵向位置在硅方的中下部最常见,正是因为该位置是平均长晶速度最快的地方。
根据我们的生产经验,典型的长晶速度趋势是,开始一两个时,钢笼刚刚打开,长晶速度往往在1 cm/h以下,随后的几个小时最快,达到1.7 cm/h-1.9 cm/h,甚至超过2 cm/h,到长晶中期以后逐渐平稳到1.1 cm/h-1.5 cm/h。
整个长晶过程平均速度在1.2 cm/h-1.3 cm/h左右。
如果长时间生长速度超过2 cm/h,很容易在该区域形成微晶阴影。
在长晶的前期,固液界面往往会有一个由微凹到微凸的转变过程,在这一过程中,长晶速度一般较快的阶段,比较容易产生阴影,特别是杂质含量较高的情况下,杂质未有效分凝产生聚集产生众多形核中心,从而形成微晶。
因此,设置合理的配方工艺,控制合理的长晶速度,对减少阴影的产生比例非常必要。
2)硅熔体中杂质过多,或不能充分排杂,产生杂质型阴影及硬质夹杂。
如果原料中杂质过多,例如,投料使用大量的头尾边皮等回收下角料等,铸锭开方以后,检测发现阴影比例明显增加,该类型阴影以团簇状最常见。
另外,如果使用分辨率较高的红外探伤仪器,还可以在硅方中部检测到一些弥散的点状阴影,颜色较淡。
一般直径一个到几个毫米大小。
硅方抛光以后,再进行红外探伤,这些点状阴影更加清楚,还能够另外发现一些几百微米甚至更加细小的点状阴影。
将这些团簇状阴影部分用强酸溶解后,很容易会得到一些不容物,这些不容物或是呈现黑色块状,或是杆状黄色透明,两者常常在共生存在,这些通常都被称作硬质夹杂(inclusions)。