设计构成2第2讲
- 格式:ppt
- 大小:14.18 MB
- 文档页数:27
(三)工程建设其他费用的组成和估算包括:建设用地费、与项目建设有关的其他费用、与未来生产经营有关的其他费用。
(一般以工程费用为基数乘以系数计算。
) (四)预备费 1、基本预备费基本预备费=(工程费用+工程建设其他费用)×基本预备费费率=(建筑安装工程费用+设备及工、器具购置费+工程建设其他费用)×基本预备费费率2、价差预备费()nt 1m 0.5t t 1PF I (1f )(1f )1f 1-=⎡⎤=+++-⎣⎦∑式中:PF ——价差预备费; n ——建设期年份数;It ——建设期中第t 年的静态投资计划额(包括工程费用、工程建设其他费用及基本预备费) f ——年涨价率;m ——建设前期年限(从编制估算到开工建设,单位:年)。
(五)建设期利息习题1-1(改编自2016年真题)某企业拟于某城市新建一个工业项目,该项目可行性研究相关基础数据下:1.拟建项目占地面积30亩,建筑面积11000㎡。
其项目设计标准、规模与该企业2年前在另一城市修建的同类项目相同。
已建同类项目的单位建筑工程费用为1600元/㎡,建筑工程的综合用工量为4.5工日/㎡,综合工日单价为80元/工日,建筑工程费用中的材料费占比为50%,机械使用费占比为8%,考虑地区和交易时间差异,拟建项目的综合工日单价为100元/工日,材料费修正系数为1.1,机械使用费的修正系数为1.05,人材机以外的其它费用修正系数为1.08。
2.根据市场询价,该拟建项目设备投资估算为2000万元,设备安装工程费用为设备投资的15%。
项目土地相关费用按20万元/亩计算,除土地外的工程建设其他费用为项目建安工程费用的15%,项目的基本预备费率为5%。
3.项目建设前期1年,建设期2年,全部静态投资在建设期内按60%、40%的比例分两年投入,预计每年的物价上涨率为3%。
4.该项目的建设投资来源为自有资金和贷款,贷款额为3000万元,建设期第1年均匀投入40%,第2年均匀投入60%,贷款年利率为7.2%(按年计息),建设期中只计息,不还本金和利息。
选修4-4 坐标系与参数方程 第2课时 参 数 方 程1. (选修44P 56习题第2题改编)若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),求直线的斜率.【解】k =y -2x -1=-3t 2t=-32.∴ 直线的斜率为-32.2. (选修44P 56习题第2题改编)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程.【解】转化为普通方程:y =x -2,x ∈[2,3],y ∈[0,1].3. 求直线⎩⎪⎨⎪⎧x =3+at ,y =-1+4t (t 为参数)过的定点.【解】y +1x -3=4a ,-(y +1)a +4x -12=0对于任何a 都成立,则x =3,且y =-1.∴ 定点为(3,-1).4. 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4t 2,y =t (t 为参数),若点P(m ,2)在曲线C 上,求m 的值.【解】点P(m ,2)在曲线C 上,则⎩⎪⎨⎪⎧m =4t22=t ,所以m =16.5. (选修44P57习题第6题改编)已知直线l 1:⎩⎪⎨⎪⎧x =1+3t ,y =2-4t (t 为参数)与直线l 2:2x -4y =5相交于点B ,又点A(1,2),求|AB|.【解】将⎩⎪⎨⎪⎧x =1+3t ,y =2-4t 代入2x -4y =5得t =12,则B ⎝⎛⎭⎫52,0,而A(1,2),得|AB|=52.1. 参数方程是用第三个变量(即参数)分别表示曲线上任一点M 的坐标x 、y 的另一种曲线方程的形式,它体现了x 、y 的一种间接关系.2. 参数方程是根据其固有的意义(物理、几何)得到的,要注意参数的取值范围.3. 一些常见曲线的参数方程(1) 过点P 0(x 0,y 0),且倾斜角是α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+lcosα,y =y 0+lsinα(l 为参数). l 是有向线段P 0P 的数量.(2) 圆方程(x -a)2+(y -b)2=r 2的参数方程是⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rsinθ(θ为参数).(3) 椭圆方程x 2a 2+y 2b 2=1(a>b>0)的参数方程是⎩⎪⎨⎪⎧x =acosθ,y =bsinθ(θ为参数).(4) 双曲线方程x 2a 2-y 2b 2=1(a>0,b>0)的参数方程是⎩⎨⎧x =a 2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数).(5) 抛物线方程y 2=2px(p>0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).4. 在参数方程与普通方程的互化中注意变量的取值范围. [备课札记]题型1 参数方程与普通方程的互化例1 将参数方程⎩⎨⎧x =2⎝⎛⎭⎫t +1t ,y =4⎝⎛⎭⎫t -1t (t 为参数)化为普通方程.【解】(解法1)因为⎝⎛⎭⎫t +1t 2-⎝⎛⎭⎫t -1t 2=4,所以⎝⎛⎭⎫x 22-⎝⎛⎭⎫y 42=4.化简得普通方程为x 216-y 264=1.(解法2)因为⎩⎨⎧x =2⎝⎛⎭⎫t +1t ,y =4⎝⎛⎭⎫t -1t ,所以t =2x +y 8,1t =2x -y 8,相乘得(2x +y )(2x -y )64=1.化简得普通方程为x 216-y 264=1.备选变式(教师专享)将参数方程⎩⎪⎨⎪⎧y =cos2θ,x =sinθ 化为普通方程,并说明它表示的图形.【解】由⎩⎪⎨⎪⎧y =cos2θ,x =sinθ,可得⎩⎪⎨⎪⎧y +12=cos 2θ,x 2=sin 2θ,即y +12+x 2=1,化简得y =1-2x 2.又-1≤x 2=sin 2θ≤1,则-1≤x≤1,则普通方程为y =1-2x 2,在[]-1,1时此函数图象为抛物线的一部分.题型2 求参数方程例2 已知直线l 经过点P(1,1),倾斜角α=π6.(1) 写出直线l 的参数方程;(2) 设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 【解】(1) 直线的参数方程为⎩⎨⎧x =1+tcos π6,y =1+tsin π6,即⎩⎨⎧x =1+32t ,y =1+12t(t 为参数). (2) 把直线⎩⎨⎧x =1+32t ,y =1+12t代入x 2+y 2=4,得⎝⎛⎭⎫1+32t 2+⎝⎛⎭⎫1+12t 2=4,t 2+(3+1)t -2=0,t 1t 2=-2,则点P 到A 、B 两点的距离之积为2. 变式训练 过点P ⎝⎛⎭⎫102,0作倾斜角为α的直线与曲线x 2+2y 2=1交于点M 、N ,求|PM|·|PN|的最小值及相应的α的值.【解】设直线为⎩⎪⎨⎪⎧x =102+tcosα,y =tsinα(t 为参数),代入曲线并整理得(1+sin 2α)t 2+(10cosα)t +32=0, 则|PM|·|PN|=|t 1t 2|=321+sin 2α.所以当sin 2α=1时,|PM|·|PN|的最小值为34,此时α=π2.题型3 参数方程的应用例3 已知点P(x ,y)是圆x 2+y 2=2y 上的动点. (1) 求2x +y 的取值范围;(2) 若x +y +a≥0恒成立,求实数a 的取值范围.【解】(1) 设圆的参数方程为⎩⎪⎨⎪⎧x =cosθ,y =1+sinθ,2x +y =2cosθ+sinθ+1=5sin(θ+φ)+1, ∴ -5+1≤2x +y≤5+1. (2) x +y +a =cosθ+sinθ+1+a≥0,∴ a≥-(cosθ+sinθ)-1=-2sin ⎝⎛⎭⎫θ+π4-1, ∴ a≥2-1.备选变式(教师专享)在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.【解】设椭圆的参数方程为⎩⎨⎧x =4cosθy =23sinθ,d =|4cosθ-43sinθ-12|5=455||cosθ-3sinθ-3=455⎪⎪⎪⎪2cos ⎝⎛⎭⎫θ+π3-3, 当cos ⎝⎛⎭⎫θ+π3=1时,d min =455,此时所求点为(2,-3).1. 在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cosθ,y =5sinθ⎝⎛⎭⎫θ为参数,0≤θ≤π2和⎩⎨⎧x =1-22t ,y =-22t(t 为参数),求曲线C 1和C 2的交点坐标. 【解】曲线C 1的方程为x 2+y 2=5(0≤x≤5), 曲线C 2的方程为y =x -1,由⎩⎪⎨⎪⎧x 2+y 2=5,y =x -1x =2或x =-1(舍去),则曲线C 1和C 2的交点坐标为(2,1).2. (2013·湖南)在平面直角坐标系xOy 中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cosφ,y =2sinφ(φ为参数)的右顶点,求常数a 的值.【解】直线的普通方程为y =x -a.椭圆的标准方程为x 29+y 24=1,右顶点为(3,0),所以点(3,0)在直线y =x -a 上,代入解得a =3.3. (2013·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A 、B 两点,求|AB|.【解】极坐标方程为ρcosθ=4的直线的普通方程为x =4.曲线的参数方程化为普通方程为y 2=x 3,当x =4时,解得y =±8,即A(4,8),B(4,-8), 所以|AB|=8-(-8)=16.4. (2013·江苏)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tanθ(θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.【解】∵ 直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t ,∴ 消去参数t 后得直线的普通方程为2x -y-2=0,①同理得曲线C 的普通方程为y 2=2x ,②①②联立方程组解得它们公共点的坐标为(2,2),⎝⎛⎭⎫12,-1.1. 在极坐标系中,圆C 的方程为ρ=22sin ⎝⎛⎭⎫θ+π4,以极点为坐标原点、极轴为x 轴正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数),判断直线l 和圆C 的位置关系.【解】ρ=22sin ⎝⎛⎭⎫θ+π4,即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),得圆C 的直角坐标方程为(x -1)2+(y -1)2=2.消去参数t ,得直线l 的直角坐标方程为y =2x +1.圆心C 到直线l 的距离d =|2-1+1|22+12=255.因为d =255<2,所以直线l 和圆C 相交.2. 已知极坐标方程为ρcosθ+ρsinθ-1=0的直线与x 轴的交点为P ,与椭圆⎩⎪⎨⎪⎧x =2cosθ,y =sinθ(θ为参数)交于点A 、B ,求PA·PB 的值.【解】直线过点P(1,0),参数方程为⎩⎨⎧x =1-22t ,y =22t(t 为参数).代入椭圆方程x 24+y 2=1,整理得52t 2+2t -3=0,则PA·PB =|t 1t 2|=65.3. 已知曲线C 的极坐标方程为ρ=6sinθ,以极点为原点、极轴为x 轴非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =12t ,y =32t +1(t 为参数),求直线l 被曲线C 截得的线段的长度.【解】将曲线C 的极坐标方程化为直角坐标方程x 2+y 2-6y =0,即x 2+(y -3)2=9,它表示以(0,3)为圆心、以3为半径的圆,直线l 的普通方程为y =3x +1,圆C 的圆心到直线l 的距离d =1,故直线l 被曲线C 截得的线段长度为232-12=4 2.4. 已知直线C 1:⎩⎪⎨⎪⎧x =1+tcosα,y =tsinα(t 为参数),C 2:⎩⎪⎨⎪⎧x =cosθ,y =sinθ(θ为参数).(1) 当α=π3时,求C 1与C 2的交点坐标;(2) 过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【解】 (1) 当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),⎝⎛⎭⎫12,-32.(2) C 1的普通方程为xsinα-ycosα-sinα=0.A 点坐标为(sin 2α,-cosαsinα),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sinαcosα(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎫x -142+y 2=116. 故P 点轨迹是圆心为⎝⎛⎭⎫14,0,半径为14的圆.直线的参数方程:经过点M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的普通方程是y -y 0=tanα(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+tcosα,y =y 0+tsinα(t 为参数).特别说明:直线参数方程中参数的几何意义:过定点M 0(x 0,y 0),倾斜角为α的直线l的参数方程为⎩⎪⎨⎪⎧x =x 0+tcosα,y =y 0+tsinα(t 为参数),其中t 表示直线l 上以定点M 0为起点,任一点M(x ,y)为终点的有向线段M 0M →的数量,当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0.我们也可以把参数t 理解为以M 0为原点,直线l 向上的方向为正方向的数轴上的点M 的坐标,其单位长度与原直角坐标系中的单位长度相同.请使用课时训练(B )第2课时(见活页).选修4-5 不等式选讲第1课时 绝对值不等式(对应学生用书(理)198~199页)1. 解不等式:|x +1|>3.【解】由|x +1|>3得x +1<-3或x +1>3,解得x <-4或x >2.所以解集为(-∞,-4)∪(2,+∞).2. 解不等式:3≤|5-2x|<9.【解】⎩⎪⎨⎪⎧|2x -5|<9|2x -5|≥3⎩⎪⎨⎪⎧-9<2x -5<92x -5≥3或2x -5≤-3⎩⎪⎨⎪⎧-2<x<7,x≥4或x≤1,得解集为(-2,1]∪[4,7).3. 已知|x -a|<b(a 、b ∈R )的解集为{x|2<x<4}, 求a -b 的值.【解】由|x -a|<b ,得a -b<x<a +b.又|x -a|<b(a 、b ∈R )的解集为{x|2<x<4},所以a -b =2.4. 解不等式:|2x -1|-|x -2|<0. 【解】原不等式等价于不等式组①⎩⎪⎨⎪⎧x≥2,2x -1-(x -2)<0,无解; ②⎩⎪⎨⎪⎧12<x <2,2x -1+(x -2)<0,解得12<x<1;③⎩⎪⎨⎪⎧x≤12,-(2x -1)+(x -2)<0,解得-1<x≤12.综上得-1<x <1,所以原不等式的解集为{x|-1<x <1}. 5. 求函数y =|x -4|+|x -6|的最小值.【解】y =|x -4|+|x -6|≥|x -4+6-x|=2.所以函数的最小值为2.1. 不等式的基本性质 ①a>b b<a ;②a>b ,b>c a>c ;③a>ba +c>b +c ;④a>b ,c>0ac>bc ;a>b ,c<0ac<bc ; ⑤a>b>0a n >b n (n ∈N ,且n>1); ⑥a>b>0na>nb(n ∈N ,且n>1).2. 含有绝对值的不等式的解法 ①|f(x)|>a(a>0) f(x)>a 或f(x)<-a ;②|f(x)|<a(a>0)-a<f(x)<a.3. 含有绝对值的不等式的性质 ①|a|+|b|≥|a +b|;②|a|-|b|≤|a +b|; ③|a|-|b|≤|a±b|≤|a|+|b|. [备课札记]题型1 含绝对值不等式的解法 例1 解不等式:|x +3|-|2x -1|<x2+1.【解】 ① 当x<-3时,原不等式化为-(x +3)-(1-2x)<x2+1,解得x<10,∴ x<-3.② 当-3≤x<12时,原不等式化为(x +3)-(1-2x)<x 2+1,解得x<-25,∴ -3≤x<-25.③ 当x≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x>2,∴ x>2.综上可知,原不等式的解集为{x|x<-25或x>2}.备选变式(教师专享)(2011·南京一模)解不等式|2x -4|<4-|x|.【解】原不等式等价于①⎩⎪⎨⎪⎧x<0,4-2x<4+x或②⎩⎪⎨⎪⎧0≤x≤2,4-2x<4-x 或③⎩⎪⎨⎪⎧x>2,2x -4<4-x , 不等式组①无解.由②0<x≤2,③2<x<83, 得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x<83. 题型2 含绝对值不等式性质的运用例2 已知函数f(x)=|x -1|+|x -2|. 若不等式|a +b|+|a -b|≥|a|f(x)(a≠0,a 、b ∈R )恒成立,求实数x 的取值范围.【解】由题知,|x -1|+|x -2|≤|a -b|+|a +b||a|恒成立,故|x -1|+|x -2|不大于|a -b|+|a +b||a|的最小值.∵ |a +b|+|a -b|≥|a +b +a -b|=2|a|,当且仅当(a +b)·(a -b)≥0时取等号,∴ |a -b|+|a +b||a|的最小值等于2. ∴ x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得12≤x≤52. 变式训练已知函数f(x)=|x -a|.(1) 若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a 的值;(2) 在(1)的条件下,若f(x)+f(x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【解】(1) 由f(x)≤3得|x -a|≤3,解得a -3≤x≤a +3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2. (2) 当a =2时,f(x)=|x -2|,设g(x)=f(x)+f(x +5),于是g(x)=|x -2|+|x +3|≥|(2-x)+(x +3)|=5,当且仅当(2-x)(x +3)≥0即当-3≤x≤2时等号成立.所以实数m 的取值范围是{m|m≤5}.题型3 含绝对值不等式综合运用例3 设函数f(x)=|x -a|+3x ,其中a >0.(1) 当a =1时,求不等式f(x)≥3x +2的解集;(2) 若不等式f(x)≤0的解集为{x|x≤-1},求a 的值.【解】(1) 当a =1时,f(x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1,故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2) 由f(x)≤0得|x -a|+3x≤0,此不等式化为不等式组⎩⎪⎨⎪⎧x≥a ,x -a +3x≤0或⎩⎪⎨⎪⎧x≤a a -x +3x≤0,即⎩⎪⎨⎪⎧x≥a ,x≤a 4或⎩⎪⎨⎪⎧x≤a ,x≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x|x≤-a 2. 由题设可得-a 2=-1,故a =2. 变式训练已知关于x 的不等式|ax -1|+|ax -a|≥2(a>0).(1) 当a =1时,求此不等式的解集;(2) 若此不等式的解集为R ,求实数a 的取值范围.【解】(1) 当a =1时,不等式为|x -1|≥1,∴ x≥2或x≤0,∴ 不等式解集为{x|x≤0或x≥2}.(2) 不等式的解集为R ,即|ax -1|+|ax -a|≥2(a>0)恒成立.∵ |ax -1|+|ax -a|=a ⎝⎛⎭⎫⎪⎪⎪⎪x -1a +|x -1|≥a ⎪⎪⎪⎪1-1a , ∴ a ⎪⎪⎪⎪1-1a =|a -1|≥2.∵ a>0,∴ a≥3, ∴ 实数a 的取值范围为[3,+∞).1. (2013·重庆)若关于实数x 的不等式|x -5|+|x +3|<a 无解,求实数a 的取值范围.【解】因为不等式|x -5|+|x +3|的最小值为8,所以要使不等式|x -5|+|x +3|<a 无解,则a≤8,即实数a 的取值范围是(-∞,8].2. (2013·江西)在实数范围内,求不等式||x -2|-1|≤1的解集.【解】由||x -2|-1|≤1得-1≤|x -2|-1≤1,即0≤|x -2|≤2,即-2≤x -2≤2,解得0≤x≤4,所以原不等式的解集为[0,4].3. 已知实数x 、y 满足:|x +y|<13,|2x -y|<16.求证:|y|<518. 证明:∵ 3|y|=|3y|=|2(x +y)-(2x -y)|≤2|x +y|+|2x -y|,由题设|x +y|<13,|2x -y|<16,∴ 3|y|<23+16=56.∴ |y|<518. 4. (2013·福建理)设不等式|x -2|<a(a ∈N *)的解集为A ,且32∈A ,12A. (1) 求a 的值;(2) 求函数f(x)=|x +a|+|x -2|的最小值.【解】(1) 因为32∈A ,且12A ,所以⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪12-2≥a , 解得12<a≤32.因为a ∈N *,所以a =1. (2) 因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x≤2时取等号,所以f(x)的最小值为3.1. 解不等式:|x -1|>2x. 【解】当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x -1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.2. 若不等式|3x -b|<4的解集中整数有且只有1,2,3,求实数b 的取值范围.【解】由|3x -b|<4,得-4<3x -b <4,即b -43<x <b +43. 因为解集中整数有且只有1,2,3,所以⎩⎨⎧0≤b -43<1,3<b +43≤4,解得⎩⎪⎨⎪⎧4≤b <7,5<b≤8,所以5<b <7. 3. 已知函数f(x)=|x +a|+|x -2|.(1) 当a =-3时,求不等式f(x)≥3的解集;(2) 若f(x)≤|x -4|的解集包含[1,2],求a 的取值范围.【解】(1) 当a =-3时,f(x)≥3|x -3|+|x -2|≥3⎩⎪⎨⎪⎧x≤23-x +2-x≥3或⎩⎪⎨⎪⎧2<x<33-x +x -2≥3或⎩⎪⎨⎪⎧x≥3x -3+x -2≥3 x≤1或x≥4.(2) 原命题f(x)≤|x -4|在[1,2]上恒成立|x +a|+2-x≤4-x 在[1,2]上恒成立-2-x≤a≤2-x 在[1,2]上恒成立-3≤a≤0.4. 已知f(x)=|ax +1|(a ∈R ),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1) 求a 的值,(2) 若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 【解】(1) 由|ax +1|≤3得-4≤ax≤2,又f(x)≤3的解集为{x|-2≤x≤1},所以,当a≤0时,不合题意当a>0时,-4a ≤x≤2a,得a =2. (2) 记h(x)=f(x)-2f ⎝⎛⎭⎫x 2,则h(x)=⎩⎪⎨⎪⎧1,x≤-1-4x -3,-1<x<-12-1,x≥-12, 所以|h(x)|≤1,因此k≥1.1. |ax +b|≤c(c >0)和|ax +b|≥c(c >0)型不等式的解法(1) |ax +b|≤c -c≤ax +b≤c ;(2) |ax +b|≥c ax +b≥c 或ax +b≤-c.2. |x -a|+|x -b|≥c(c >0)和|x -a|+|x -b|≤c(c >0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。