2016年福建厦门中考模拟卷(5)
- 格式:doc
- 大小:230.50 KB
- 文档页数:4
2016年福建省厦门市海沧区中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)化简的值为()A.4 B.﹣4 C.±4 D.22.(4分)下列计算正确的是()A.a2+a2=a4 B.2a﹣a=2 C.(a2)3=a5D.(ab)2=a2b23.(4分)不等式2x+1>3的解集在数轴上表示正确的是()A.B.C.D.4.(4分)小张参加某节目的海选,共有17位选手参加决逐争取8个晋级名额,已知他们的分数互不相同,小张要判断自己是否能够晋级,只要知道17名选手成绩统计量中的()A.众数B.方差C.中位数D.平均数5.(4分)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.6.(4分)计算743×369﹣741×370的值是()A.﹣3 B.﹣2 C.3 D.77.(4分)如图,将△ABC沿直线AB翻折后得到△ABC1,再将△ABC绕点A旋转后得到△AB2C2,对于下列两个结论:①“△ABC1能绕一点旋转后与△AB2C2重合”;②“△ABC1能沿一直线翻折后与△AB2C2重合”的正确性是()A.结论①、②都正确B.结论①、②都错误C.结论①正确、②错误D.结论①错误、②正确8.(4分)已知抛物线y=2(x﹣1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<0,那么下列结论一定成立的是()A.y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<09.(4分)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D10.(4分)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD 相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈 B.2圈 C.3圈 D.4圈二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)已知正比例函数y=kx(k≠0)的图象经过点(﹣1,2),则实数k=.12.(4分)掷一枚质地均匀标有1,2,3,4,5,6的正方体骰子,向上一面的数字是3的概率为..13.(4分)分解因式:x2﹣9=.14.(4分)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为.15.(4分)如图,OP=1,过P作PP1⊥OP,且PP1=1,得OP1=;再过P1作P1P2⊥OP1,且P1P2=1,得OP2=;又过P2作P2P3⊥OP2,且P2P3=1,得OP3=2;…依此法继续作下去,得OP2016=.16.(4分)如图,有一圆经过△ABC的三个顶点,且线段BC的垂直平分线与圆弧相交于D点,连结CD、AD,若∠B=74°,∠ACB=52°,则∠BAD=.三、解答题(本大题有11小题,共86分)17.(7分)计算:.18.(7分)在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的△A1B1C1.19.(7分)解方程:2x2﹣3x+1=0.20.(7分)在一个不透明的口袋中装有三个形状、大小、质地完全相同的球,球的编号分别为1,2,3.先从袋中随机摸出一个球,记下编号,将球放回袋中,然后再从袋中随机摸出一个球,记下编号,求两次摸出的球编号相同的概率.21.(7分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠22.(7分)一个滑雪者从山坡滑下,为了得出滑行距离s(单位:m)与滑行时间t(单位:s)之间的关系式,测得的一些数据(如表)为观察s与t之间的关系,建立坐标系(如图),以t为横坐标,s为纵坐标,请描出表中数据对应的5个点,并用平滑曲线连接它们,再根据这条曲线图象,利用我们所学的函数,近似地表示s关于t的函数关系式.23.(7分)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②﹣①得:2S﹣S=22017﹣1,即S=22017﹣1,即1+2+22+23+24+…+22015+22016=22017﹣1请你仿照此法计算:1+3+32+33+34+…+3n(其中n为正整数).24.(7分)张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书,则李强的工作效率可以是张明的2倍吗?请说明理由.25.(7分)如图,直线AB与反比例函数y=(x>0)的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,求v的取值范26.(11分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线交AB的延长线于点D,已知CD=CA.(1)求∠CAD的大小;(2)已知P是的中点,E是线段AC上一点(不含端点,且AE>EC),作EF ⊥PC,垂足为F,连接EP,当EF+EP的最小值为6时,求⊙O的半径.27.(12分)如图,已知点P(m,5)在直线y=kx(k>0)上,线段OP的垂直平分线交y轴于点A,交x轴于点B,连接AP,BP,得“筝形”四边形PAOB.(1)当m=2时,求tan∠POA的值;(2)若直线x=5交x轴于点C,交线段AB于点D(异于端点),记“筝形”四边形PAOB的面积为s,△DCB的面积为t,试比较s与2t+的大小,并说明理由.2016年福建省厦门市海沧区中考数学模拟试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)化简的值为()A.4 B.﹣4 C.±4 D.2【解答】解:∵42=16,∴=4.故选A.2.(4分)下列计算正确的是()A.a2+a2=a4 B.2a﹣a=2 C.(a2)3=a5D.(ab)2=a2b2【解答】解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(a2)3=a2×3=a6,故本选项错误;D、(ab)2=a2b2,故本选项正确.故选D.3.(4分)不等式2x+1>3的解集在数轴上表示正确的是()A.B.C.D.【解答】解:不等式2x+1>3的解集为:x>1,故选C.4.(4分)小张参加某节目的海选,共有17位选手参加决逐争取8个晋级名额,已知他们的分数互不相同,小张要判断自己是否能够晋级,只要知道17名选手成绩统计量中的()A.众数B.方差C.中位数D.平均数【解答】解:因为8位获奖者的分数肯定是17名参赛选手中最高的,而且17个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.5.(4分)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.【解答】解:如图所示:故选:A.6.(4分)计算743×369﹣741×370的值是()A.﹣3 B.﹣2 C.3 D.7【解答】解:743×369﹣741×370=743×(370﹣1)﹣741×370=743×370﹣741×370﹣743=(743﹣741)×370﹣743=2×370﹣743=740﹣743=﹣3.故选:A.7.(4分)如图,将△ABC沿直线AB翻折后得到△ABC1,再将△ABC绕点A旋转后得到△AB2C2,对于下列两个结论:①“△ABC1能绕一点旋转后与△AB2C2重合”;②“△ABC1能沿一直线翻折后与△AB2C2重合”的正确性是()A.结论①、②都正确B.结论①、②都错误C.结论①正确、②错误D.结论①错误、②正确【解答】解:由图可知,①“△ABC1不能绕一点旋转后与△AB2C2重合”,故本小题错误;②“△ABC1沿BB2的垂直平分线翻折后能与△AB2C2重合”,故本小题正确;综上所述,结论①错误、②正确.故选D.8.(4分)已知抛物线y=2(x﹣1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<0,那么下列结论一定成立的是()A.y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<0【解答】解:∵y=2(x﹣1)2,∴a=2>0,有最小值为0,∴抛物线开口向上,∵抛物线y=2(x﹣1)2对称轴为直线x=1,∵x1<x2<0,∴0<y2<y1.故选C.9.(4分)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D【解答】解:∵,∴,∴,∵点B表示的数是﹣1.5,在﹣2~﹣1之间,∴点B最接近,故选:B.10.(4分)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD 相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈 B.2圈 C.3圈 D.4圈【解答】解:如图,连接AD、AB与⊙O的切点E、F,则OE⊥AD,OF⊥AB.易证四边形OEAF是正方形,则AF=OE=1.∵⊙O的周长=2π×1=2π,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的路程是:2(AB+BC)﹣8AF=20﹣8=12,又因为在每个角硬币滚动一段弧,四个角的弧就是一个整圆,∴硬币自身滚动的圈数大约是:12÷2π≈2(圈).故选B.二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)已知正比例函数y=kx(k≠0)的图象经过点(﹣1,2),则实数k=﹣2.【解答】解:∵正比例函数y=kx(k≠0)的图象经过点(﹣1,2),∴2=﹣k,解得k=﹣2.故答案为:﹣2.12.(4分)掷一枚质地均匀标有1,2,3,4,5,6的正方体骰子,向上一面的数字是3的概率为..【解答】解:∵1、2、3、4、5、6中数字是3的数是3,只有1个,∴掷得向上一面的数字是3的概率为.故答案为.13.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).14.(4分)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为或.【解答】解:如图1所示,AC=2AB,∴最小角为∠C,根据勾股定理得:BC==AB,则tanC===;如图2所示,BC=2AB,∴tanC==,综上,这个直角三角形的较小的锐角的正切值为或.故答案为:或.15.(4分)如图,OP=1,过P作PP1⊥OP,且PP1=1,得OP1=;再过P1作P1P2⊥OP1,且P1P2=1,得OP2=;又过P2作P2P3⊥OP2,且P2P3=1,得OP3=2;…依此法继续作下去,得OP2016=.【解答】解:∵OP=1,OP1=,OP2=,OP3==2,∴OP4==,…,OP2016=.故答案为:.16.(4分)如图,有一圆经过△ABC的三个顶点,且线段BC的垂直平分线与圆弧相交于D点,连结CD、AD,若∠B=74°,∠ACB=52°,则∠BAD=117°.【解答】解:连接BD,如图所示:∵DE是线段BC的垂直平分线,∴BD=CD,∴,∵∠B=74°,∠ACB=52°,∴的度数=2×74°=148°,的度数=2×52°=104°,∴2的度数=的度数﹣的度数=44°,∴的度数=22°,∴∠ACD=×22°=11°,∴∠BCD=52°+11°=63°,∴∠BAD=180°﹣∠BCD=117°;故答案为:117°.三、解答题(本大题有11小题,共86分)17.(7分)计算:.【解答】解:原式=2﹣2+1=2﹣1.18.(7分)在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的△A1B1C1.【解答】解:如图,△ABC和△A1B1C1为所作.19.(7分)解方程:2x2﹣3x+1=0.【解答】解:方程分解因式得:(2x﹣1)(x﹣1)=0,可得2x﹣1=0或x﹣1=0,解得:x1=,x2=1.20.(7分)在一个不透明的口袋中装有三个形状、大小、质地完全相同的球,球的编号分别为1,2,3.先从袋中随机摸出一个球,记下编号,将球放回袋中,然后再从袋中随机摸出一个球,记下编号,求两次摸出的球编号相同的概率.【解答】解:画树状图为:共有9种等可能的结果数,其中两次摸出的球编号相同的结果数为3,所以两次摸出的球编号相同的概率==.21.(7分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.【解答】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.22.(7分)一个滑雪者从山坡滑下,为了得出滑行距离s(单位:m)与滑行时间t(单位:s)之间的关系式,测得的一些数据(如表)为观察s与t之间的关系,建立坐标系(如图),以t为横坐标,s为纵坐标,请描出表中数据对应的5个点,并用平滑曲线连接它们,再根据这条曲线图象,利用我们所学的函数,近似地表示s关于t的函数关系式.【解答】解:描点,连线,如图所示.观察函数图象,s与t的关系可近似看成二次函数,设s关于t的函数关系式为s=at2,将(4,48)代入s=at2,48=16a,解得:a=3,∴近似地表示s关于t的函数关系式为s=3t2.23.(7分)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②﹣①得:2S﹣S=22017﹣1,即S=22017﹣1,即1+2+22+23+24+…+22015+22016=22017﹣1请你仿照此法计算:1+3+32+33+34+…+3n(其中n为正整数).【解答】解:设S=1+3+32+33+34+…+3n①(其中n为正整数),将①×3得:3S=3+32+33+34+…+3n+1②,由②﹣①得:3S﹣S=3n+1﹣1,即S=,故1+3+32+33+34+…+3n=(其中n为正整数).24.(7分)张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书,则李强的工作效率可以是张明的2倍吗?请说明理由.【解答】解:李强的工作效率不是张明的2倍,设李强单独清点这批图书需要x小时,根据题意,得1.2(+)=,解得:x=4,经检验x=4是原方程的根,∴李强的工作效率为,张明的工作效率为=,则李强的工作效率是张明的÷=倍.25.(7分)如图,直线AB与反比例函数y=(x>0)的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,求v的取值范围.【解答】解:∵∠ACO=45°,∴设直线AB的解析式为y=﹣x+b.∵点A(u,p)和点B(v,q)为反比例函数y=(x>0)的图象上的点,∴p=,q=,∴点A(u,),点B(v,).又∵点A、B为直线AB上的点,∴=﹣u+b①,=﹣v+b②,①﹣②得:=v﹣u,即v=.又∵<u<2,∴2<v<12.26.(11分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线交AB的延长线于点D,已知CD=CA.(1)求∠CAD的大小;(2)已知P是的中点,E是线段AC上一点(不含端点,且AE>EC),作EF⊥PC,垂足为F,连接EP,当EF+EP的最小值为6时,求⊙O的半径.【解答】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵CD=CA,OC=OA,∴∠D=∠CAD,∠CAD=∠OCA,∵∠D+∠OCD+∠OCA+∠CAD=180°,即∠CAD+90°+∠CAD+∠CAD=180°,∴∠CAD=30°;(2)连接OP,如图,∵∠COD=2∠CAD=60°∴∠AOC=120°,∵P是的中点,∴∠POC=∠AOP=60°,OP⊥AC,∴△POC和△POA都是等边三角形,∴AC垂直平分OP,OF交AC于E,如图,则EP=EO,∵EF+EP=EF+EO=OF,∴此时EP+EF最小,即OF=6,∵OF⊥PC,∴∠PFO=90°,∠POF=POC=30°在Rt△POF中,∵cos∠POF=,∴OP==4,即⊙O的半径为4.27.(12分)如图,已知点P(m,5)在直线y=kx(k>0)上,线段OP的垂直平分线交y轴于点A,交x轴于点B,连接AP,BP,得“筝形”四边形PAOB.(1)当m=2时,求tan∠POA的值;(2)若直线x=5交x轴于点C,交线段AB于点D(异于端点),记“筝形”四边形PAOB的面积为s,△DCB的面积为t,试比较s与2t+的大小,并说明理由.【解答】解:(1)如图,∵PE⊥OA,∵m=2,∴P(2,5),∴PE=2,OE=5,在Rt△OPE中,tan∠POA==.(2)S>2t+理由:∵P(m,5)在直线y=kx上,∴5=mk,F(,)∴k=,∵线段OP的垂直平分线交y轴于点A,交x轴于点B,∴直线AB解析式为y=﹣x+,∴A(0,),B(,0),∴OA=,OB=,∴S=2××()()=()()∵直线x=5交x轴于点C,∴令x=5,则有y=﹣×5+=﹣m+,∴CD=﹣m+,BC=﹣5,∴2t+=2×(﹣5)(﹣m+)+=(﹣5)(﹣m+)+=()()﹣[(m﹣)2+],∴S﹣(2t+)=()()﹣{()()﹣[(m﹣)2+]}=(m﹣)2+>0,∴S>2t+.。
CAl 2l 1图1EF初中数学试卷桑水出品厦门五中2016中考第一次模拟试卷九年级数学试卷(全卷满分:150分; 考试时间:120分钟)准考证号 姓名 考场座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡;2.答案一律写在答题卡上,否则不予得分; 3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题的四个选项中,只有一个选项正确) 1.下面几个数中,比0小的数是A .-3B .)3(--C .2)3(-D .3-2.抛掷两枚质地相同均匀的硬币,所能产生可能性相同的结果共有A .两种B .三种C .四种D .无法确定3.若42=x ,则x 表示的意义是A .4的平方B .4的平方根C .4的算术平方根D .4的立方根4.多项式2322-+x x 与下列一个多项式的和是一个一次二项式,则这个多项式可以是A .2322+--x x B .132+--x x C .222+--x x D .1222+--x x 5.函数xm y 2-=的图象有一支在第一象限,则 A .0>m B .2≥m C .2>m D .2->m 6.如图1,点A 在直线l 1 上,点B ,C 分别在直线l 2上, AB ⊥l 2,AC ⊥l 1, AB=4,BC=3,则下列说法正确的是A .点B 到直线 l 1的距离等于4 B .点C 到直线l 1的距离等于5 C .直线l 1 ,l 2的距离等于4D .点B 到直线AC 的距离等于37.如图2,A ,B ,C ,D 四点在同一条直线上,AB=CD ,AE=BF ,CE=DF .则下列结论正确的是A .△ACE 和△BDF 成轴对称B .△ACE 经过旋转可以和△BDF 重合C .△ACE 和△BDF 成中心对称图4B /A图2EDFBA图5D .△ACE 经过平移可以和△BDF 重合8.在Rt △ABC 中,∠C=90°,则下列正确的等式可以是A .2sinA -3=0B .cos 2B=1C .tan B +1=0D . 9.如图3,一个函数的图象由线段AB 和BC 组成,其中A (-2,1), B (-1,0),C (1,2),则这个函数是A .1-=x y (12<≤-x )B .1+=x y (12≤<-x )C .1+=x y (12<≤-x )D .1+=x y (21<≤x ) 10.如图4,四边形ABCD 中,对角线AC 与BD 相交于点E ,∠ADB=∠P ,Q 分别是AB ,CD 的中点,给出下列结论:(1)PQ ⊥CD ;(2)AB=2PQ (3)∠ADC 与∠ABC 互补.其中正确的是A .(1)(2)(3)B .(1)(2)C .(1)(3)D .(2)(3) 二、填空题(本大题有6小题,每小题4分,共24分)11.计算:(1)=÷a a 242 ; (2)=⨯23 .12.一个圆形转盘被平均分成红、黄、蓝3个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则飞镖落在黄色区域的概率是 . 13.如图5,AB ∥CD ,∠C=20°,∠E=25°.则∠A= °. 14.一个长方形的面积等于)62(2--x x 米2(2>x )的一边长是)2(-x 米,则另一边长是 米.15.已知3=-y x ,y x m +=,且2>x ,0≤y ,则m 的取值范围是 .16. 小丽在4张同样大小的纸片上各写上一个正整数,从中随机抽取两张,并将它们上面的数相加,重复这样做,每次所得的和都是15,18,21,24中的一个数,并且这4个数都能取到,小丽纸片上写着的4个正整数分别是 .三、解答题(本大题有9大题,共86分)17.(本题满分7分)计算:2)3(22016318-⨯++÷-.18.(本题满分7分)计算:12122+-+++x x x x19.(本题满分7分)如图6,△ABC 与△A /B /C /关于某一个点成中心对称,点A ,B 的对称点分别为点A /和B /.请找出对称中心O ,并把图形补充完整.图8图6图7FCABDE20.(本题满分7分)解方程组⎩⎨⎧=+=-43252x y y x .21.(本题满分7分)如图7,∠ADE=∠C ,AD=CE=2,AE=1,求BCDE 的值.22.(本题满分7分)A 组数据是7位同学的数学成绩(单位:分): 60,a ,70,90,78,70,82.a并回答:哪一组数据的方差大?(不必说明理由) (n 个数据数据的方差公式:[]222212)()()(1x x x x x x ns n -++-+-=K )23.(本题满分7分)如图8,在四边形ABCD 中,AB=AD ,对角线AC 与BD 相交于点E ,若点E ,F分别是是AC ,BD 的中点,∠CBD=90°,连接CF ,求证:AB =CF .24.(本题满分7分)在平面直角坐标系中,点P (22n m -,221mn n m -)满足mn n m 4=+时,就称点P 为“曲点”.若两个“曲点”A ,B 横坐标分别为a 和a 2,O 为坐标原点,求△OAB 的面积.25.(本题满分7分)如图9,在平面直角坐标系xOy 中,O 为坐标原点,点A (a ,0),B (m ,n ),图10图9C (p ,n ),其中0>>p m ,0>n ,点A ,C 在直线102+-=x y 上,AC =52,OB 平分∠AOC ,求证:四边形OABC 是菱形.26.(本题满分11分)如图10,在半径为r 的⊙O 中,直径AB 与弦CD 相交于点P ,CE ⊥DA 交DA 的延长线与E ,连接AC .(1)若︵AD 的长为r π92,求∠ACD 的度数;(2)若︵AC =︵BC ,tan ∠DAB =3,CE +AE =3,求r 的值.27.(本题满分12分)已知点O 为坐标原点,抛物线2222+-+-=m mx x y 的顶点P 在第一象限,且这条抛物线与y 轴交于点C ,与x 轴的两个交点A ,B 都在正半轴,其中点B 在点A 的右侧, 过点P 作y 轴的垂线,垂足为Q . (1)若PQ=OQ ,求点A 的坐标;(2)设抛物线的对称轴与x 轴交于点D ,在线段OQ 上截取OE =OD ,直线DE 与已知抛物线交于点M 和点N ,点N 在x 轴上方,分别记△NCE ,△MEQ 的面积为S 1和S 2,试比较S 1和S 2的大小.。
2016年福建省厦门中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分)1.一次函数y=x+1的图象是()A.线段 B.抛物线C.直线 D.双曲线2.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.3.如图,观察下列图形,既是轴对称图形又是中心对称图形的个数是()A.1 B.2 C.3 D.44.25的算术平方根是()A.5 B.﹣5 C.±5 D.5.3x2可能表示为()A.x2+x2+x2B.x2•x2•x2C.3x•3x D.9x6.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>07.若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学是()A.甲B.乙C.丙D.丁8.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.59.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.310.已知m=x+1,n=﹣x+2,若规定y=,则y的最小值为()A.0 B.1 C.﹣1 D.2二、填空题(本大题有6小题,每小题4分,共24分)11.不透明的袋子里装有1个红球,1个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是.12.不等式2x+1>3的解集是.13.已知在Rt△ABC中,∠C=90°,直角边AC是直角边BC的2倍,则sin∠A的值是.14.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,BC=6,DE=2,当△ADE面积为3时,则△ABC的面积为.15.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=(x>0)的图象上运动,那么点B在函数(填函数解析式)的图象上运动.三、解答题(本题共11题,共86分)17.计算:1﹣2+2×(﹣3)2.18.已知∠AOC,请用尺规作图的方法作出该角的角平分线.19.化简:(﹣)•.20.已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.21.解不等式组:.22.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.23.王师傅开车通过福厦高速公路某隧道(全长约为7千米)时,所走路程为y(千米)与时间x(分钟)之间的函数关系的图象如图所示(A,B,C三点共线).王师傅说:“我开车通过隧道时,有一段连续2分钟恰好走了1.9千米”.你认为王师傅说有可能对吗?请说明理由.24.四边形ACDE是证明勾股定理用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是6,求△ABC的面积.25.我们定义:有一组对角相等而另一对角不相等的凸四边形叫做“等对角四边形”.已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.26.已知直线y=kx+m与抛物线y=﹣x2+bx+c(b<0)相交于A,B两点,且点A在x轴的正半轴上,点B在y轴上,设点A横坐标为m,抛物线的顶点纵坐标为n.(1)求k的值;(2)当m<2时,试比较n与b+m﹣k的大小.27.如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比.2016年福建省厦门十一中中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分)1.一次函数y=x+1的图象是()A.线段 B.抛物线C.直线 D.双曲线【考点】一次函数的图象.【分析】根据一次函数y=x+1的图象解答即可.【解答】解:一次函数y=x+1的图象是一条直线,故选C2.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选B3.如图,观察下列图形,既是轴对称图形又是中心对称图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形和中心对称图形的概念求解,由于圆既是轴对称又是中心对称图形,故只考虑圆内图形的对称性即可.【解答】解:第一个既是轴对称图形,又是中心对称图形;第二个只是轴对称图形,不是中心对称图形;第三个既是轴对称图形,又是中心对称图形;第四个只是轴对称图形,不是中心对称图形.故选B.4.25的算术平方根是()A.5 B.﹣5 C.±5 D.【考点】算术平方根.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵(5)2=25,∴25的算术平方根是5.故选A.5.3x2可能表示为()A.x2+x2+x2B.x2•x2•x2C.3x•3x D.9x【考点】单项式乘单项式;同底数幂的乘法.【分析】根据合并同类项可以判断选项A;根据同底数幂的乘法的计算法则可以判断选项B;根据单项式乘单项式的计算法则可以判断选项C;举反例可以判断选项D.【解答】解:A、x2+x2+x2=3x2,故选项正确;B、x2•x2•x2=x6,故选项错误;C、3x•3x=9x2,故选项错误;D、当x=1时,3x2=3,9x=9,故选项错误.故选:A.6.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>0【考点】数轴.【分析】根据a,b两数在数轴的位置依次判断所给选项的正误即可.【解答】解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,正确,符合题意;C、a•b<0,错误,不符合题意;D、<0,错误,不符合题意;故选B.7.若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学是()A.甲B.乙C.丙D.丁【考点】方差.【分析】首先比较出S甲2,S乙2,S丙2,S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,判断出成绩最稳定的同学是谁即可.【解答】解:∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,∴S丁2<S甲2<S乙2<S丙2,∴成绩最稳定的同学是丁.故选:D.8.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【考点】中位数;算术平均数.【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【解答】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选C.9.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.3【考点】函数的图象.【分析】根据l1是从原点出发可得不打电话缴费为0元,因此是无月租费的收费方式;l2是从(0,20)出发可得不打电话缴费为20元,因此是有月租费的收费方式;两函数图象交点为,说明打电话400分钟时,两种收费相同,超过500分钟后,当x取定一个值时,l1所对应的函数值总比l2所对应的函数值大,因此当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.【解答】解:①l1描述的是无月租费的收费方式,说法正确;②l2描述的是有月租费的收费方式,说法正确;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱,说法正确.故选:D.10.已知m=x+1,n=﹣x+2,若规定y=,则y的最小值为()A.0 B.1 C.﹣1 D.2【考点】一次函数的性质.【分析】根据x+1≥﹣x+2和x+1<﹣x+2得出x的取值范围,列出关系式解答即可.【解答】解:因为m=x+1,n=﹣x+2,当x+1≥﹣x+2时,可得:x≥0.5,则y=1+x+1+x﹣2=2x,则y的最小值为1;当x+1<﹣x+2时,可得:x<0.5,则y=1﹣x﹣1﹣x+2=﹣2x+2,则y>1,故选B.二、填空题(本大题有6小题,每小题4分,共24分)11.不透明的袋子里装有1个红球,1个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是.【考点】概率公式.【分析】用红球的数量除以球的总数量即可求得摸到红球的概率.【解答】解:∵共2个球,有1个红球,∴P(摸出红球)=,故答案为:.12.不等式2x+1>3的解集是x>1 .【考点】解一元一次不等式.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,2x>3﹣1,合并同类项得,2x>2,把x的系数化为1得,x>1.故答案为:x>1.13.已知在Rt△ABC中,∠C=90°,直角边AC是直角边BC的2倍,则sin∠A的值是.【考点】锐角三角函数的定义.【分析】先根据两直角边的比求出斜边,再利用直角三角形中锐角三角函数的定义解答.【解答】解:∵Rt△ABC中,∠C=90°,直角边AC是直角边BC的2倍,∴设BC=x,则AC=2x,AB==x,∴sin∠A===.14.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,BC=6,DE=2,当△ADE面积为3时,则△ABC的面积为27 .【考点】相似三角形的判定与性质.【分析】先证明△ADE和△ABC相似,再根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∵△ADE的面积为3,∴S△ABC=3×9=27;故答案为:27.15.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.16.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=(x>0)的图象上运动,那么点B在函数(x>0)(填函数解析式)的图象上运动.【考点】反比例函数综合题;待定系数法求反比例函数解析式;相似三角形的判定与性质.【分析】如图分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b),则ab=1.根据两角对应相等的两三角形相似,得出△OAC∽△BOD,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出BD•OD的积,进而得出结果.【解答】解:分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b).∵点A在反比例函数y=(x>0)的图象上,∴ab=1.在△OAC与△BOD中,∠AOC=90°﹣∠BOD=∠OBD,∠OCA=∠BDO=90°,∴△OAC∽△BOD,∴OC:BD=AC:OD=OA:OB,在Rt△AOB中,∠AOB=90°,∠B=30°,∴OA:OB=1:,∴b:BD=a:OD=1:,∴BD=b,OD=a,∴BD•OD=3ab=3,又∵点B在第四象限,∴点B在函数(x>0)的图象上运动.故答案为:(x>0).三、解答题(本题共11题,共86分)17.计算:1﹣2+2×(﹣3)2.【考点】有理数的混合运算.【分析】先算乘方,再算乘法,最后算加减,依此计算即可求解.【解答】解:1﹣2+2×(﹣3)2=1﹣2+2×9=1﹣2+18=17.18.已知∠AOC,请用尺规作图的方法作出该角的角平分线.【考点】作图—基本作图.【分析】1.以O为圆心,以任意长为半径,画圆,交OA,OC于B,D两点.2.分别以B,D为圆心,以大于BD的长为半径,作圆弧,这两段圆弧相交于P点.3.连接OP就是∠AOC的角平分线.【解答】解:射线OP就是所求.19.化简:(﹣)•.【考点】分式的混合运算.【分析】首先进行合并,再进行分式分解,最后进行约分即可.【解答】解:(﹣)•==20.已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.【考点】矩形的性质;平行四边形的判定与性质.【分析】根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.【解答】证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.21.解不等式组:.【考点】解一元一次不等式组.【分析】先求出两个不等式得解集,然后求出两个不等式解集的公共部分即可.【解答】解:,由①得x<2,由②得x≤3,即不等式组的解集为x<2.22.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.【考点】列表法与树状图法.【分析】首相根据题意画出树状图,然后由树状图求得所有等可能的结果与白色上衣配米色裤子的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵所有等可能结果共6种,其中正好是白色上衣配米色裤子的只有1种,∴所求概率是:.23.王师傅开车通过福厦高速公路某隧道(全长约为7千米)时,所走路程为y(千米)与时间x(分钟)之间的函数关系的图象如图所示(A,B,C三点共线).王师傅说:“我开车通过隧道时,有一段连续2分钟恰好走了1.9千米”.你认为王师傅说有可能对吗?请说明【考点】一次函数的应用.【分析】求出2min前及2min后的速度,设王师傅开车从第t分钟开始连续钟恰好走了1.9千米,根据:2min前前进的路程+2min后前进的路程=1.9,【解答】解:有可能,当0<x≤2时,王师傅开车的速度为=0.8千米/分钟,当x≥2时,王师傅开车的速度为=1千米/分钟,设王师傅开车从第t分钟开始连续钟恰好走了1.9千米,则有0.8(2﹣t)+1•t=1.9,解得t=1.5,即进隧道1.5分钟后,连续2分钟恰好走了1.9千米.24.四边形ACDE是证明勾股定理用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是6,求△ABC的面积.【考点】勾股定理的证明;一元二次方程的应用.【分析】利用根的意义和勾股定理作为相等关系先求得c的值,根据完全平方公式求得ab 的值,从而可求得面积.【解答】解:当x=﹣1时,有a﹣c+b=0,即a+b= c∵2a+2b+c=6,即2(a+b)+c=6∴c=∴a2+b2=c2=2,a+b=2,∵(a+b)2=a2+b2+2ab∴ab=1∴S△ABC=ab=.25.我们定义:有一组对角相等而另一对角不相等的凸四边形叫做“等对角四边形”.已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.【考点】相似三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.【解答】解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图1所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图2所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.26.已知直线y=kx+m与抛物线y=﹣x2+bx+c(b<0)相交于A,B两点,且点A在x轴的正半轴上,点B在y轴上,设点A横坐标为m,抛物线的顶点纵坐标为n.(1)求k的值;(2)当m<2时,试比较n与b+m﹣k的大小.【考点】二次函数的性质.【分析】(1)将点A(m,0)代入直线y=kx+m得:y=km+m=0,即可求出k=﹣1;(2)将k=﹣1代入y=kx+m得到直线为y=﹣x+m,求出与y轴的交点B为(0,m),将点A和点B代入抛物线得出0<m<1,那么n=b2+c=[(m+1)]2,b﹣k+m=m﹣1﹣(﹣1)+m=2m,于是n﹣(b﹣k+m)=(m+1)2﹣2m=(m2+2m+1﹣8m)=(m2﹣6m+1)= [(m﹣3)2﹣8],由0<m<1,解方程(m﹣3)2﹣8=0得:m=3﹣2,进而求解.【解答】解:(1)点A(m,0),并且m>0,代入直线y=kx+m得:y=km+m=0,解得:k=﹣1;(2)直线为y=﹣x+m,与y轴的交点B(0,m).抛物线y=﹣x2+bx+c开口向下,对称轴x=<0,顶点为(, b2+c),所以:n=b2+c,点A和点B代入抛物线得:y(0)=﹣0+0+c=m>0,y(m)=﹣m2+bm+c=0,解得:b=m﹣1<0,c=m>0,所以:0<m<1,所以:n=b2+c=(m﹣1)2+m=(m+1)2=[(m+1)]2,所以:b﹣k+m=m﹣1﹣(﹣1)+m=2m,所以:n﹣(b﹣k+m)=(m+1)2﹣2m=(m2+2m+1﹣8m)=(m2﹣6m+1)= [(m﹣3)2﹣8],因为:0<m<1,解(m ﹣3)2﹣8=0得:m=3﹣2,所以:0<m <3﹣2时,n >b ﹣k+m ;m=3﹣2时,n=b ﹣k+m ;3﹣2<m <1时,n <b ﹣k+m .27.如图,四边形ABCD 为菱形,对角线AC ,BD 相交于点E ,F 是边BA 延长线上一点,连接EF ,以EF 为直径作⊙O ,交DC 于D ,G 两点,AD 分别于EF ,GF 交于I ,H 两点.(1)求∠FDE 的度数;(2)试判断四边形FACD 的形状,并证明你的结论;(3)当G 为线段DC 的中点时,①求证:FD=FI ;②设AC=2m ,BD=2n ,求⊙O 的面积与菱形ABCD 的面积之比.【考点】圆的综合题;等腰三角形的判定;直角三角形斜边上的中线;勾股定理;三角形中位线定理;平行四边形的判定与性质;菱形的性质.【分析】(1)根据直径所对的圆周角是直角即可得到∠FDE=90°;(2)由四边形ABCD 是菱形可得AB ∥CD ,要证四边形FACD 是平行四边形,只需证明DF ∥AC ,只需证明∠AEB=∠FDE ,由于∠FDE=90°,只需证明∠AEB=90°,根据四边形ABCD 是菱形即可得到结论;(3)①连接GE ,如图,易证GE 是△ACD 的中位线,即可得到GE ∥DA ,即可得到∠FHI=∠FGE=∠FGE=90°.根据直角三角形斜边上的中线等于斜边的一半可得DG=GE ,从而有=,根据圆周角定理可得∠1=∠2,根据等角的余角相等可得∠3=∠4,根据等角对等边可得FD=DI ;②易知S ⊙O =π()2=πm 2,S 菱形ABCD =•2m•2n=2mn,要求⊙O 的面积与菱形ABCD 的面积之比,只需得到m 与n 的关系,易证EI=EA=m ,DF=AC=2m ,EF=FI+IE=DF+AE=3m ,在Rt △DEF 中运用勾股定理即可解决问题.【解答】解:(1)∵EF 是⊙O 的直径,∴∠FDE=90°;(2)四边形FACD是平行四边形.理由如下:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴∠AEB=90°.又∵∠FDE=90°,∴∠AEB=∠FDE,∴AC∥DF,∴四边形FACD是平行四边形;(3)①连接GE,如图.∵四边形ABCD是菱形,∴点E为AC中点.∵G为线段DC的中点,∴GE∥DA,∴∠FHI=∠FGE.∵EF是⊙O的直径,∴∠FGE=90°,∴∠FHI=90°.∵∠DEC=∠AEB=90°,G为线段DC的中点,∴DG=GE,∴=,∴∠1=∠2.∵∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∴FD=FI;②∵AC∥DF,∴∠3=∠6.∵∠4=∠5,∠3=∠4,∴∠5=∠6,∴EI=EA.∵四边形ABCD是菱形,四边形FACD是平行四边形,∴DE=BD=n,AE=AC=m,FD=AC=2m,∴EF=FI+IE=FD+AE=3m.在Rt△EDF中,根据勾股定理可得:n2+(2m)2=(3m)2,即n=m,∴S⊙O=π()2=πm2,S菱形ABCD=•2m•2n=2mn=2m2,∴S⊙O:S菱形ABCD=.。
2016年福建省厦门市湖里区中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.的相反数是()A.B.C.3 D.﹣32.一组数据6,6,6,6,6,添加一个数0后,方差将会()A.变大B.变小C.不变D.无法确定3.下列不等式组中解集为x<1的是()A.B.C.D.4.如图,在平面直角坐标系中,直线OA过点A(3,4),则tanα的值是()A.B.C.D.5.下列运算正确的是()A.20=0 B.=±2 C.2﹣1=D.23=66.如图,AB是半圆的直径,∠ABC=50°,点D是的中点,则∠DAB等于()A.40°B.50°C.65°D.70°7.事件“反比例函数y=(k>0)经过点(0,3)”的概率是()A.0 B.C.D.18.在△ABC中,若点D为AB中点,点E是AC上一点,则下列条件能判断线段DE一定为△ABC中位线的是()A.DE⊥AC B.CE=2AEC.=1 D.=9.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1)B.(1,2)和(﹣1,﹣2) C.(1,2)和(2,1)D.(﹣1,2)和(1,2)10.在△ABC中,∠B=2∠C,则AC与2AB之间的大小关系是()A.AC>2AB B.AC=2AB C.AC≤2AB D.AC<2AB二、填空题(本大题有6小题,每小题4分,共24分)11.方程x2=2x的解是.12.已知山的坡度i=1:3,若小明在爬山过程中的铅直高度上升了30米,则他在水平方向移动米.13.某次数学考试中,一学习小组的四位同学A,B,C,D的平均分是80分,为了让该小组成员之间能更好的互帮互学,老师调入了E同学,调入后,他们五人本次的平均分变为90分,则E同学本次考试为分.14.若a=1954×1946,b=1957×1943,c=1949×1951,则a,b,c的大小关系为(用“<”连接).15.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=度.16.利用勾股定理可以顺次作出,,,…的线段.例如要作长为的线段,可以利用如下等式:()2=()2+1=()2+()2=22+()2=42﹣32来构造直角三角形.若k是大于1的正整数,请你通过构造一个两边均为有理数的直角三角形,作出长为的线段,则这个直角三角形的两边可以为:,.三、解答题(本大题有11小题,共86分)17.计算: +﹣x.18.如图,在平面直角坐标系中,已知点A(1,0),B(3,2),请在图中画出线段AB,并在y轴上找一点P,使得PA=PB.(要求:尺规作图,并保留作图痕迹)19.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:∠A=∠D.20.如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).21.如图,在△ABC中,点D是AB边的三等分点(AD<BD),DE∥BC交AC于点E,DF∥AC交BC于点F,求的值.22.西藏林芝米林县与厦门某校开展共建活动,为了让西藏的同学也能读到更多好书,小红同学把自己多年积攒的零花钱5005元计划买300本书送给他们.其中含江苏凤凰出版的A类书《中国历史》,一本20元,山东科技出版的B类书《初中数学解题思路与方法》,一本15元,如果购买的A类书少于B类书的一半,请问小红同学的钱够不够,并说明理由.23.如图,在平面直角坐标系中,已知点A(1,1),点B在直线y=1上,点C (2+,4),点D(2,4),且∠D=∠B,试判断四边形ABCD的形状,并证明你的结论.24.已知点M为抛物线y=x2+bx+b的顶点,抛物线与x轴无交点,点N在抛物线的对称轴上且位于点M上方.若点N到点M的距离是点M到x轴距离的两倍,直线ON的解析式为y=kx,请求出k关于b的函数关系式.25.阅读以下证明过程:已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.请用类似的方法证明以下问题:已知:a,b是正整数,若关于x的一元二次方程x2+2a(1﹣bx)+2b=0有两个实根x1和x2,求证:x1≠x2.26.△ABC是⊙O的内接三角形,BC=.(1)如图1,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.(2)如图2,∠B=120°,点D是优弧的中点,DE∥BC交BA延长线于点E,BE=2,请将图形补充完整并求AB的值.27.已知点A(m,n)在反比例函数y1=上.=6,求点A的坐标;(1)若m=,点M(0,3)且S△AOM(2)若m=n=2,点A到直线y2=﹣x+b的距离为,点B(p,q)在y2=﹣x+b 上,过点B作BC⊥x轴,垂足为点C,交y1于点D.当0<p<q时,求p•BD的取值范围.2016年福建省厦门市湖里区中考数学模拟试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.的相反数是()A.B.C.3 D.﹣3【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选B.2.一组数据6,6,6,6,6,添加一个数0后,方差将会()A.变大B.变小C.不变D.无法确定【考点】方差.【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,依此定义可知方差将会变大.【解答】解:一组数据6,6,6,6,6,添加一个数0后,方差将会变大.故选A.3.下列不等式组中解集为x<1的是()A.B.C.D.【考点】解一元一次不等式组.【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定每个不等式组的解集即可.【解答】解:A、的解集为:x<1;B、无解;C、的解集为:x>2;D、的解集为:1<x<2;故选:A.4.如图,在平面直角坐标系中,直线OA过点A(3,4),则tanα的值是()A.B.C.D.【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据锐角的正切等于对边比邻边,可得答案.【解答】解:如图,tanα==,故选:D.5.下列运算正确的是()A.20=0 B.=±2 C.2﹣1=D.23=6【考点】负整数指数幂;算术平方根;零指数幂.【分析】根据负整数指数幂、算术平方根、零指数幂的定义和计算公式分别对每一项进行判断即可.【解答】解:A、20=1,故本选项错误;B、=2,故本选项错误;C、2﹣1=,故本选项正确;D、23=8,故本选项错误;故选C.6.如图,AB是半圆的直径,∠ABC=50°,点D是的中点,则∠DAB等于()A.40°B.50°C.65°D.70°【考点】圆周角定理.【分析】连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.【解答】解:连结BD,如图,∵点D是的中点,即弧CD=弧AD,∴∠ABD=∠CBD,∵∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选C.7.事件“反比例函数y=(k>0)经过点(0,3)”的概率是()A.0 B.C.D.1【考点】反比例函数的图象;概率公式.【分析】根据反比例函数的定义解答即可.【解答】解:因为反比例函数y=(k>0),x不能等于0,所以点(0,3)不在反比例函数y=(k>0)上,所以事件“反比例函数y=(k>0)经过点(0,3)”的概率是0,故选A.8.在△ABC中,若点D为AB中点,点E是AC上一点,则下列条件能判断线段DE一定为△ABC中位线的是()A.DE⊥AC B.CE=2AEC.=1 D.=【考点】三角形中位线定理.【分析】可先假设DE∥BC,由三角形中位线定理进而可得出结论.【解答】解:根据题意可假设DE∥BC,则可得△ADE∽△ABC,∵点D为AB中点,DE∥BC,∴DE是△ABC中位线,∴,∴,故选D.9.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1)B.(1,2)和(﹣1,﹣2) C.(1,2)和(2,1)D.(﹣1,2)和(1,2)【考点】正比例函数的图象.【分析】分别把各点坐标代入函数y=2x进行检验即可.【解答】解:A、∵当x=2时,y=4,∴点(2,1)不符合,故本选项错误;B、∵当x=1时,y=2;当x=﹣1时,y=﹣2,∴两组数据均符合,故本选项正确;C、∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D、∵当x=﹣1时,y=﹣2≠2;当x=1时,y=4≠2,∴两组数据均不符合,故本选项错误.故选B.10.在△ABC中,∠B=2∠C,则AC与2AB之间的大小关系是()A.AC>2AB B.AC=2AB C.AC≤2AB D.AC<2AB【考点】三角形三边关系;三角形的外角性质.【分析】延长CB到D,使DB=AB,连接AD,从而可得到∠BAD=∠D,再根据三角形的外角的性质可推出∠ABC=2∠D,从而不难得到△ADC是等腰三角形,根据三角形三边关系即可得到2AB与AC的关系.【解答】解:如图,延长CB到D,使DB=AB,连接AD,∵在△ABD中,AB=BD,∴∠BAD=∠D,∵∠ABC是△ABD的外角,∴∠ABC=2∠D,∵∠ABC=2∠C,∴∠C=∠D,∴AD=AC,在△ABD中,AB+BD>AD=AC,即2AB>AC.故选D.二、填空题(本大题有6小题,每小题4分,共24分)11.方程x2=2x的解是x1=0,x2=2.【考点】解一元二次方程﹣因式分解法.【分析】先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.12.已知山的坡度i=1:3,若小明在爬山过程中的铅直高度上升了30米,则他在水平方向移动90米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据斜坡AB的坡度i=1:3,可得BC:AC=1:3,将BC=30米代入求出AC的长度.【解答】解:∵斜坡AB的坡度i=1:3,∴BC:AC=1:3,∵BC=30米,∴AC=30×3=90(米).故答案为:90.13.某次数学考试中,一学习小组的四位同学A,B,C,D的平均分是80分,为了让该小组成员之间能更好的互帮互学,老师调入了E同学,调入后,他们五人本次的平均分变为90分,则E同学本次考试为130分.【考点】加权平均数.【分析】根据一学习小组的四位同学A,B,C,D的平均分是80分,可以求得这四位同学的总分,根据老师调入了E同学,调入后,他们五人本次的平均分变为90分,可以求得这五位同学的总分,从而可以求得E的分数,本题得以解决.【解答】解:由题意可得,A,B,C,D四位同学的总分是:80×4=320分,A,B,C,D,E五位同学的总分是:90×5=450分,∴E同学的分数是:450﹣320=130分,故答案是:130.14.若a=1954×1946,b=1957×1943,c=1949×1951,则a,b,c的大小关系为c>a>b(用“<”连接).【考点】有理数大小比较.【分析】根据平方差公式,可得答案.【解答】解:a=1954×1946==19502﹣16,b=1957×1943==19502﹣49,c=1949×1951==19502﹣1,c>a>b,故答案为:c>a>b.15.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60度.【考点】圆周角定理;平行四边形的性质.【分析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数.【解答】解:法一:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60.法二:连接OB∵四边形OABC为平行四边形∴AB=OC=OB=OA=BC∴△OAB和△OBC都为等边三角形∴∠OAB=∠OCB=60°∵ABCD为圆的内接四边形∴∠DAB+∠DCB=180°∴∠OAD+∠OCD=180°﹣60°﹣60°=60°16.利用勾股定理可以顺次作出,,,…的线段.例如要作长为的线段,可以利用如下等式:()2=()2+1=()2+()2=22+()2=42﹣32来构造直角三角形.若k是大于1的正整数,请你通过构造一个两边均为有理数的直角三角形,作出长为的线段,则这个直角三角形的两边可以为:,1.【考点】勾股定理;勾股定理的逆定理.【分析】根据题目中提供的信息以及勾股定理解答即可.【解答】解::()2=()2+1=()2+()2=22+()2=42﹣32,∴()2=()2﹣12(k是大于1的正整数),∴这个直角三角形的两边可以为,1,故答案为:,1.三、解答题(本大题有11小题,共86分)17.计算: +﹣x.【考点】分式的加减法.【分析】原式通分并利用同分母分式的加减法则计算即可得到结果.【解答】解:原式===1.18.如图,在平面直角坐标系中,已知点A(1,0),B(3,2),请在图中画出线段AB,并在y轴上找一点P,使得PA=PB.(要求:尺规作图,并保留作图痕迹)【考点】作图—基本作图.【分析】在坐标系内描出A、B两点,作出线段AB,作线段AB的垂直平分线交y轴于点P,则点P即为所求.【解答】解:如图所示;19.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】利用SAS可证△ABC≌△CDE,从而可得∠A=∠D.【解答】证明:∵BC∥DE,∴∠BCA=∠CED,在△ABC与△CED中,,∴△ABC≌△CED(SAS),∴∠A=∠D20.如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).【考点】列表法与树状图法.【分析】先画树状图展示所有12种等可能的结果数,再找出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次抽到卡片上的文字含有“文明”、“诚信”价值取向的结果数为2,所以两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率==.21.如图,在△ABC中,点D是AB边的三等分点(AD<BD),DE∥BC交AC于点E,DF∥AC交BC于点F,求的值.【考点】相似三角形的判定与性质.【分析】根据已知条件得到四边形DECF是平行四边形,根据平行四边形的性质得到DE=CF,根据相似三角形的性质即可得到结论.【解答】解:∵DE∥BC交AC于点E,DF∥AC交BC于点F,∴四边形DECF是平行四边形,∴DE=CF,∵D是AB边的三等分点,∴,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=.22.西藏林芝米林县与厦门某校开展共建活动,为了让西藏的同学也能读到更多好书,小红同学把自己多年积攒的零花钱5005元计划买300本书送给他们.其中含江苏凤凰出版的A类书《中国历史》,一本20元,山东科技出版的B类书《初中数学解题思路与方法》,一本15元,如果购买的A类书少于B类书的一半,请问小红同学的钱够不够,并说明理由.【考点】一元一次方程的应用.【分析】可设A类书买了x本,则B类书买了,根据等量关系:A类书的钱数+B 类书的钱数=5005元,不等量关系:购买的A类书<B类书的一半,列出方程和不等式求解即可.【解答】解:设A类书买了x本,则B类书买了,依题意有20x+15=5005,解得x=101,x<,解得x<100,∵101>100,∴小红同学的钱够.23.如图,在平面直角坐标系中,已知点A(1,1),点B在直线y=1上,点C (2+,4),点D(2,4),且∠D=∠B,试判断四边形ABCD的形状,并证明你的结论.【考点】坐标与图形性质.【分析】连接AC,由点C、D的纵坐标相同可得出直线CD的解析式,由点A的坐标以及点B所在的直线即可得出直线AB的解析式,从而得出AB∥CD,进而可得出∠ACD=∠CAB,由此即可证出△ACD≌△CAB(AAS),根据全等三角形的性质即可得出AB=CD、AD=CB,再利用两点间的距离公式即可求出AD=CD,从而得出四边形ABCD为菱形.【解答】解:四边形ABCD为菱形,理由如下:连接AC,如图所示.∵点C(2+,4),点D(2,4),∴直线CD的解析式为y=4,∵点A(1,1),点B在直线y=1上,∴直线AB的解析为y=1,∴CD∥AB,∴∠ACD=∠CAB.在△ACD和△CAB中,,∴△ACD≌△CAB(AAS),∴AB=CD,AD=CB.∵A(1,1),C(2+,4),D(2,4),∴AD==,CD=2+﹣2=,∴AD=CD,∴AB=BC=CD=AD,∴四边形ABCD为菱形.24.已知点M为抛物线y=x2+bx+b的顶点,抛物线与x轴无交点,点N在抛物线的对称轴上且位于点M上方.若点N到点M的距离是点M到x轴距离的两倍,直线ON的解析式为y=kx,请求出k关于b的函数关系式.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】利用配方法求出点M坐标,根据条件求出点N坐标代入y=kx,求出k,再根据△<0确定b的取值范围即可.【解答】解:y=x2+bx+b=(x+)2+,∴点M坐标(﹣,),抛物线对称轴x=﹣,∴点N的横坐标为﹣,点N的纵坐标为+=,∴N(﹣,),代入y=kx得到k×(﹣)=,∴k=b﹣6,∵抛物线与x轴无交点,∴△=b2﹣4b<0,∴0<b<4,∴k=b﹣6 (0<b<4).25.阅读以下证明过程:已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.请用类似的方法证明以下问题:已知:a,b是正整数,若关于x的一元二次方程x2+2a(1﹣bx)+2b=0有两个实根x1和x2,求证:x1≠x2.【考点】反证法.【分析】假设x1=x2,则方程x2﹣2abx+2a+2b=0有两个相等的实数根,即判别式△=0,据此即可得到a和b的关系,然后根据a、b是正整数从而得到错误的结论,从而证明△=0错误,得到所证的结论.【解答】证明:假设x1=x2,则方程x2﹣2abx+2a+2b=0有两个相等的实数根,∴△=4a2b2﹣8a﹣8b=4a2b2﹣4(2a+2b)=0,则a2b2=2a+2b,a2b2=2(a+b).∵a、b是正整数,∴2(a+b)是偶数,∴a2b2也是偶数,又∵a、b为正整数,∴a、b中必有一个是2的倍数,不妨设a是偶数,即a是2的倍数,则a2是4的倍数.∴a2b2是4的倍数.∴a+b是2的倍数.∵a是2的倍数,a2b2=2(a+b),∴=a+b,=,=+.∵a、b是偶数,∴位正偶数,∴+为正整数.又∵a、b位偶数,∴a=b=2,此时,a2b2=16,而2(a+b)=8,a2b2≠2(a+b)与事实不符.∴△≠0,即x1≠x2.26.△ABC是⊙O的内接三角形,BC=.(1)如图1,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.(2)如图2,∠B=120°,点D是优弧的中点,DE∥BC交BA延长线于点E,BE=2,请将图形补充完整并求AB的值.【考点】直线与圆的位置关系.【分析】(1)作OF⊥l于F,CE⊥l于E,设AD=a,则AB=2AD=2a,只要证明OF 是梯形ADEC的中位线即可解决问题.(2)只要证明△EDA≌△BDC,得AE=BC,即可解决问题.【解答】解:(1)图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵DE⊥BD,∴∠BDE=90°,∴BD⊥DE,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA,∴直线l是⊙O切线.(2)图形如图2所示,连接AD,BD,CD.∵=,∠ABC=120°,∴∠EBD=∠CBD=60°,∵DE∥CB,∴∠ABC+∠E=180°,∴∠E=60°,∴△BED是等边三角形,∴∠EDB=60°,ED=DB,∵∠ACD=∠ABD=60°,∠DAC=∠CBD=60°,∴△ACD是等边三角形,∴∠ADC=60°,DA=DC,∴∠EDB=∠ADC,∴∠EDA=∠BDC,在△EDA和△BDC中,,∴△EDA≌△BDC,∴AE=BC=,∵BE=2,∴AB=BE﹣AE=2﹣.27.已知点A(m,n)在反比例函数y1=上.=6,求点A的坐标;(1)若m=,点M(0,3)且S△AOM(2)若m=n=2,点A到直线y2=﹣x+b的距离为,点B(p,q)在y2=﹣x+b 上,过点B作BC⊥x轴,垂足为点C,交y1于点D.当0<p<q时,求p•BD的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法求出k,再根据三角形面积公式可以确定点A横坐标,由此即可解决问题.(2)如图,首先判断直线y2在点A上方,点B在线段EF上运动(不包括点E),构建二次函数即可解决问题.【解答】解:(1)∵点A(m,n)在反比例函数y1=上,且m=,∴k=mn=1,∴y=,∵点M(0,3),∴OM=3,=6,∵S△AOM∴A的横坐标为±4,∴m=±4,∵n=,∴A(4,)或(﹣4,﹣);(2)如图,直线OA与y2交于点E,∵AE=,A(2,2),∴K=4,y=,∴点E坐标(3,3),∵点B(p,q)在y2=﹣x+b上,过点B作BC⊥x轴,垂足为点C,交y1于点D.0<p<q,∴点B在点E上方,点F下方,∴p•BD=p(﹣p+6﹣)=﹣p2+6p﹣4=﹣(p﹣3)2+5,∴p•BD的最大值为5,当点B与点F重合时取得最小值0,∵0<p<q,∴p≠3,∴0≤p•BD<5.2017年3月11日。
2016年福建省厦门六中中考数学一模试卷一、选择题(每小题4分,共40分)1.4的平方根是()A.2 B.±2 C.D.﹣22.计算(a2)3结果正确的是()A.3a2B.a6C.a5D.6a3.分式﹣可变形为()A.﹣B. C.﹣D.4.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形5.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF6.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤27.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.29,30 D.30,288.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.9.命题:“关于x的一元二次方程x2+bx+1=0,当b<0时,必有实数根”;能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=﹣2 C.b=﹣3 D.b=﹣410.已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是()A.3 B.4 C.5 D.6二、填空题(每小题4分,共24分)11.方程x2=x的解是.12.同时抛掷两枚材质均匀的硬币,则正面都向上的概率为.13.如图,在△ABC中,AB=AC,∠B=40°,以B为圆心,BA的长为半径画弧,交BC于点D,连接AD,则∠DAC的度数是°.14.如图,⊙O的半径为2,OA=3.5,∠OAB=30°,则AB与⊙O的位置关系是.15.对于任意实数,我们可以用 max{a,b},表示两数中较大的数.(1)max{﹣1,﹣2}= ;(2)max{1,﹣x2+2x﹣1}( x为任意实数)= .16.已知=(a﹣b)(c﹣a)且a≠0,则= .三、解答题(共86分)17.计算:×sin45°﹣20150+2﹣1.18.如图,AB、CD相交于点O,O是AB的中点,AD∥BC,求证:O是CD的中点.19.解方程:.20.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.21.学校开展“献爱心”捐款活动,某班50名同学积极参加了这次活动,下表是李华同学对全班捐款情况的统计表:捐款(元) 5 10 20 A 30 人数18 20 B 4 2已知全班平均每人捐款11.4元.请求出A、B的值.22.甲、乙两商场春节期间都进行让利酬宾活动.其中,甲商场对一次购物中超过200元后的价格部分打7折,如图所示,表示甲商场在让利方式下y关于x的函数图象,x(单位:元)表示商品原价,y(单位:元)表示购物金额.若乙商场所有商品按8折出售,请在同一坐标系下画出乙商场在让利方式下y关于x的函数图象,并说明如何选择这两家商场购物更省钱.23.如图,点A在∠B的边BG上,AB=5,sin∠B=,点P是∠B的边BH上任意一点,连接AP,以AP为直径画⊙O交BH于C点.若BP=,求证:BG与⊙O相切.24.如图,点B(3,3)在双曲线y=(其中x>0)上,点D在双曲线y=(其中x<0)上,点A、C分别在x、y轴的正半轴上,且点A、B、C、D围成的四边形为正方形.设点A 的坐标为(a,0),求a的值.25.阅读下面的材料:某数学学习小组遇到这样一个问题:如果α,β都为锐角,且tanα=,tanβ=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC在直线BD的两侧,连接AC.(1)观察图象可知:α+β= °;(2)请参考该数学小组的方法解决问题:如果α,β都为锐角,当tanα=3,tanβ=时,在图2的正方形网格中,画出∠MON=α﹣β,并求∠MON的度数.26.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.(1)连接AC,证明:PC=2AQ;(2)当点F为BC的中点时,AP与PF满足什么样的数量关系?并说明理由.27.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如图中的函数是有界函数,其边界值是1.(1)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(2)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位长度,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2016年福建省厦门六中中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.4的平方根是()A.2 B.±2 C.D.﹣2【考点】平方根.【分析】根据平方根的定义求出4的平方根即可.【解答】解:4的平方根是±2;故选B.2.计算(a2)3结果正确的是()A.3a2B.a6C.a5D.6a【考点】幂的乘方与积的乘方.【分析】直接利用幂的乘方运算法则求出答案即可.【解答】解:(a2)3=a6.故选:B.3.分式﹣可变形为()A.﹣B. C.﹣D.【考点】分式的基本性质.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选D.4.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.5.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【考点】全等三角形的判定.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选B.6.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤2【考点】在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式组解集的方法进行解答即可.【解答】解:由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.7.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.29,30 D.30,28【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中30出现了3次,次数最多,故众数是30;将这组数据从小到大的顺序排列为:27,27,28,29,30,30,30,处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29.故选B.8.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.【考点】锐角三角函数的定义.【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【解答】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD===,只有选项C错误,符合题意.故选:C.9.命题:“关于x的一元二次方程x2+bx+1=0,当b<0时,必有实数根”;能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=﹣2 C.b=﹣3 D.b=﹣4【考点】命题与定理.【分析】先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.【解答】解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选A.10.已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是()A.3 B.4 C.5 D.6【考点】二次函数图象上点的坐标特征.【分析】把A点和B点坐标分别代入解析式得到方程组,消去k得到可解得a=,然后利用a>0得到h的取值范围,再利用此范围对各选项进行判断.【解答】解:把A(0,1)、B(8,2)分别代入y=a(x﹣h)2+k(a>0)得,②﹣①得64a﹣16ah=1,解得a=>0,所以h<4.故选A.二、填空题(每小题4分,共24分)11.方程x2=x的解是x1=0,x2=1 .【考点】解一元二次方程﹣因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=112.同时抛掷两枚材质均匀的硬币,则正面都向上的概率为.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,求出正面都向上的概率即可.【解答】解:列表如下:正反正(正,正)(反,正)反(正,反)(反,反)所有等可能的情况有4种,正面都向上的情况有1种,则P=,故答案为:13.如图,在△ABC中,AB=AC,∠B=40°,以B为圆心,BA的长为半径画弧,交BC于点D,连接AD,则∠DAC的度数是30 °.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠C=∠B=40°,由AB=BD,得到∠ADB=70°,根据三角形的外角的性质即可得到结论.【解答】解:∵AB=AC,∠B=40°,∴∠C=∠B=40°,∵AB=BD,∴∠ADB=70°,∴∠DAC=∠ADB﹣∠C=30°,故答案为:30.14.如图,⊙O的半径为2,OA=3.5,∠OAB=30°,则AB与⊙O的位置关系是相交.【考点】直线与圆的位置关系.【分析】如图,作OH⊥AB于H,求出OH与半径半径即可判断.【解答】解:如图,作OH⊥AB于H,在RT△AOH中,∵∠OAH=30°.OA=3.5,∠OHA=90°,∴OH=OA=<2,∴⊙O与AB相交.故答案为相交.15.对于任意实数,我们可以用 max{a,b},表示两数中较大的数.(1)max{﹣1,﹣2}= ﹣1 ;(2)max{1,﹣x2+2x﹣1}( x为任意实数)= 1 .【考点】二次函数的性质.【分析】(1)比较﹣1和﹣2的大小关系即可求得答案;(2)把﹣x2+2x﹣1可化为完全平方式的形式,则可比较其与1的大小关系,即可求得答案.【解答】解:(1)∵﹣1>﹣2,∴max{﹣1,﹣2}=﹣1,故答案为:﹣1;(2)∵﹣x2+2x﹣1=﹣(x﹣1)2≤0,∴1>﹣x2+2x﹣1,∴max{1,﹣x2+2x﹣1}=1,故答案为:1.16.已知=(a﹣b)(c﹣a)且a≠0,则= 2 .【考点】整式的混合运算;非负数的性质:偶次方.【分析】根据题意将原式变形,盘后主要利用添项法可配成完全平方式,再利用偶次方的非负性即可得出答案.【解答】解:,化简:4a2﹣4a(b+c)+(b+c)2=0,,即:,所以=2.故答案为:2.三、解答题(共86分)17.计算:×sin45°﹣20150+2﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用特殊角的三角函数值及二次根式性质化简,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=2×﹣1+=1.18.如图,AB、CD相交于点O,O是AB的中点,AD∥BC,求证:O是CD的中点.【考点】全等三角形的判定与性质.【分析】根据线段中点的定义求出OA=OB,再根据两直线平行,内错角相等可得∠A=∠B,∠C=∠D,然后利用“角角边”证明△AOD和△BOC全等,根据全等三角形对应边相等可得OC=OD,最后根据线段中点的定义证明即可.【解答】证明:∵O是AB的中点,∴OA=OB,∵AD∥BC,∴∠A=∠B,∠C=∠D,在△AOD和△BOC中,,∴△AOD≌△BOC(AAS),∴OC=OD,∴O是CD的中点.19.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2a=a+2,解得:a=2,经检验x=2是增根,分式方程无解.20.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【分析】(1)利用线段垂直平分线的作法得出D点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.【解答】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.21.学校开展“献爱心”捐款活动,某班50名同学积极参加了这次活动,下表是李华同学对全班捐款情况的统计表:捐款(元) 5 10 20 A 30 人数18 20 B 4 2已知全班平均每人捐款11.4元.请求出A、B的值.【考点】二元一次方程组的应用;加权平均数.【分析】根据总人数50和加权平均数的计算公式得出A、B的值.【解答】解:根据题意,得:,解得:,故A的值为25,B的值为6.22.甲、乙两商场春节期间都进行让利酬宾活动.其中,甲商场对一次购物中超过200元后的价格部分打7折,如图所示,表示甲商场在让利方式下y关于x的函数图象,x(单位:元)表示商品原价,y(单位:元)表示购物金额.若乙商场所有商品按8折出售,请在同一坐标系下画出乙商场在让利方式下y关于x的函数图象,并说明如何选择这两家商场购物更省钱.【考点】一次函数的应用.【分析】利用两点法作出函数图象即可,求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【解答】解:乙商场的让利方式y关于x的函数图象如图所示:∵y乙=0.8x,y甲=200+0.7(x﹣200)=0.7x+60,令0.7x+60=0.8x,得x=600,当x>600元时,选择甲,当x=600元时,甲乙一样,当x<600元时,选择乙.23.如图,点A在∠B的边BG上,AB=5,sin∠B=,点P是∠B的边BH上任意一点,连接AP,以AP为直径画⊙O交BH于C点.若BP=,求证:BG与⊙O相切.【考点】切线的判定;圆周角定理;相似三角形的判定与性质;解直角三角形.【分析】根据圆周角定理得出∠ACP=90°,求出∠A CB=90°,求出AC=3,BC=4,计算求出==,根据相似三角形的判定得出△BCA∽△BAP,根据相似求出∠BAP=90°,根据切线的判定得出即可.【解答】证明:∵AP为⊙O的直径,∴∠ACP=90°,∴∠ACB=90°,∵AB=5,sin∠B=,∴AC=3,BC==4,∵BP=,∴==,∵∠B=∠B,∴△BCA∽△BAP,∴∠BCA=∠BAP,∵∠BCA=90°,∴∠BAP=90°,∴PA⊥AB,∵PA过圆心O,∴BG与⊙O相切.24.如图,点B(3,3)在双曲线y=(其中x>0)上,点D在双曲线y=(其中x<0)上,点A、C分别在x、y轴的正半轴上,且点A、B、C、D围成的四边形为正方形.设点A 的坐标为(a,0),求a的值.【考点】反比例函数图象上点的坐标特征;正方形的判定.【分析】如图,作DE⊥OC于E,DF⊥x轴于F,BM⊥OA于M,先证明△CDE≌△ADF,△ADF ≌△BAM,推出DE=DF,AF=BM,求出点D坐标即可解决问题.【解答】解:如图,作DE⊥OC于E,DF⊥x轴于F,BM⊥OA于M.∵四边形ABCD是正方形,∴CD=AD=AB,∠CDA=∠DAB=90°,∵∠DFO=∠DEO=∠EOF=90°,∴∠EDF=90°=∠CDA,∴∠CDE=∠ADF,在△CDE和△ADF中,,∴△CDE≌△ADF,同理△ADF≌△BAM,∴DE=DF,AF=BM=3,∵点D在y=﹣上,∴点D坐标(﹣2,2),∴DE=DF=2,∴OA=1,∴点A坐标(1,0).∴a=1.25.阅读下面的材料:某数学学习小组遇到这样一个问题:如果α,β都为锐角,且tanα=,tanβ=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC在直线BD的两侧,连接AC.(1)观察图象可知:α+β= 45 °;(2)请参考该数学小组的方法解决问题:如果α,β都为锐角,当tanα=3,tanβ=时,在图2的正方形网格中,画出∠MON=α﹣β,并求∠MON的度数.【考点】解直角三角形.【分析】(1)由BC2=AB2+AC2=2AB2,得出△ABC是等腰直角三角形,且∠BAC=90°,那么α+β=∠ABC=45°;(2)连结MN,由OM2=ON2+MN2=2ON2,得出△OMN是等腰直角三角形,且∠ONM=90°,那么α﹣β=∠MON=45°.【解答】解:(1)如图1.∵BC2=32+52=34,AB2=42+12=17,AC2=42+12=17,∴BC2=AB2+AC2=2AB2,∴△ABC是等腰直角三角形,且∠BAC=90°,∴α+β=∠ABC=45°.故答案为45;(2)如图2,连结MN.∵OM2=32+12=10,ON2=22+12=5,MN2=22+12=5,∴OM2=ON2+MN2=2ON2,∴△OMN是等腰直角三角形,且∠ONM=90°,∴α﹣β=∠MON=45°26.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.(1)连接AC,证明:PC=2AQ;(2)当点F为BC的中点时,AP与PF满足什么样的数量关系?并说明理由.【考点】平行四边形的性质.【分析】(1)〖法二〗如图2,延长DE,CB相交于点R,作BM∥PC,根据AQ∥PC,BM∥PC,和E是AB的中点,D、E、R三点共线,求证△AEQ≌△BEM.同理△AED≌△REB.再求证△RBM∽△RCP,利用其对应边成比例即可证明结论.(2)如图3,当点F为BC的中点时,PF=2AP不成立.作BN∥AF,交RD于点N.根据△RBN∽RFP.利用F是BC的中点,RB=BC,可得=,又利用AE=BE,∠NEB=∠PEA,∠NBE=∠PAE.求证△BNE≌△APE即可.【解答】(1)证明:延长DE,CB相交于点R,作BM∥PC.如图1所示:∵AQ∥PC,BM∥PC,∴MB∥AQ.∴∠AQE=∠EMB.∵E是AB的中点,D、E、R三点共线,∴AE=EB,∠AEQ=∠BEM.∴△AEQ≌△BEM.∴AQ=BM.同理△AED≌△REB.∴AD=BR=BC∵BM∥PC,∴△RBM∽△RCP,相似比是.PC=2MB=2AQ.(2)解:当点F为BC的中点时,AP=PF.理由如下:作BN∥AF,交RD于点N.如图2所示;则△RBN∽RFP.∵F是BC的中点,由(1)得:RB=BC,∴RB=RF.∴=,又AE=BE,∠NEB=∠PEA,∠NBE=∠PAE.∴△BNE≌△APE,∴AP=BN.∴AP=BN=PF.27.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如图中的函数是有界函数,其边界值是1.(1)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(2)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位长度,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【分析】(1)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(2)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1,﹣m≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.【解答】解:(1)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(2)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.。
福建省厦门市2016年中考数学5月模拟试卷(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省厦门市2016年中考数学5月模拟试卷(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省厦门市2016年中考数学5月模拟试卷(含解析)的全部内容。
2016年福建省厦门中考数学模拟试卷(5月份)一、选择题(本大题有10小题,每小题4分,共40分)1.下列四个实数中是无理数的是()A.πB.C.D.02.下列计算正确的是( )A.a2+a2=2a4B.(2a)2=4a C.D.3.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E4.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.5.合作交流是学习数学的重要方式之一,某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7,这组数据的众数是()A.7 B.7.5 C.8 D.96.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°7.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8。
9环,方差分别是,,,,则射击成绩波动最小的是()A.甲B.乙C.丙D.丁8.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°9.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN 的取值范围为( )A.PN<3 B.PN>3 C.PN≥3 D.PN≤310.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,若∠CDF=24°,则∠DAB等于()A.100°B.104°C.105°D.110°二、填空题(本大题有6小题,每小题4分,共24分)11.已知∠α=35°,则∠α的补角的度数是°.12.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于.13.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于.14.如果一个n边形的内角和为360°,那么n= .15.定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有个.16.若a+b=﹣1,a≥2b+1,则有最值(填“大"或“小"),是.三、解答题(本题共11题,共86分)17.计算:.18.在平面直角坐标系中,已知点A(﹣2,0),B(﹣1,0),C(﹣1,2),请在图中画出△ABC,并画出将△ABC绕原点顺时针方向旋转90°后的△A1B1C1.19.化简:5x2y﹣2xy2﹣5+3xy(x+y)+1,并说出化简过程中所用到的运算律.20.如图,线段AB,CD相交于点O,AD∥CB,AO=2,AB=5,求.21.在一个口袋中有3个完全相同的小球,把它们分别标上数字:﹣1,1,2,随机的摸出一个小球记录数字然后放回,再随机的摸出一个小球记录数字,求“两次都是正数”的概率.22.如图,某人要测一建筑物AB的高度,他在地面D处测得建筑物顶端A的仰角为26°30',沿DB方向前进90米到达点C处,测得建筑物的顶端A的仰角为63°30',求建筑物的高.参考数据:sin26°30’≈0。
2016年福建省厦门二中中考数学模拟试卷(5月份)一、选择题(本大题有10小题,每小题4分,共40分)1.2的相反数是()A.2 B.﹣2 C.D.2.计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a3.的值为()A.3 B.﹣3 C.﹣2 D.24.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)5.国家统计局公布了2015年1月的居民消费价格指数(CPI),16个省市的CPI同比涨幅超过全国平均水平,其中7个省市的涨幅如表:地区北京广东上海浙江福建云南湖北同比涨幅(%) 3.3 3.3 3 2.8 2.8 2.8 2.3则这组数据的众数和中位数分别为()A.2.8,2.8 B.2.8,2.9 C.3.3,2.8 D.2.8,3.06.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°7.把二次函数y=x2﹣4x+3化成y=a(x﹣h)2+k的形式是()A.y=(x﹣2)2﹣1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+7 D.y=(x+2)2+78.如图,BD是⊙O的直径,∠A=60°,则∠DBC的度数是()A.30°B.45°C.60°D.25°9.如图,在边长为9的正方形ABCD中,F为AB上一点,连接CF.过点F作FE⊥CF,交AD于点E,若AF=3,则AE等于()A.1 B.1.5 C.2 D.2.510.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)二、填空题(本大题有6小题,每小题4分,共24分)11.在函数中,自变量x的取值范围是______.12.已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是______.13.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为______m.14.分解因式:ab2﹣4ab+4a=______.15.如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为______.16.在直角坐标系中,O是坐标原点.点P(m,n)在反比例函数y=的图象上.若m=k,n=k﹣2,则k=______;若m+n=k,OP=2,且此反比例函数y=满足:当x>0时,y随x的增大而减小,则k=______.三、解答题(本题共11题,共86分)17.计算:()﹣1﹣2tan60°﹣.18.在平面直角坐标系中,已知点A(﹣3,1),B(﹣1,0),C(﹣2,﹣1),请在图中画出△ABC,并画出将△ABC向右平移3个单位得到的△A1B1C1.19.如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.20.初三年(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(每个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用树状图或列表方法求解).21.如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,求AE的长.22.为了海西发展,提高厦门人民生活质量,市政府决定修建地铁.甲,乙两工程队承包地铁1号线的某一路段.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要比如期多6个月才能完成,现在甲,乙两队先共同施工4个月,剩下的由乙队单独施工,恰好如期完成.问原计划完成这一路段需多长时间?23.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与中线CD,边CB相交于点H,E,AH=2CH,请画出示意图并求出sinB的值.24.如图,一次函数y=kx+b的图象与坐标轴分别交于点E,F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点,直线x=a与直线l交于点A,与双曲线交于点B(不同于A),设线段AB的长度为m,求关于a的函数关系式.25.若x1,x2是关于x的方程x2+bx+c=0的两实根,且x12+3x22=3|k|(k为整数),则称方程x2+bx+c=0为“B系二次方程”,如:x2+2x﹣3=0,x2+2x﹣15=0,x2+3x﹣=0,x2+x﹣=0,x2﹣2x﹣3=0,x2﹣2x﹣15=0等,都是“B系二次方程”.请问:对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“B系二次方程”,并说明理由.26.如图,在⊙O中,弦AB⊥弦CD于E,弦AG⊥弦BC于F点,CD与AG相交于M点.(1)求证:=;(2)如果AB=12,CM=4,求⊙O的半径.27.如图,点A为y轴正半轴上一点,点B是A关于x轴的对称点,过点A任意作一条直线,与抛物线y=x2交于P,Q两点.(1)如图1,若PQ∥x轴,点A坐标为(0,3),求证:∠ABP=∠ABQ(2)若直线绕点A旋转到图2的位置,问:题(1)中的结论是否依然成立,请说明理由.2016年福建省厦门二中中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分)1.2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.2.计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a,故选:B.3.的值为()A.3 B.﹣3 C.﹣2 D.2【考点】立方根.【分析】直接利用立方根的性质求出答案.【解答】解:==3.故选:A.4.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【考点】作图—基本作图;全等三角形的判定与性质.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.5.国家统计局公布了2015年1月的居民消费价格指数(CPI),16个省市的CPI同比涨幅超过全国平均水平,其中7个省市的涨幅如表:地区北京广东上海浙江福建云南湖北同比涨幅(%) 3.3 3.3 3 2.8 2.8 2.8 2.3则这组数据的众数和中位数分别为()A.2.8,2.8 B.2.8,2.9 C.3.3,2.8 D.2.8,3.0【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2.3,2.8,2.8,2.8,3,3.3,3.3,最中间的数是2.8,则这组数据的中位数是2.8;2.8出现了3次,出现的次数最多,则众数是2.8;故选A.6.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°【考点】平行线的性质.【分析】由AB∥CD,∠C=33°可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,然后由两直线平行,内错角相等,求得∠BED的度数.【解答】解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°,∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∵AB∥CD,∴∠BED=∠ABE=66°.故选D.7.把二次函数y=x2﹣4x+3化成y=a(x﹣h)2+k的形式是()A.y=(x﹣2)2﹣1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+7 D.y=(x+2)2+7【考点】二次函数的三种形式.【分析】利用配方法将原式配方,即可得出顶点式的形式.【解答】解:y=x2﹣4x+3=x2﹣4x+4﹣1,=(x﹣2)2﹣1.故选:A.8.如图,BD是⊙O的直径,∠A=60°,则∠DBC的度数是()A.30°B.45°C.60°D.25°【考点】圆周角定理.【分析】由BD是⊙O的直径,可求得∠BCD=90°,又由圆周角定理可得∠D=∠A=60°,继而求得答案.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°,∵∠D=∠A=60°,∴∠DBC=90°﹣∠D=30°.故选A.9.如图,在边长为9的正方形ABCD中,F为AB上一点,连接CF.过点F作FE⊥CF,交AD于点E,若AF=3,则AE等于()A.1 B.1.5 C.2 D.2.5【考点】相似三角形的判定与性质;正方形的性质.【分析】根据正方形性质得出AD=AB=BC=9,∠A=∠B=90°,求出∠AEF=∠CFB,证△AEF∽△BFC,得出比例式,即可求出答案.【解答】解:∵四边形ABCD是正方形,∴AD=AB=BC=9,∠A=∠B=90°,∵FE⊥CF,∴∠EFC=90°,∴∠AEF+∠EFA=90°,∠AFE+∠CFB=90°,∴∠AEF=∠CFB,∴△AEF∽△BFC,∴=,∴=,∴AE=2,故选C.10.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)【考点】坐标与图形变化-旋转.【分析】过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.二、填空题(本大题有6小题,每小题4分,共24分)11.在函数中,自变量x的取值范围是x≥4.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x﹣4≥0,解得x≥4,则自变量x的取值范围是x≥4.12.已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是a<1.【考点】根的判别式.【分析】关于x的方程x2﹣2x+a=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.【解答】解:∵b2﹣4ac=(﹣2)2﹣4×1×a=4﹣4a>0,解得:a<1.∴a的取值范围是a<1.故答案为:a<1.13.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.【考点】相似三角形的应用.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.14.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.15.如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为5.【考点】矩形的性质;勾股定理.【分析】连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.【解答】解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.16.在直角坐标系中,O是坐标原点.点P(m,n)在反比例函数y=的图象上.若m=k,n=k﹣2,则k=3;若m+n=k,OP=2,且此反比例函数y=满足:当x>0时,y随x的增大而减小,则k=2.【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】把点P的坐标代入反比例函数关系式来求k的值;当k>0时,反比例函数y=的图象:当x>0时,y随x的增大而减小.【解答】解:∵点P(m,n)在反比例函数y=的图象上.且m=k,n=k﹣2,∴k﹣2=,解得k=3;∵m+n=k,OP=2,∴,解得k=2或k=﹣1.又∵当x>0时,y随x的增大而减小,∴k>0,∴k=2符合题意.故答案是:3;2.三、解答题(本题共11题,共86分)17.计算:()﹣1﹣2tan60°﹣.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】分别根据负整数指数幂的计算法则、数的开方法则、特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=3﹣2×﹣2=3﹣2﹣2=1﹣2.18.在平面直角坐标系中,已知点A(﹣3,1),B(﹣1,0),C(﹣2,﹣1),请在图中画出△ABC,并画出将△ABC向右平移3个单位得到的△A1B1C1.【考点】作图-平移变换.【分析】直接利用平移的性质得出对应点位置进而得出答案.【解答】解:如图所示:△A1B1C1,即为所求.19.如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.【考点】全等三角形的判定与性质.【分析】根据平行线性质求出∠A=∠FCE,根据AAS推出△ADE≌△CFE即可.【解答】证明:∵FC∥AB,∴∠A=∠FCE,在△ADE和△CFE中∴△ADE≌△CFE(AAS),∴AD=CF.20.初三年(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(每个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用树状图或列表方法求解).【考点】列表法与树状图法.【分析】此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出所有情况,让这个同学表演唱歌节目的情况数除以总情况数即为所求的概率.【解答】解:(解法一)列举所有等可能的结果,画树状图:由上图可知,所有等可能的结果有6种:1+1=2,1+2=3,1+3=4,2+1=3,2+2=4,2+3=5.其中数字之和为奇数的有3种.∴P(表演唱歌)=(解法二)列表如下:由上表可知,所有等可能的结果共有6种,其中数字之和为奇数的有3种.∴P(表演唱歌)=.21.如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,求AE的长.【考点】菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴BO=4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=.22.为了海西发展,提高厦门人民生活质量,市政府决定修建地铁.甲,乙两工程队承包地铁1号线的某一路段.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要比如期多6个月才能完成,现在甲,乙两队先共同施工4个月,剩下的由乙队单独施工,恰好如期完成.问原计划完成这一路段需多长时间?【考点】分式方程的应用.【分析】设原计划完成这一路段需x个月,则甲修好这条路需x个月,乙修好这条公需(x+6)个月,根据等量关系:甲4个月的工作量+乙x月的工作量=总工作量1,列出方程,求出x的值即可得出答案.【解答】解:设原计划完成这一路段需x个月,则甲修好这条路需x个月,乙修好这条公需(x+6)个月,由题意得:×4+×x=1,解得:x=12,经检验:x=12是原分式方程的解.答:原计划完成这一路段需12个月.23.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与中线CD,边CB相交于点H,E,AH=2CH,请画出示意图并求出sinB的值.【考点】解直角三角形;直角三角形斜边上的中线.【分析】根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;【解答】解:根据题意画出图形如图所示,∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°∴∠BCD+∠ACH=90°∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB=.24.如图,一次函数y=kx+b的图象与坐标轴分别交于点E,F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点,直线x=a与直线l交于点A,与双曲线交于点B(不同于A),设线段AB的长度为m,求关于a的函数关系式.【考点】反比例函数与一次函数的交点问题.【分析】首先求出点P坐标,再利用中点坐标公式求出k、b,分a<﹣1和a>﹣1两种情形讨论即可.【解答】解:把点P(﹣1,n)代入y=﹣中,得到n=4,P(﹣1.4)∵F(0,b),E(﹣,0),F是PE中点,∴解得,∴直线解析式为y=﹣2x+2,∴当a<﹣1时,m=﹣2a+2﹣(﹣)=﹣2a++2,当a>﹣1时,m=﹣﹣(﹣2a+2)=﹣+2a﹣2.25.若x1,x2是关于x的方程x2+bx+c=0的两实根,且x12+3x22=3|k|(k为整数),则称方程x2+bx+c=0为“B系二次方程”,如:x2+2x﹣3=0,x2+2x﹣15=0,x2+3x﹣=0,x2+x﹣=0,x2﹣2x﹣3=0,x2﹣2x﹣15=0等,都是“B系二次方程”.请问:对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“B系二次方程”,并说明理由.【考点】根与系数的关系;一元二次方程的解.【分析】由条件x2﹣2x﹣15=0,x2+2x﹣15=0是“B系二次方程”进行建模,设c=mb2+n,就可以表示出c,然后根据公式法求出其两根,再代入x12+3x22看结果是否为3的整数倍即可得出结论.【解答】解:存在.理由:x2﹣2x﹣15=0,x2+2x﹣15=0是“B系二次方程”,∴假设c=mb2+n,当b=﹣2,c=﹣15时,﹣15=4m+n,∵x2=0是“B系二次方程”,∴n=0时,m=﹣,∴c=﹣b2,∵x2+2x﹣15=0,是“B系二次方程”,当b=2时,c=﹣×22,∴可设c=﹣b2,对于任意一个整数b,当c=﹣b2时,△=b2﹣4ac=16b2.∴x=,即x1=b,x2=﹣b,∴x12+3x22=b2+3×b2=21b2,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“B系二次方程”.26.如图,在⊙O中,弦AB⊥弦CD于E,弦AG⊥弦BC于F点,CD与AG相交于M点.(1)求证:=;(2)如果AB=12,CM=4,求⊙O的半径.【考点】垂径定理;勾股定理;圆心角、弧、弦的关系;圆周角定理.【分析】(1)连结AD、BD、BG,由AB⊥CD,AG⊥BC得到∠CEB=∠AFB=90°,根据等角的余角相等得到∠ECB=∠BAF,即可得出结论;(2)连接OA、OB、OC、OG、CG,作OH⊥CG于H,OK⊥AB于K,由垂径定理得出CH=GH=CG,AK=BK=AB=6,由圆周角定理和角的互余关系证出∠CNF=∠AGC,得出CG=CM=4,因此GH=2,由AG⊥BC证出的度数+的度数=180°,得出∠COG+∠AOB=180°,因此∠HOG+∠BOK=90°,证出∠HGO=∠BOK,由AAS证明△HOG≌△KBO,得出对应边相等OK=HG=2,再由勾股定理求出OB即可.【解答】(1)证明:连结AD、BD、BG,如图1所示,∵AB⊥CD,AG⊥BC,∴∠CEB=∠AFB=90°,∴∠ECB+∠B=90°,∠BAF+∠B=90°,∴∠ECB=∠BAF,即∠DCB=∠BAG,∴=;(2)解:连接OA、OB、OC、OG、CG,作OH⊥CG于H,OK⊥AB于K,如图2所示:则CH=GH=CG,AK=BK=AB=6,∵∠DCB=∠BAG,∠DCB+∠CMF=90°,∠BAG+∠ABF=90°,∴∠CMF=∠ABF,∵∠ABF=∠AGC,∴∠CNF=∠AGC,∴CG=CM=4,∴GH=2,∵AG⊥BC,∴∠AFB=90°,∴∠FAB+∠FBA=90°,∴的度数+的度数=180°,∴∠COG+∠AOB=180°,∴∠HOG+∠BOK=90°,∵∠HGO+∠HOG=90°,∴∠HGO=∠BOK,在△HOG和△KBO中,,∴△HOG≌△KBO(AAS),∴OK=HG=2,∴OB===2;即⊙O的半径为2.27.如图,点A为y轴正半轴上一点,点B是A关于x轴的对称点,过点A任意作一条直线,与抛物线y=x2交于P,Q两点.(1)如图1,若PQ∥x轴,点A坐标为(0,3),求证:∠ABP=∠ABQ(2)若直线绕点A旋转到图2的位置,问:题(1)中的结论是否依然成立,请说明理由.【考点】二次函数综合题.【分析】(1)由PQ∥x轴以及点A的坐标,可将y=3代入抛物线解析式中求出点P、Q的坐标,由此可得出PA=QA,再由∠PAB=∠QAB=90°以及两三角形有公共边AB可证出△PAB≌△QAB,由全等三角形的性质即可得出结论;(2)结论成立.过点Q作QM⊥y轴于点M,延长QM交抛物线于另一点N,由(1)可知△NMB≌△QMB,从而得出∠NBM=∠QBM,再由“∠PBA=∠NBM,∠QBA=∠QBM”,即可得出结论.【解答】(1)证明:∵PQ∥x轴,点A坐标为(0,3),∴点P,点Q的纵坐标均为3.令y=x2中y=3,则有x2=3,解得:x=±2,∴点P的坐标为(﹣2,3),点Q的坐标为(2,3),∴PA=QA.∵PQ∥x轴,y轴⊥x轴,∴PQ⊥y轴,∴∠PAB=∠QAB=90°.在△PAB和△QAB中,有,∴△PAB≌△QAB(SAS),∴∠ABP=∠ABQ.(2)解:题(1)中的结论依然成立.理由如下:过点Q作QM⊥y轴于点M,延长QM交抛物线于另一点N,如图所示.同理可证出△NMB≌△QMB,∴∠NBM=∠QBM,∵∠PBA=∠NBM,∠QBA=∠QBM,∴∠ABP=∠ABQ.2016年9月29日初中数学试卷鼎尚图文**整理制作。
厦门市 2016 年 5 月中考模拟数学试卷一、选择题(本大题有10 小题,每题 4 分,共 40 分)1.是一个()2A. 整数B.分数C.有理数D.无理数2. 如图是我们学过的反比率函数图象,它的函数分析式可能为()A. y x2B.y4C.y3D. y 1 xx x212第 5 题第2题第3题3.如图, 1 的内错角为()A. 2B.3C.4D.54.3x2可能表示为()A. x2x2x2B.x2 x2 x2C. 3x 3xD.9x5.小明想用图形1经过作图变换获得图形2,以下这些变化中不行行的是()A. 轴对称变换B.平移变换C.旋转变换D.中心对称变换6.今年春节时期,我市某景区管理部门随机检查了1000 名旅客,此中有 900人对景区表示满意。
关于此次检查以上说法正确的选项是()A. 若随机接见一位旅客,则该旅客表示满意的概率约为0.9B.到景区的全部旅客中,只有 900 名旅客表示满意C. 若随机接见 10 位旅客,则必定有9 位旅客表示满意D. 本次检查采纳的方式为普查7.知足以下条件的一元二次方程ax 2bx c 0(a0 )必定有整数解的是()A. 2a 2b c 0B.4a 2b c 0C. a cD.b24ac08.如图,已知AB是⊙ O的直径,弦CD AB于E,连结BC,BD,AC,则以下结论中不必定正确的选项是()A.ACB 900B.DE=CEC.OE=BED.ACE ABC第 8 题第11题第 15题9.以下图形中,暗影部分面积相等的为()A. 甲,丙B.甲,丁C.乙,丙D.丙,丁10.已知一条抛物线经过 E(0,10),F(2,2), G( 4, 2),H(3,1)四点,选择此中两点用待定系数法能求出抛物线分析式的为()A.E,FB.E,GC.E,HD.F,G二、填空题(本大题有 6 小题,每题 4 分,共 24 分)11.如图,数轴上的点 A 向左挪动 2 个单位长度获得点 B,则点 B 表示的数为12.若点A(a, b )在反比率函数y 2 的图象上,则代数式ab 4 的值为x13.不透明的袋子里装有 1 个红球, 1 个白球,这些球除颜色外无其余差异。
1. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2
个单位长度,则第2015秒时,点P 的坐标是( ) A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)
2.等腰直角三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2
﹣6x+n ﹣1=0的两根,则n 的值为
( ) A . 9 B . 10 C . 9或10 D . 8或
10
3.如图,Rt △ABC 中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG 的一边CD 在直线AB 上,且点D 与点A 重合,现将正方形DEFG 沿A ﹣B 的方向以每秒1个单位的速度匀速运动,当点D 与点B 重合时停止,则在这个运动过程中,正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( )
A .
B .
C .
D .
4.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax 2
+bx+c 经过点(﹣1,﹣4),则下列结论中错误的是( )
A . b 2>4ab
B . a x 2+bx+c≥﹣6
C . 若点(﹣2,m ),(﹣5,n )在抛物线上,则m >n
D . 关于x 的一元二次方程ax 2
+bx+c=﹣4的两根为﹣5和﹣1
P
O 第1题
O 1 x y O 2
O 3
5.如图,矩形OABC 的顶点A 、C 的坐标分别是(4,0)和(0,2),反比例函数
y=(x >0)的图象过对角线的交点P 并且与AB ,BC 分别交于D ,E 两点,连接OD ,OE ,DE ,则△ODE 的面积为 .
6.如图,直线l :y=﹣x+1与坐标轴交于A ,B 两点,点M (m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M ,当⊙M 与直线l 相切时,则m 的值为 .
7. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,
CE ⊥OA 交 AB
于点E ,以点O 为圆心,OC 的长为半径 作 CD
交OB 于点D ,若OA =2,则阴影部分的面积为 .
8. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .
E
O
C
D
B
A 第7题
E
F
C
D
B A 第8题
B ′
9.如图,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间
的一个动点(含端点),过点P 作PF ⊥BC 于点F . 点D 、E 的坐标分别为(0,6),(-4,0),连接PD ,PE ,DE .
(1)请直接写出抛物线的解析式;
(2)小明探究点P 的位置发现:当点P 与点A 或点C 重合时,PD 与PF 的差为定值. 进而猜想:对于任意一点P ,
PD 与PF 的差为定值. 请你判断该猜想是否正确,并说明理由;
(3)小明进一步探究得出结论:若将“使△PDE 的面积为整数”的点P 记作“好点”,则存在多个“好点”,且使△PDE
的周长最小的点P 也是一个“好点”.
请直接写出所有“好点”的个数,并求出△PDE 的周长最小时“好点”的坐标.
10.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC ,BC 的交点分别为D 、E ,且=
.
(1)试判断△ABC 的形状,并说明理由.
(2)已知半圆的半径为5,BC=12,求sin ∠ABD 的值.
P
E O
F C D
B
A 图
x
y
C B
A y O E D
x
备用图
11.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点,其中A、B两点的坐标分别为(﹣1,0),(0,﹣2),点D在x轴上且AD为⊙M的直径.点E是⊙M与y轴的另一个交点,过劣弧上的点F作
FH⊥AD于点H,且FH=1.5
(1)求点D的坐标及该抛物线的表达式;
(2)若点P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标;
(3)在抛物线的对称轴上是否存在点Q,使△QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.。