第四节 基本不等式
- 格式:ppt
- 大小:1.10 MB
- 文档页数:10
第四节 基本不等式: ab ≤a +b 2(a ,b ∈R +)基础回顾K一、算术平均数与几何平均数的概念若a>0,b>0,则a ,b 的算术平均数是a +b2,几何平均数是ab.二、常用的重要不等式和基本不等式1.若a ∈R ,则a 2≥0,||a ≥0(当且仅当a =0时,取等号). 2.若a ,b ∈R ,则a 2+b 2≥2ab(当且仅当a =b 时取等号). 3.若a ,b ∈R +,则a +b ≥2ab(当且仅当a =b 时取等号). 4.若a ,b ∈R +,则a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(当且仅当a =b 时取等号).三、均值不等式(基本不等式)两个正数的均值不等式:若a ,b ∈R +,则a +b2≥ab(当且仅当a =b 时取等号).变式: ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R +). 四、最值定理设x>0,y>0,由x +y ≥2xy ,有:(1)若积xy =P(定值),则和x +y 最小值为2P ;(2)若和x +y =S(定值),则积xy 最大值为⎝ ⎛⎭⎪⎫S 22.即积定和最小,和定积最大.运用最值定理求最值应满足的三个条件:“一正、二定、三相等”. 五、比较法的两种形式 一是作差,二是作商.基础自测1.若x +2y =4,则2x +4y 的最小值是(B ) A .4 B .8 C .22 D .42解析:因为2x +4y ≥22x ·22y =22x +2y =224=8,当且仅当2x=22y ,即x =2y =2时取等号,所以2x +4y 的最小值为8.2.下列结论中正确的是(B )A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x ≥2C .当x ≥2时,x +1x 的最小值为2D .当0<x ≤2时,x -1x无最大值3.若直线2ax -by +2=0(a>0,b>0)始终平分圆x 2+y 2+2x -4y +1=0的周长,则1a +1b的最小值是4.4.当x>2时,不等式x +1x -2≥a 恒成立,则实数a 的取值范围是(-∞,4].解析:因为x+1x-2≥a恒成立,所以a必须小于或等于x+1x-2的最小值.因为x>2,所以x-2>0.所以x+1x-2=(x-2)+1x-2+2≥4,当且仅当x-2=1x-2,即x=3时等号成立.所以a≤4.高考方向1.以命题真假判断为载体,考查基本不等式成立的条件以及等号成立的条件,有时与不等式的性质结合在一起考查,一般以选择题的形式出现,难度不大.2.考查利用基本不等式求函数或代数式的最值,有时与不等式的恒成立问题相结合,多以选择题、填空题的形式出现,难度中等及以下.3.考查利用基本不等式解决实际应用中的最值问题,各种题型均有可能出现,难度中等.品味高考1.(2013·山东卷)设正实数x,y,z满足x2-3xy+4y2-z=0,则当xy z 取得最大值时,2x +1y -2z的最大值为(B ) A .0 B .1 C.94D .3解析:由已知得z =x 2-3xy +4y 2(*)则xy z =xy x 2-3xy +4y 2=1x y +4yx -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y 2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.故选B.2.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(B )A .60件B .80件C .100件D .120件解析:记平均到每件产品的生产准备费用与仓储费用之和为f(x),则f(x)=800+x8×x ×1x =800x +x8≥2800x ×x 8=20,当且仅当800x =x8(x >0),即x =80时,取最小值.故选B.高考测验1.已知向量a =(x ,2),b =(1,y),其中x >0,y >0.若a·b =4,则1x +2y的最小值为(C )A.32 B .2 C.94D .2 2 解析:∵a·b =4,∴x +2y =4,x >0,y >0,∴1x +2y =14(x +2y)⎝ ⎛⎭⎪⎫1x +2y =14⎝ ⎛⎭⎪⎫5+2y x +2x y ≥14⎝⎛⎭⎪⎫5+22y x ·2x y =94. 当且仅当⎩⎨⎧x +2y =4,2y x =2x y,即x =y =43时,等号成立.2.已知x >0,y >0,且1x +9y=1,则2x +3y 的最小值为29+66.解析:由题意可得,2x +3y =(2x +3y)·⎝ ⎛⎭⎪⎫1x +9y =3y x +18x y +29≥23y x ·18xy+29=29+66, 当且仅当3y x =18x y ,结合1x +9y =1,解得x =2+362,y =6+9时取等号,故2x +3y 的最小值为29+6 6.课时作业1.已知a>0,b>0,“a +b =2” 是“ab ≤1”的 (A ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:由基本不等式可知,a +b =2⇒ab ≤1,但ab ≤1不能推出a +b =2.故选A.2.(2013·常州质检)已知f(x)=x +1x-2(x<0),则f(x)有(C )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4 解析:因为x<0,所以-x>0,所以x +1x -2=-⎝ ⎛⎭⎪⎫-x +1-x -2≤-2(-x )·1-x-2=-4,当且仅当-x =1-x,即x =-1时,等号成立.3.(2013·长沙质检)若0<x<1,则当f(x)=x(4-3x)取得最大值时,x 的值为(D )A.13B.12C.34D.23解析:因为0<x<1,所以f(x)=x(4-3x)=13·3x(4-3x)≤13×⎝ ⎛⎭⎪⎫3x +4-3x 22=43,当且仅当3x =4-3x ,即x =23时等号成立,故选D.4.设a ,b ,c ,d ∈R ,若a ,1,b 成等比数列,且c ,1,d 成等差数列,则下列不等式恒成立的是(D )A .a +b ≤2cdB .a +b ≥2cdC .|a +b|≤2cdD .|a +b|≥2cd 解析:∵ab =1>0, ∴a ,b 同号.∴|a +b|=|a|+|b|≥2|a||b|=2. 又c +d =2,∴(c +d)2=4,即c 2+d 2+2cd =4.∴4-2cd =c 2+d 2≥2cd ,得2cd ≤2, ∴|a +b|≥2cd.故选D.5.已知函数f(x)=2x 满足f(m)·f(n)=2,则mn 的最大值为(B ) A.12 B.14 C.16 D.18解析:由已知得2m ·2n =2m +n =2,所以m +n =1,于是mn ≤⎝⎛⎭⎪⎫m +n 22=14.故选B. 6.某工厂第一年年底的产量为p ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则有(C )A .x ≥a +b 2B .x =a +b2C .x ≤a +b 2D .x>a +b2解析:依题意得,该工厂第二年的产量为p(1+a),第三年的产量为p(1+a)(1+b).又由于这两年的平均增长率为x ,则p(1+x)2=p(1+a)·(1+b).于是(1+x)2=(1+a)(1+b)≤⎝⎛⎭⎪⎫1+a +1+b 22,所以1+x ≤2+a +b 2,即x ≤a +b2.故选C.7.已知x>0,y>0,2x +y =13,则1x +1y 的最小值是解析:1x +1y =6x +3y x +6x +3y y =9+3y x +6xy ≥9+218=9+6 2.8.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞. 解析:∵x >0,∴x +1x≥2(当且仅当x =1时取等号),∴x x 2+3x +1=1x +1x +3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15. 9.已知a <b ∈R ,且ab =50,则|a +2b|的最小值为20. 解析:∵a <b ∈R ,且ab =50, ∴b =50a,∴|a +2b|=⎪⎪⎪⎪⎪⎪a +100a =|a|+⎪⎪⎪⎪⎪⎪100a ≥2|a|·⎪⎪⎪⎪⎪⎪100a =20.当且仅当|a|=⎪⎪⎪⎪⎪⎪100a 时取等号,故|a +2b|的最小值为20.10.已知a >b >0,且ab =1,求a 2+b 2a -b 的最小值.解析:∵a =1,∴a 2+b 2a -b =(a -b )2+2ab a -b =(a -b )2+2a -b =a -b +2a -b , ∵a >b >0, ∴a -b >0,∴a 2+b 2a -b =a -b +2a -b≥2(a -b )·2a -b=22,当且仅当⎩⎨⎧ab =1,a -b =2a -b ,即a =6+22,b =6-22,取等号,∴当a =6+22,b =6-22时,a 2+b 2a -b 取得最小值2 2.11.围建一个面积为368 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口(如图所示),已知旧墙的维修费用为180元/m ,新墙的造价为460元/m ,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.解析:(1)因为利用的旧墙的长度为x 米,则以被利用的那部分旧墙为一边的矩形的另一边长的为368xm ,于是y =180x +460(x -2)+460×2×368x =640x +232×82×10x-920=640x+338 560x-920(x>0).(2)∵x>0,∴640x+338 560x≥2640x·338 560x=29 440.∴y=640x+338 560x-920≥29 440-920=28 520,当且仅当640x=338 560x,即x=23时等号成立.∴当x=23 m时,修建围墙的总费用最小,最小总费用是28 520元.。
第四节 基本不等式[考纲传真] 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题.知识点1 基本不等式ab ≤a +b2 (1)基本不等式成立的条件:a >0,b >0;(2)等号成立的条件:当且仅当a =b 时等号成立;(3)其中a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.因此基本不等式又称为均值不等式.知识点2 利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)1.必会结论(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +ab≥2(a ,b 同号).(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ).(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ). (5)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ). (6)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0).2.必清误区(1)使用基本不等式求最值.“一正”“二定”“三相等”三个条件缺一不可. (2)连续应用基本不等式求最值要求每次等号成立的条件一致. 【学情自测】1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)ab ≤⎝⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (2)函数b a +ab 的取值范围是[2,+∞).( )(3)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值为4.( )2.(教材改编)设a >0,b >0,且a +b =8,则ab 的最大值为( ) A .8 B.12 C .14D.163.若a >0,b >0且a +2b =2,则ab 的最大值为( ) A.12 B.2 C .1D.44.(2016·重庆模拟)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.【利用基本不等式求最值】1.函数y =x 2+2x +2x +1(x >-1)的图象最低点的坐标是( )A .(1,2) B.(1,-2) C .(1,1)D.(0,2)2.(2016·威海模拟)已知x>0,则xx2+4的最大值为________.3.(2016·武汉模拟)已知正实数x,y满足x+2y-xy=0,则x+2y的最小值为________.【基本不等式的综合应用】(1)(2016·济宁模拟)已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(-∞,-1) B.(-∞,22-1)C.(-1,22-1) D.(-22-1,22-1)(2)(2016·郑州模拟)已知各项为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n,使得a m·a n=22a1,则1m+4n的最小值为________.[变式训练]1.(2016·泰安模拟)已知a>0,b>0,若不等式3a+1b≥ma+3b恒成立,则m的最大值为()A.9 B.12C.18 D.242.(2015·济南模拟)若点A(1,1)在直线mx+ny-2=0上,其中mn>0,则1m+1 n的最小值为________.【基本不等式的实际应用】(1)某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2 000元/m2;材料工程费在建造第一层时为400元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.(2)(2016·盐城模拟)某水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80n+1.若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元.①求出f(n)的表达式;②求从今年算起第几年利润最高?最高利润为多少万元?[变式训练]某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4 000 m2,人行道的宽分别为4 m和10 m(如图6-4-1所示).图6-4-1(1)若设休闲区的长和宽的比|A1B1||B1C1|=x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?.【易错辨析】多次使用基本不等式忽视成立条件致误(2016·深圳模拟)已知两正数x,y满足x+y=1,则z=⎝⎛⎭⎪⎫x+1x⎝⎛⎭⎪⎫y+1y的最小值为________.课时强化练A组跨越本科线1.已知f(x)=x+1x-2(x<0),则f(x)有()A.最大值为0 B.最小值为0C.最大值为-4 D.最小值为-42.已知0<x<1,则x(3-3x)取得最大值时x的值为()A.13 B.12C.34 D.233.把一段长16米的铁丝截成两段,分别围成正方形,则两个正方形面积之和的最小值为()A.4 B.8C.16 D.324.若a,b均为大于1的正数,且ab=100,则lg a·lg b的最大值是()A.0 B.1C.2 D.525.(2015·陕西高考)设f(x)=ln x,0<a<b,若p=f(ab),q=f⎝⎛⎭⎪⎫a+b2,r=12(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<qC .q =r >p D.p =r >q 6.(2016·蚌埠模拟)设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b 的最小值是( )A .4 B.92 C .8D.97.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 8.(2016·广州模拟)设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为________.B 组 名校必刷题9.(2016·福州模拟)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B.4 C.92D.11210.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2 B.23-2 C .2 3 D.211.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.高考突破练(九)命题热点一不等关系与一元二次不等式1.(2014·天津高考)设a,b∈R,则“a>b”是“a|a|>b|b|”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,故选C.【答案】 C2.(2014·四川高考)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bcC.ac>bd D.ac<bd【解析】法一令a=3,b=2,c=-3,d=-2,则ac=-1,bd=-1,排除选项C,D;又ad=-32,bc=-23,所以ad<bc,所以选项A错误,选项B正确.故选B.法二 因为c <d <0, 所以-c >-d >0, 所以1-d >1-c >0. 又a >b >0,所以a-d >b-c ,所以a d <bc .故选B.【答案】 B命题热点二 简单的线性规划问题3.(2015·湖南高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥1,y -x ≤1,x ≤1,则z =2x -y 的最小值为( )A .-1 B.0 C .1D.2【解析】 画出可行域如图中阴影部分所示.由z =2x -y 得y =2x -z ,平移直线2x -y =0,当直线过A 点时,z 取得最小值. 由⎩⎪⎨⎪⎧ x +y =1,y -x =1,得⎩⎪⎨⎪⎧x =0,y =1, ∴A (0,1).∴当x =0,y =1时,z min =2×0-1=-1,故选A. 【答案】 A4.(2015·安徽高考)已知x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是( )A .-1 B.-2 C .-5D.1【解析】 约束条件下的可行域如图所示,由z =-2x +y 可知y =2x +z ,当直线y =2x +z 过点A (1,1)时截距最大,此时z 最大为-1,故选A.【答案】 A5.(2015·山东高考)若x ,y 满足约束条件⎩⎨⎧y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为________.【解析】 根据约束条件画出可行域如图所示,平移直线y =-13x ,当直线y =-13x +z3过点A 时,目标函数取得最大值.由⎩⎪⎨⎪⎧y -x =1,x +y =3,可得A (1,2),代入可得z =1+3×2=7. 【答案】 76.(2015·全国卷Ⅱ)若x ,y 满足约束条件⎩⎨⎧x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则z =2x +y 的最大值为________.【解析】 ∵z =2x +y ,∴y =-2x +z ,将直线y =-2x 向上平移,经过点B 时z 取得最大值.由⎩⎪⎨⎪⎧x +y -5=0,x -2y +1=0, 解得⎩⎪⎨⎪⎧x =3,y =2,∴z max =2×3+2=8.【答案】 87.(2014·湖南高考)若变量x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.【解析】 作出不等式组表示的平面区域,如图中阴影部分所示,z =2x +y ,则y =-2x +z .易知当直线y =-2x +z 过点A (k ,k )时,z =2x +y 取得最小值,即3k =-6,所以k =-2.【答案】 -28.(2014·浙江高考)当实数x ,y 满足⎩⎨⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】 画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】 ⎣⎢⎡⎦⎥⎤1,32命题热点三 基本不等式9.(2015·福建高考)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2 B.3 C .4D.5【解析】 将(1,1)代入直线x a +y b =1得1a +1b =1,a >0,b >0,故a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +ab ≥2+2=4,等号当且仅当a =b 时取到,故选C.【答案】 C10.(2014·福建高考)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元 B.120元 C .160元D.240元【解析】 由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4x m ,又设总造价是y 元,则y =20×4+【答案】 C11.(2014·重庆高考)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3B.7+2 3 C .6+4 3D.7+4 3【解析】由题意得⎩⎪⎨⎪⎧ab >0,ab ≥0,3a +4b >0,所以⎩⎨⎧a >0,b >0.又log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4ab , 所以3a +4b =ab ,故4a +3b =1.所以a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+3a b +4b a ≥7+23a b ·4b a =7+43,当且仅当3ab =4ba 时取等号.故选D.【答案】 D12.(2015·天津高考)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.【解析】 由于a >0,b >0,ab =8,所以b =8a .所以log 2a ·log 2(2b )=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a )=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b )取得最大值4. 【答案】 413.(2014·上海高考)若实数x,y满足xy=1,则x2+2y2的最小值为________.【解析】∵x2+2y2≥2x2·2y2=22xy=22,当且仅当x=2y时取“=”,∴x2+2y2的最小值为2 2.【答案】2 214.(2014·湖北高考)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒),平均车长l(单位:米)的值有关,其公式为F=76 000vv2+18v+20l.(1)如果不限定车型,l=6.05,则最大车流量为________辆/时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/时.【解析】(1)当l=6.05时,F=76 000vv2+18v+121=76 000v+121v+18≤76 0002v·121v+18=76 00022+18=1 900.当且仅当v=11米/秒时等号成立,此时车流量最大为1 900辆/时.(2)当l=5时,F=76 000vv2+18v+100=76 000v+100v+18≤76 0002v·100v+18=76 00020+18=2 000.当且仅当v=10米/秒时等号成立,此时车流量最大为2 000辆/时.比(1)中的最大车流量增加100辆/时.【答案】(1)1 900(2)100。
不等式4:基本不等式考点:基本不等式1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.基本方法:(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.例1.在下列各函数中,最小值等于2的函数是( )A .y =x +1xB .y =cos x +1cos x (0<x <π2) C .y =x 2+4x 2+3 D .y =e x +4ex -2 【解析】由一正二定三相等得,y =e x +4e x -2≥2e x ·4ex -2=2,当e x =2时取“=”.例2.若a 、b ∈R ,且ab >0,则下列不等式中恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC.1a +1b >2abD.b a +a b≥2 【解析】由基本不等式的条件“一正二定三相等”求最值,易知只有D 全满足.考点:利用基本不等式求最值问题基本方法:已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就22 ⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.4.(1)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b这两个不等式链用处很大,注意掌握它们.例1.(1)设0<x <2,求函数y =3x (8-3x )的最大值;(2)求3a -4+a 的取值范围; (3)已知x >0,y >0,且x +y =1,求8x +2y的最小值.【分析】 (1)属“积大”问题,可直接应用基本不等式;(2)属“和小”问题,要分拆,使积一定,即3a -4+a =3a -4+(a -4)+4. (3)注意逆代.因为1=x +y ,所以8x +2y =(8x +2y )(x +y ).【解析】 (1)因为0<x <2,所以0<3x <6,8-3x >2>0,所以y =3x (8-3x )≤3x +(8-3x )2=82=4.当且仅当3x =8-3x ,即x =43时,取等号. 所以当x =43时,y =3x (8-3x )的最大值是4. (2)显然a ≠4.当a >4时,a -4>0,所以3a -4+a =3a -4+(a -4)+4 ≥23a -4×(a -4)+4=23+4, 当且仅当3a -4=a -4,即a =4+3时取等号.当a <4时,a -4<0. 所以3a -4+a =3a -4+(a -4)+4=-[34-a+(4-a )]+4 ≤-234-a×(4-a )+4=-23+4. 当且仅当34-a=4-a ,即a =4-3时,取等号. 所以3a -4+a 的取值范围是(-∞,-23+4]∪[23+4,+∞). (3)因为x >0,y >0,且x +y =1,所以8x +2y =(8x +2y)(x +y ) =10+8y x +2x y≥10+28y x ·2x y=18. 当且仅当8y x =2x y,即x =2y 时等号成立. 所以,当x =23,y =13时,8x +2y有最小值18.例2;【和定积最大】若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ).A.12 B .1 C .2 D .4解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A例3.【和定积最大】若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C例3.【拆、凑、代换、平方】(1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________;[审题视点] 第(1)问把1x +1y 中的“1”代换为“2x +y ”,展开后利用基本不等式;解析 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2x y ≥3+2 2.当且仅当y x =2x y 时,取等号.例4.【同上】若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.解析:由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2× 4y x ·x y =18,当且仅当4y x =x y ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.例5.【同上】尽量不要连续两次以上使用基本不等式,若使用两次时应保证两次等号成立的条件同时相等.已知a >0,b >0,且a +b =1,求1a +2b 的最小值.∵a >0,b >0,且a +b =1,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2 b a ·2a b =3+2 2. 当且仅当⎩⎪⎨⎪⎧ a +b =1,b a =2a b ,即⎩⎨⎧a =2-1,b =2-2时, 1a +2b 的最小值为3+2 2.例6.当x >0时,则f (x )=2x x 2+1的最大值为________. ∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1, 当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1例7.设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ). A .1 B .2 C .3 D .4[尝试解答] a 2+1ab +1a (a -b ) =a 2-ab +ab +1ab +1a (a -b ) =a (a -b )+1a (a -b )+ab +1ab≥2 a(a-b)·1a(a-b)+2 ab·1ab=2+2=4.当且仅当a(a-b)=1a(a-b)且ab=1ab,即a=2b时,等号成立.答案D。
第四节不等式的性质与基本不等式考试要求:1.理解不等式的概念,掌握不等式的性质.2.掌握基本不等式푎 ≤푎+2(a >0,b >0),能用基本不等式解决简单的最值问题.一、教材概念·结论·性质重现1.两个实数比较大小的依据(1)a -b >0⇔a >b .(2)a -b =0⇔a =b .(3)a -b <0⇔a <b .2.不等式的性质(1)对称性:a >b ⇔b <a .(2)传递性:a >b ,b >c ⇒a >c .(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇒a +c >b +d .(同向可加性)(4)可乘性:a >b ,c >0⇒ac >bc ,a >b >0,c >d >0⇒ac >bd .(正数同向可乘性)(5)可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).(6)可开方性:a >b >0푎(1)a >b ,ab >0⇒ 3.基本不等式푎 ≤푎+2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中푎+2称为正数a ,b 的算术平均数,푎 称为正数a ,b 的几何平均数.4.利用基本不等式求最值已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2�(简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是�24(简记:和定积最大).1.使用基本不等式求最值时,2.“当且仅当(1)푎2+ 22≥(a ,b ∈R ).(2) 푎+푎≥2(ab >0)(当且仅当a =b 时取等号).(3)21푎+1≤푎 ≤푎+2≤a >0,b >0).(4)若a >b >0,m >0,则 푎<+�푎+�; 푎>−�푎−�(b -m >0).二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)一个不等式的两边同时加上或乘同一个数,不等号方向不变.(×)(2)一个非零实数越大,则其倒数就越小.(×)(3)不等式a 2+b 2≥2ab 与푎+2≥푎 成立的条件是相同的.(×)(4)函数f (x )=sinx +4sin �的最小值为4.(×)2.设b <a ,d <c ,则下列不等式中一定成立的是()A.a -c <b -d B.ac <bd C.a +c >b +dD.a +d >b +cC 解析:由同向不等式具有可加性可知C 正确.3.当x >0时,函数f (x )=2��2+1有()A.最小值1B.最大值1C.最小值2D.最大值2B 解析:f (x )=2�+1�≤x =1�(x >0),即x =1时取等号,所以f (x )有最大值1.4.已知a ,b 为正实数,且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是()A.P ≤Q B.P <Q C.P ≥Q D.P >QA解析:不妨取a =b =12,则P -Q =14(x +y )2-12x 2-12y 2=-14(x -y )2≤0,所以P ≤Q .5.若0<a<b,且a+b=1,将a,b,12,2ab,a2+b2从小到大排列为_______________.a<2ab<12<a2+b2<b解析:令a=13,b=23,代入2ab=49,a2+b2=59,所以a<2ab<12<a2+b2<b.考点1不等式的性质——基础性1.下列命题正确的是()A.若a>b,则1푎<1B.若a>b,则a2>b2C.若a>b,c<d,则a-c>b-dD.若a>b,c>d,则ac>bdC解析:对于A,若a>b,取a=1,b=-1,则1푎<1 不成立;对于B,若a>b,取a=0,b =-1,则a2>b2不成立;对于C,若a>b,c<d,则a-c>b-d,正确;对于D,若a>b,c>d,取a=1,b=-1,c=1,d=-2,则ac>bd不成立.2.(多选题)对于实数a,b,c,下列命题是真命题的为()A.若a>b,则ac<bcB.若ac2>bc2,则a>bC.若a<b<0,则a2>ab>b2D.若a>0>b,则|a|<|b|BC解析:当c=0时,ac=bc,A为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,B为真命题;若a<b<0,则a2>ab且ab>b2,即a2>ab>b2,C为真命题;当a=1,b=-1时,|a|=|b|,故D为假命题.3.(2022·济南质量检测)已知实数a,b,c满足a<b<c,且ab<0,那么下列各式中一定成立的是()A.푎 >푎�B.a(c-b)<0C.ac2>bc2D.ab(b-a)>0B解析:因为a<b<c,且ab<0,所以a<0<b<c.所以c-b>0,a<0,可得a(c-b)<0,选项B 正确;取a=-1,b=1,c=2,则푎 <푎�,ac2<bc2,ab(b-a)<0,即选项A,C,D都不正确.4.已知实数b>a>0,m<0,则mb________ma, −�푎−�______ 푎.(填“>”或“<”)<<解析:因为b >a >0,m <0,所以b -a >0.因为mb -ma =m (b -a )<0,所以mb <ma .因为−�푎−�−푎=<0,所以 −�푎−�< 푎.解决这类问题一是要充分利用不等式的性质,作差法比较两个代数式的大小.考点2利用基本不等式求最值——综合性考向1配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________;23解析:因为0<x <1,所以4-3x >0,所以x (4-3x )=13·3�4−3�≤13=43,当且仅当3x =4-3x ,即x =23时,等号成立.(2)当�+�+1x =_______.4解析:��+1+9-1=5,当且仅当�+1=x =4时,等号成立.(1)依据:基本不等式.(2)技巧:通过添项、拆项、变系数、凑因子等方法凑成和为定值或积为定值的形式,即符合(1)已知a >0,b >0,a +b =1,则1푎+1的最小值为_________.4解析:因为a +b =1,所以1푎+1=+a +b a =b =12时,等号成立.(2)已知x +2y =xy (x >0,y >0),则2x +y 的最小值为_________.9解析:由x+2y =xy 得2�+1�=1,所以2x +y =(2x +y +=5+2��+2��≥5+2=9,当且仅当2��=2��,即x =y 时,等号成立,所以2x +y 的最小值为9.(1)根据已知条件或其变形确定定值(常数).(2)把确定的定值(常数)变形为(1)已知正数a ,b ,c 满足2a -b +c =0,则푎�2的最大值为()A.8B.2C.18D .16C 解析:因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以푎�2=푎�4푎2+4푎�+�2=14푎�+�푎+4≤=18,当且仅当c =2a >0时,等号成立.(2)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是_________.45解析:方法一:由5x 2y 2+y 4=1,可得x2=1−�45�2,由x 2≥0,可得y 2∈(0,1],则x 2+y2=1−�45�2+y 2=1+4�45�2=154�2+≥15·2=45,当且仅当y 2=12,x 2=310时,等号成立,故x 2+y 2的最小值为45.方法二:4=(5x 2+y 2)·4y 2=254(x 2+y 2)2,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310,等号成立,故x 2+y 2≥45,即x 2+y 2的最小值为45.(1)消元法,即根据条件建立两个量之间的函数关系,(2)如果出现多元的问题,(多选题)设正实数m ,n 满足m +n =2,则()A.1�+2�的最小值为22B.�+�的最小值为2C.��的最大值为1D.m 2+n 2的最小值为2CD 解析:因为正实数m ,n 满足m +n =2,所以1�+2�=m +n )×12=123+��+≥123+=3+222,当且仅当��=2��且m +n =2,即m =22-2,n =4-22时取等号,A 错误;(�+�)2=m +n +2��=2+2��≤2+2×�+�2=4,当且仅当m =n =1时取等号,所以�+�≤2,即最大值为2,B 错误;由mn=1,当且仅当m =n =1时取等号,此时��2取最大值12,C 正确;m 2+n 2=(m +n )2-2mn =4-2mn ≥2,当且仅当m =n =1时取等号,即m 2+n 2的最小值为2,D 正确.考点3利用基本不等式解决实际问题——应用性某公司生产的商品A ,当每件售价为5元时,年销售10万件.(1)据市场调查,价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多可提高多少元?(2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件x 元,公司拟投入12(x 2+x )万元作为技改费用,投入�4万元作为宣传费用.试问:技术革新后生产的该商品销售量m 至少应达到多少万件时,才能使技术革新后的该商品销售收入等于原销售收入与总投入之和?解:(1)设商品的单价提高a 元,则(10-a )·(5+a )≥50,解得0≤a ≤5.所以商品的单价最多可以提高5元.(2)由题意知,技术革新后的销售收入为mx 万元,若技术革新后的销售收入等于原销售收入与总投入之和,只需满足mx =12(x 2+x )+�4+50(x >5)即可,此时m =12x +34+50�≥234=434,当且仅当12x =50�,即x =10时等号成立.故销售量m 至少应达到434万件时,才能使技术革新后的销售收入等于原销售收入与总投入之和.(1)利用基本不等式解决实际问题时,的函数关系式,然后用基本不等式求解.1.司机甲、乙加油习惯不同,甲每次加定量的油,乙每次加固定钱数的油,恰有两次甲、乙同时加同单价的油,但这两次的油价不同,则从这两次加油的均价角度分析()A.甲合适B.乙合适C.油价先高后低甲合适D.油价先低后高甲合适B解析:设甲每次加m 升油,乙每次加n 元钱的油,第一次加油x 元/升,第二次加油y元/升.甲的平均单价为��+��2�=�+�2,乙的平均单价为2���+��=2���+�.因为x ≠y ,所以�+�22���+�=�2+�2+2��4��>4��4��=1,即乙的两次平均单价低,乙的方式更合适.2.(多选题)(2022·枣庄期末)如图所示,一座小岛距离海岸线上最近的点P 的距离是2km,从P 点沿海岸线正东方向12km 处有一个城镇.假设一个人驾驶小船的平均行进速度为3km/h,步行的平均速度为5km/h,时间t (单位:h)表示他从小岛到城镇的时间,x (单位:km)表示此人将船停在海岸距点P 处的距离.设u =�2+4+x ,v =�2+4-x ,则()A.函数v =f (u )为减函数B.15t -u -4v =32C.当x =1.5时,此人从小岛到城镇花费的时间最少D.当x =4时,此人从小岛到城镇花费的时间不超过3h AC 解析:因为u =�2+4+x ,v =�2+4-x ,所以�2+4=�+�2,x =�−�2,uv =4,则v =4�,其在(0,+∞)上是减函数,A 正确;t =�2+43+12−�5=�+�6+125−�−�10,整理得15t =u +4v +36,B 错误;15t =u +16�+36≥2�·16�+36=44,当且仅当u =16�,即u =4时等号成立,则4=�2+4+x ,解得x =1.5,C 正确;当x =4时,t =253+85,t -3=253−75=105−2115=500−44115>0,则t >3,D 错误.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元.8解析:每台机器运转x 年的年平均利润为��=18-�25�而x >0,故��≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大值为8万元.拓展考点绝对值三角不等式定理1如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立定理2如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|≤3×16+2×14=1,即|x +5y |≤1.证明绝对值不等式的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明.(3)转化为函数问题,数形结合进行证明.(多选题)(2022·新高考Ⅱ卷)若实数x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1[四字程序]读想算思若实数x ,y 满足x 2+y2-xy =1不等式的性质、基本不等式、配方法的应用x 2+y 2,xy ,(x ±y )2的关系转化与化归x +y ≤1;x +y ≥-2;x 2+y 2≤2;x 2+y 2≥11.构造不等式.2.代数换元.3.三角换元1.构造关于所求代数式的不等式.2.令x +y =t 消y ,依据关于x 的方程有解列不等式.3.求xy 的范围,把x +y ,x 2+y 2看作关于xy 的函数.4.三角换元1.利用基本不等式可以实现积化和、和化积、和化和.2.三角代换的适用条件和新变元范围的确定思路参考:利用xy ,xy ≤�2+�22构造关于x +y ,x 2+y2的不等式,解不等式求范围.BC 解析:由x 2+y 2-xy =1,得(x +y )2-1=3xy ,解得-2≤x +y ≤2,当且仅当x=y 时,取等号,即当x =y =-1时,x +y =-2,当x =y =1时,x +y =2,所以A 错误,B 正确.由x 2+y 2-xy =1,得(x 2+y 2)-1=xy ≤�2+�22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确.当x y x 2+y 2=23<1,D 错误.故选BC.思路参考:令x +y =t 消y ,依据关于x 的方程有解列不等式.BC 解析:令x +y =t ,则y =t -x ,代入x 2+y 2-xy =1得关于x 的方程3x 2-3tx +(t 2-1)=0,则Δ=(-3t )2-4×3×(t 2-1)≥0,解得-2≤t ≤2,即-2≤x +y ≤2.令x 2+y 2=m ,则由x 2+y 2-xy =1得xy =m -1,于是有m ≥2|m -1|,解得23≤m ≤2,即x 2+y 2232,所以AD 错误,BC 正确.故选BC.思路参考:求xy 的范围,把x +y ,x 2+y 2看作关于xy 的函数,求函数的值域得范围.BC解析:由xy +1=x 2+y 2≥2|xy |得xy ∈−13,1,则x 2+y 2=xy 232,(x +y )2=x 2+y 2+2xy =3xy +1∈[0,4],即x +y ∈[-2,2],所以AD 错误,BC 正确.故选BC.1.利用均值不等式,通过恒等变形及配凑,使“和”或“积”为定值,是求解最值问题的常用方法.其中常见的变形手段有拆项、并项、配式及配系数等.2.基于新课程标准,求最值问题一般要有对代数式的变形能力、推理能力和表达能力,本题的解答体现了逻辑推理、数学运算的核心素养.已知x >0,y >1,且x +2y =xy +1,则x +y 的最小值为_________.5解析:令x +y =t ,则x =t -y .将x =t -y 代入x +2y =xy +1,得t +y =ty -y 2+1,即y 2+(1-t )y +t -1=0,Δ=(1-t )2-4(t -1)=t 2-6t +5≥0,得t ≤1(舍去)或t ≥5.故x +y 的最小值为5.课时质量评价(四)A 组全考点巩固练1.(2023·日照模拟)若a ,b ,c 为实数,且a <b ,c >0,则下列不等关系一定成立的是()A.a +c <b +c B.1푎<1C.ac >bc D.b -a >cA解析:对于A,因为a <b ,c =c ,所以由不等式的性质可得,a +c <b +c ,故A 正确;对于B,令a =-2,b =-1,满足a <b ,1푎>1,故B 错误;对于C,令a =-2,b =1,c =1,满足a <b ,c >0,但ac <bc ,故C 错误;对于D,令a =1,b =2,c =1,满足a <b ,c >0,但b -a =c ,故D 错误.故选A.2.若x >0,y >0,则“x +2y =22��”的一个充分不必要条件是()A.x =y B.x =2y C.x =2且y =1D.x =y 或y =1C 解析:因为x >0,y >0,所以x +2y ≥22��,当且仅当x =2y 时,等号成立.故“x =2且y =1”是“x +2y =22��”的一个充分不必要条件.3.(2022·滨州三校高三联考)已知a >0,b >0,若不等式4푎+1≥�푎+恒成立,则m 的最大值为()A.10B.12C.16D.9D解析:由已知a >0,b >0,若不等式4푎+1≥�푎+ 恒成立,则ma +b )恒成立,转化成求y a +b )的最小值.y a +b )=5+4 푎+푎≥5+2当且仅当a=2b 时,等号成立,所以m ≤9.故选D.4.(多选题)已知1푎<1<0,则下列结论正确的有()A.a <b B.a +b <ab C.|a |>|b |D.ab <b 2BD 解析:由1푎<1<0,得b <a <0,所以a +b <0<ab ,|b |>|a |,b 2>ab .因此BD 正确,AC 不正确.5.《几何原本》中的几何代数法(以几何方法研究代数问题)成了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示,在AB 上取一点C ,使得AC =a ,BC =b,过点C 作CD ⊥AB 交圆周于点D ,连接OD .作CE ⊥OD 交OD 于点E ,则下列不等式可以表示CD ≥DE 的是()A.푎 ≥2푎푎+(a >0,b >0)B.푎+2푎 (a >0,b >0)≥푎+2(a >0,b >0)D.a 2+b 2≥2ab (a >0,b >0)A解析:连接DB ,因为AB 是圆O 的直径,所以∠ADB =90°.在Rt△ADB 中,中线OD =퐴2=푎+2.由射影定理可得CD 2=AC ·BC =ab .所以CD =푎 .在Rt△DCO 中,由射影定理可得CD 2=DE ·OD ,即DE =��2푂�=푎푎+ 2=2푎푎+.由CD ≥DE 得푎 ≥2푎푎+.6.(2023·济南模拟)若正数a ,b 满足ab =4,则1푎+9的最小值为_________.3解析:因为a >0,b >0,且ab =4,所以1푎+9≥21푎·9 =2×푎=2×4=3,当且仅当1푎=9,即a =23,b =6时取“=”,所以1푎+9的最小值为3.7.若a >0,b >0,则1푎+푎2+b 的最小值为_________.22解析:因为a >0,b >0,所以1푎+푎2+b ≥21푎·푎 2+b =2+b ≥22· =22,当且仅当1푎=푎2且2=b ,即a =b =2时等号成立,所以1푎+푎2+b 的最小值为22.8.已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是_________.3解析:由x 2+2xy -3=0,得y =3−�22�=32�−12x ,则2x +y =2x +32�−12x =3�2+32�≥23�2·32�=3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.9.(2022·唐山模拟)已知a >0,b >0,c >0,d >0,a 2+b 2=ab +1,cd >1.(1)求证:a +b ≤2;(2)判断等式푎�+ =c +d 能否成立,并说明理由.(1)证明:由题意得(a +b )2=3ab 푎+ 2+1,当且仅当a =b 时,等号成立.解得(a +b )2≤4.又a >0,b >0,所以a +b ≤2.(2)解:不能成立.理由:a >0,b >0,c >0,d >0,由基本不等式得푎�+ ≤푎+�2++2,当且仅当a =c 且b=d 时等号成立.因为a +b ≤2,所以푎�+ ≤1+�+2.因为c >0,d >0,cd >1,所以c +d =�+2+�+2≥�+2+� >�+2+1≥푎�+ ,故푎�+ =c +d 不能成立.B 组新高考培优练10.已知正实数a ,b 满足a +b =3,则11+푎+44+的最小值为()A.1B.78C.98D.2C解析:因为a+b=3,所以(1+a)+(4+b)=8,所以11+푎+44+=18[(1+a)+(4+b=185+4+1+푎+≥18×(5+4)=98,当且仅当4+b=2(1+a),即2a-b=2,即a=53,b=43时等号成立.11.(2022·滨州联考)已知a>0,b>0,若不等式4푎+1≥�푎+ 恒成立,则m的最大值为() A.10B.12C.16D.9D解析:由已知a>0,b>0,若不等式4푎+1 ≥�푎+ 恒成立,则ma+b)恒成立,转化成求y a+b)的最小值.y a+b)=5+4 푎+푎 ≥5+2当且仅当a =2b时,等号成立,所以m≤9.故选D.12.(多选题)(2023·重庆模拟)已知正实数a,b,c满足a2-ab+4b2-c=0,当�푎 取最小值时,下列说法正确的是()A.a=4bB.c=6b2C.a+b-c的最大值为34D.a+b-c的最大值为38BD解析:对于A,由a2-ab+4b2-c=0,得c=a2+4b2-ab,则�푎 =푎 +4 푎-1≥2-1=3,当且仅当푎 =4푎,即a=2b时等号成立,故A不正确;对于B,当�푎 取最小值时,由�푎 =3,푎=2 ,得c=6b2,故B正确;对于C,D,a+b-c=2b+b-6b2=-6b2+3b=-6+38≤38,当且仅当a=12,b=14,c=38时等号成立,所以(a+b-c)max=38,故C不正确,D正确.13.若不等式1�+11−4�-m≥0对x∈0m的最大值为()A.7B.8C.9D.10C解析:将不等式化为1�+11−4�≥m,只需当x∈0m+即可.由1�+11−4�=+x+1-4x)=4+1−4��+4�1−4�+1≥5+2=5+4=9,当且仅当x =16时,等号成立,故m ≤9.故m 的最大值为9.故选C.14.(2022·贵阳模拟)已知正实数x ,y 满足等式1�+3�=2.(1)求xy 的最小值;(2)若3x +y ≥m 2-m 恒成立,求实数m 的取值范围.解:(1)2=1�+3�≥2xy ≥3,当且仅当x =1,y =3时等号成立,所以xy 的最小值为3.(2)3x +y =12(3x +y=126+9��≥126+x =1,y =3时等号成立,即(3x +y )min =6,所以m 2-m ≤6,所以-2≤m ≤3.15.已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是R (x )=−14�2+500x (单位:元),P (x )为每天生产x 件产品的平均利润(平均利润=总利润÷总产量).销售商从工厂每件a 元进货后又以每件b 元销售,b =a +λ(c -a ),其中c 为最高限价(a <b <c ),λ为销售乐观系数.据市场调查,λ由当b -a 是c -b ,c -a 的比例中项时来确定.(1)每天生产量x 为多少时,平均利润P (x )取得最大值?求P (x )的最大值.(2)求乐观系数λ的值.(3)若c =600,当厂家平均利润最大时,求a 与b 的值.解:(1)依题意,总利润为-14x 2+500x -100x -40000=-14x 2+400x -40000,所以P (x )=−14�2+400�−40000�=-14x -40000�+400≤-200+400=200.当且仅当14x =40000�,即x=400时,等号成立,故每天生产量为400件时,平均利润最大,最大值为200元.(2)由b =a +λ(c -a )得λ=−푎�−푎.因为b -a 是c -b ,c -a 的比例中项,所以(b -a )2=(c -b )(c -a ),两边除以(b -a )2,得−푎·�−푎−푎=−1·�−푎−푎,所以−1·1�,解得λ=5−12.(3)由(1)知,当x =400时,厂家平均利润最大,所以a =40000�+100+P (x )=40000400+100+200=400(元).每件产品的利润为b -a =λ(c -a )=100(5-1),所以b =100(5+3),所以a =400,b =100(5+3).。