八年级数学下《2.3一元二次方程的应用(1)》同步练习(含答案)
- 格式:docx
- 大小:16.93 KB
- 文档页数:3
2.3 一元二次方程的应用(一)1.某商品原价289元,经连续两次降价后售价为256元.设平均每次降价的百分率为x ,则所列方程正确的是( )A .289(1-x )2=256B .256(1-x )2=289C .289(1-2x )=256D .256(1-2x )=2892. 某超市去年1月的营业额为200万元,已知第一季度的总营业额共1000万元.若平均每月增长率为x ,则由题意列方程应为( )A. 200(1+x )2=1000B. 200+200×2x =1000C. 200+200×3x =1000D. 200[1+(1+x )+(1+x )2]=10003.小明在暑假帮某服装店卖T 恤衫时发现,在一段时间内,T 恤衫按每件80元销售时,每天的销售量是20件,单价每降低4元,每天就可以多售出8件.已知该T 恤衫的进价是每件40元,请问:当每件T 恤衫降价多少元时,服装店卖该T 恤衫一天能赢利1200元?如果设每件T 恤衫降价x 元,那么所列方程正确的是( )A. (80-x )(20+x )=1200B. (80-x )(20+2x )=1200C. (40-x )(20+x )=1200D. (40-x )(20+2x )=12004.一个两位数,个位上的数比十位上的数小4,且个位数与十位数的平方和比这个两位数小4.设个位数是x ,则所列方程为( )A .x 2+(x +4)2=10(x -4)+x -4B .x 2+(x +4)2=10x +x +4C .x 2+(x +4)2=10(x +4)+x -4D .x 2+(x -4)2=10x +(x -4)-45.某校八年级(1)班学生上军训课,把全班人数的18排成一列, 这样排成一个正方形的方队后还有7人站在一旁观看,则此班有学生__________人.6.某楼盘2013年的房价为每平方米8100元,经过两年连续降价后,2015年的房价为每平方米7600元.设该楼盘这两年房价平均每次降价的百分率为x ,根据题意可列方程为.7.某商场今年2月的营业额为400万元,3月的营业额比2月增加了10%,5月的营业额达到了633.6万元.求3月到5月营业额的月平均增长率.8.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人.(2)如果不及时控制,第三轮将又有多少人被传染?9.某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,商场决定适当降价.经调查发现,若每件衬衫降价1元,则商场平均每天可多售出2件.若商场每天要盈利1200元,则每件衬衫应降价多少元?10.甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到( )A.甲超市B.乙超市C.丙超市D.乙超市或丙超市11.甲用1000元人民币购买了一只股票,随即他将这只股票转卖给了乙,获利10%,而后乙又将这只股票返卖给了甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这只股票卖出.在上述股票交易中,甲获利____元.12.一个容器内盛满纯酒精50 L ,第一次倒出一部分纯酒精后用水加满;第二次又倒出同样多的酒精溶液,再用水加满,这时容器中的酒精溶液含酒精32 L .求每次倒出溶液的升数.13.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A ,B 同时出发,以顺时针、逆时针的方向沿圆周运动,甲运动的路程l (cm )与时间t (s )满足关系:l =12t 2+32t (t ≥0),乙以4 cm /s 的速度匀速运动,半圆的长度为21 cm . (1)甲运动4 s 后经过的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?14.某超市将甲、乙两种糖果混合销售,并按以下公式确定混合糖果的单价:单价=a 1m 1+a 2m 2m 1+m 2元/kg ,其中m 1,m 2分别为甲、乙两种糖果的质量,a 1,a 2分别为甲、乙两种糖果的单价.已知a 1=20元/kg ,a 2=16元/kg ,现将10 kg 乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5 kg 后,又在混合糖果中加入5 kg 乙种糖果,再出售时混合糖果的单价为17.5元/kg .问:这箱甲种糖果有多少千克?参考答案1-4ADDC5.566.8100(1-x )2=76007.设3月到5月营业额的月平均增长率为x ,根据题意,得400×(1+10%)(1+x )2=633.6,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:3月到5月营业额的月平均增长率为20%.8.(1)设每轮传染中平均一个人传染了x 个人,由题意,得1+x +x (x +1)=64,解得x 1=7,x 2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)64×7=448(人).答:第三轮将又有448人被传染.9.设每件衬衫应降价x 元,根据题意,得(40-x )(20+2x )=1200,解得x 1=10,x 1=20.∵要尽快减少库存,∴x =20.答:每件衬衫应降价20元.10.B11.112.设每次倒出溶液x (L ),根据题意,得50⎝⎛⎭⎫1-x 502=32, 解得x 1=10,x 2=90(不合题意,舍去).答:每次倒出溶液10 L . [来源:学科网]13.(1)当t =4 s 时,l =12t 2+32t =8+6=14(cm ). 答:甲运动4 s 后经过的路程是14 cm .(2)由图可知,甲、乙第一次相遇时走过的路程为半圆21 cm ,甲走过的路程为12t 2+32t ,乙走过的路程为4t ,则12t 2+32t +4t =21, 解得t 1=3,t 2=-14(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3 s .(3)由图可知,甲、乙第二次相遇时走过的路程为三个半圆:3×21=63(cm ), 则12t 2+32t +4t =63, 解得t 1=7,t 2=-18(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7 s .14.设这箱甲种糖果有x (kg ),则5(10+x )=16×10+20x 10+x·(5+x )+16×5, 化简并整理,得x 2-4x -60=0,(x -10)(x +6)=0,∴x 1=10,x 2=-6(不合题意,舍去).∴这箱甲种糖果有10 kg .。
鲁教版(五四制)八年级数学下册第八章一元二次方程同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用一条长60cm 的绳子围成一个面积为2200cm 的长方形.设长方形的长为cm x ,则可列方程为( )A .(30)200x x -=B .(30)200x x +=C .(60)200x x +=D .(60)200x x -= 2、关于x 的方程(a ﹣1)x 2﹣3x +2=0是一元二次方程,则( )A .a ≠1B .a =1C .a >1D .a ≥13、用配方法解方程2410x x -+=时,原方程可以变形为( )A .2(2)3x +=B .2(2)4x -=C .2(2)3x -=D .()2215x -= 4、已知关于x 的一元二次方程x 2-2x -m =0有两个不相等的实数根,则m 的取值范围是( )A .m <-2B .m >-1C .m <0D .m ≥05、解下列方程:①23270x -=;②2310x x --=;③()()242++=+x x x ;④()223131-=-x x .较简便的方法是( )A .依次为直接开平方法,配方法,公式法,因式分解法B .依次为因式分解法,公式法,配方法,直接开平方法C .①用直接开平方法,②③用公式法,④用因式分解法D .①用直接开平方法,②用公式法,③④用因式分解法6、定义运算:221m n mn mn =--△.例如:2424224211=⨯-⨯⨯-=-△.则方程20x =△的根的情况为( ).A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .以上结论都不对7、直线y =x +a 不经过第四象限,则关于x 的方程a 2x -2x -1=0的实数解的个数是( )A .0个B .1个C .2个D .1个或2个8、将一块长方形桌布铺在长为3m 、宽为2m 的长方形桌面上,各边下垂的长度相同,并且桌布的面积是桌面面积的2倍,那么桌布下垂的长度为( )A .-2.5B .2.5C .0.5D .-0.59、已知关于x 的方程2210x x --=,则下列关于该方程根的判断,正确的是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定10、定义新运算“a ⊗b ”:对于任意实数a ,b ,都有a ⊗b =(a ﹣b )2﹣b ,其中等式右边是通常的加法、减法和乘法运算,如3⊗2=(3﹣2)2﹣2=﹣1.若x ⊗k =0(k 为实数)是关于x 的方程,且x =2是这个方程的一个根,则k 的值是( )A .4B .﹣1或4C .0或4D .1或4 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的一元二次方程(k -1)x 2+4x +2=0有实数根,则k 的取值范围是______.2、方程x 2=4x 的根是____.3、方程(x ﹣3)(x +4)=﹣10的解为 ___.4、某工厂废气年排放量为450万立方米,为改善空气质量,决定分两期治理,使废气的排放量减少到288万立方米.如果每期治理中废气减少的百分率相同,设每期减少的百分率为x ,则可列方程为 __.5、若关于x 的一元二次方程x 2+2x -k =0有两个不相等的实数根,则k 的取值范围为_____.三、解答题(5小题,每小题10分,共计50分)1、解方程(1)23100x x --=(2)(3)(1)2x x x +-=-2、如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃,设花圃一边AB 的长为x m ,如要围成面积为63m 2的花圃,那么AB 的长是多少?3、某商场一月份的销售额为125万元,二月份的销售额下降了20%,商场从三月份起加强管理,改善经营,使销售额稳步上升,四月份的销售额达到了144万元.(1)求二月份的销售额;(2)求三、四月份销售额的平均增长率.4、某校劳动教育课上,老师让同学们设计劳动基地的规划.如图,在块长15m 、宽10m 的矩形空地上,修建两条同样宽的相互垂直的道路,剩余部分栽种绿植,要使栽种面积为2126m ,则修建的路宽应为多少米?5、(1)解方程:①x (x +2)=3x +6;②x 2+8x -9=0.(2)关于x 的方程x 2-(k -3)x +1-2k =0的根的情况是怎样的?请说明理由.-参考答案-一、单选题1、A【解析】【分析】本题可根据长方形的周长可以用x 表示宽的值,然后根据面积公式即可列出方程【详解】设长方形的长为xcm ,则长方形的宽为()60302x x cm -=-, 根据长方形的面积等于长乘以宽可列方程:(30)200x x -=故答案选A .【点睛】本题考查了由实际问题列出一元二次方程,要掌握运用长方形的面积计算公式S=ab 来解题的方法.2、A【解析】【分析】根据一元二次方程的一般形式20(a 0)++=≠ax bx c 知,二次项系数不为零即可求得a 的取值范围.【详解】由题意知:10a -≠∴1a ≠故选:A【点睛】本题考查了一元二次方程的一般形式,特别注意二次项系数不为零.3、C【解析】【分析】方程常数项移到右边,两边加上4配方得到结果即可.【详解】解:方程2410x x ++=,移项得:241x x +=-,配方得:2443x x -+=,即2(2)3x -=,故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.4、B【解析】【分析】根据判别式的意义得到Δ=(−2)2−4×(−m )>0,然后解不等式即可.【详解】解:根据题意得Δ=(−2)2−4×(−m )>0,解得m >−1.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5、D【解析】【分析】根据各方程的特点逐一判别即可.【详解】解:①23270x -=适合直接开平方法;②2310x x --=适合公式法;③()()242++=+x x x 适合因式分解法;④()223131-=-x x 适合因式分解法;故选:D .【点睛】本题主要考查了解一元二次方程的能力,直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6、A【解析】【分析】根据新定义列出一元二次方程,根据一元二次方程根的判别式求解即可.【详解】解:∵221m n mn mn =--△∴20x =△,即222210x x -⨯-=整理得,22410x x --=1680∆=+>∴方程20x =△有两个不相等的实数根.故选A【点睛】本题考查了一元二次方程根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.7、D【解析】【分析】根据直线y =x +a 不经过第四象限,可得0a ≥,然后分两种情况:当0a >时,关于x 的方程a 2x -2x -1=0为一元二次方程,利用根与系数的关系,可得一元二次方程有两个不相等实数根;当0a =时,关于x 的方程a 2x -2x -1=0为一元一次方程210x --=,有1个实数解,即可求解.【详解】解:根据题意得直线y =x +a 一定经过第一、三象限,∵直线y =x +a 不经过第四象限,∴0a ≥,当0a >时,关于x 的方程a 2x -2x -1=0为一元二次方程,∴()()224241440b ac a a ∆=-=--⨯-=+>,∴一元二次方程有两个不相等实数根,当0a =时,关于x 的方程a 2x -2x -1=0为一元一次方程210x --=,有1个实数解,综上所述,关于x 的方程a 2x -2x -1=0的实数解的个数是1个或2个.故选:D【点睛】本题主要考查了一次函数的图象和性质,一元二次方程根的判别式,熟练掌握相关知识点,并利用分类讨论思想解答是解题的关键.8、C【解析】【分析】设桌布下垂的长度为h 米,则有()()3222322h h +⨯+=⨯⨯,计算求解即可.【详解】解:设桌布下垂的长度为h 米则有()()3222322h h +⨯+=⨯⨯解得0.5h =(负值舍去)故选C .【点睛】本题考查了一元二次方程的应用.解题的关键在于列出正确的一元二次方程.9、C【解析】【分析】先求出“Δ”的值,再根据根的判别式判断即可.【详解】解:x 2-2x -1=0,∵1a =,2b =-,1c =-,∴Δ=(-2)2-4×1×(-1)=8>0,∵Δ>0,∴方程有两个不相等的实数根,故选:C .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.10、D【解析】【分析】利用新运算把方程x ⊗k =0(k 为实数)化为2()0x k k --=,把x =2代入求解即可.【详解】解:∵a ⊗b =(a ﹣b )2﹣b ,∴关于x 的方程x ⊗k =0(k 为实数)化为2()0x k k --=,∵x =2是这个方程的一个根,∴4-4k +k 2-k =0,解得:124,1k k ==,故选:D .【点睛】本题考查了解一元二次方程,解题的关键是根据新定义运算法则得到关于k的方程.二、填空题1、k≤3且k≠1##k≠1且k≤3【解析】【分析】由二次项系数非零及根的判别式Δ=b2-4ac≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【详解】解:∵关于x的一元二次方程(k-1)x2+4x+2=0有实数根,∴k-1 0且Δ=42-4(k-1)×2≥0,解得:k≤3且k≠1.故答案为:k≤3且k≠1.【点睛】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式Δ=b2-4ac≥0,找出关于k的一元一次不等式组是解题的关键.2、x1=0,x2=4## x1=4,x2=0【解析】【分析】移项后用因式分解法求解即可.【详解】解:∵x2=4x,∴x2-4x=0,∴x(x-4)=0,∴x =0或x -4=0,∴x 1=0,x 2=4,故答案为:x 1=0,x 2=4.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.3、122,1x x =-=【解析】【分析】先把方程化为一元二次方程的一般形式,再利用因式分解法解方程即可.【详解】解:(x ﹣3)(x +4)=﹣10212100,x x220,x x210,x x20x ∴+=或10,x -=解得:122, 1.x x故答案为:122,1x x =-=【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用十字乘法把方程的左边分解因式化为两个一次方程”是解本题的关键.4、2450(1)288x -=【解析】【分析】利用经过两期治理后废气的排放量=治理前废气的排放量(1⨯-每期减少的百分率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意得:2450(1)288x -=.故答案为:2450(1)288x -=.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 5、1k >-【解析】【分析】根据当△>0时,方程有两个不相等的两个实数根可得△=4+4k >0,再解即可.【详解】解:关于x 的一元二次方程x 2+2x -k =0,△=4+4k >0,解得:k >-1.故答案为:k >-1.【点睛】本题考查的是根的判别式,根据方程的根列不等式,解不等式,即一元二次方程ax 2+bx +c =0(a ≠0)中,当△>0时,方程有两个不相等的两个实数根.三、解答题1、 (1)122,5=-=x x(2)x 1x 2 【解析】【分析】(1)利用因式分解求解即可;(2)利用公式法进行求解.(1)解:23100x x --=,(2)(5)0x x +-=,20x +=或50x -=,解得:122,5=-=x x ;(2)解:(3)(1)2x x x +-=-,210x x +-=,1,1,1a b c ===-,2141(1)50∴∆=-⨯⨯-=>,x ∴===解得:x 1x 2. 【点睛】本题考查解一元二次方程,解题的关键是掌握因式分解法、公式法求解一元二次方程.2、7m【解析】【分析】设AB 的长为x m ,则平行于墙的一边长为:(303)x -m ,该花圃的面积为:(303)x x -,令该面积等于63,求出符合题意的x 的值,即是所求AB 的长.【详解】解:设该花圃的一边AB 的长为x m ,则与AB 相邻的边的长为()303x -m ,由题意得:(303)63x x -=,即:210210x x -+=,解得:13x =,27x =当3x =m 时,平行于墙的一边长为:30321m 10m x -=>,不合题意舍去;当7x =m 时,平行于墙的一边长为:3039m 10m x -=<,符合题意,所以,AB 的长是7m .【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.3、 (1)100万元(2)20%【解析】【分析】(1)利用二月份的销售额=一月份的销售额(120%)⨯-,即可求出结论;(2)设三、四月份销售额的平均增长率为x ,利用四月份的销售额=二月份的销售额(1⨯+平均增长率)2,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.(1)解:125(120%)12580%100⨯-=⨯=(万元).答:二月份的销售额为100万元.(2)设三、四月份销售额的平均增长率为x ,依题意得:2100(1)144x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:三、四月份销售额的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4、道路宽为1m【解析】【分析】设道路的宽为x 米,根据“剩余部分栽种绿植,要使栽种面积为2126m ”建立等量关系,列方程求解即可.【详解】设道路的宽为x 米.依题意得:(15-x )(10-x )=126,150-25 x + x 2=126x 2-25 x+24=0(x -1)(x -24)=0解得:x 1=1,x 2=24(不合题意舍去)答:道路宽为1m .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出方程是本题的关键.5、(1)①13x =,22x =-;②11x =,29x =-;(2)有两个不相等的实数根,见解析【解析】【分析】(1)①根据因式分解法解一元二次方程即可,②根据配方法解一元二次方程即可;(2)根据一元二次方程根的判别式进行判断即可.【详解】解:(1)①原方程可变为()()232x x x +=+,()()2320x x x +-+=,()()320x x -+=,∴30x -=或20x +=,∴13x =,22x =-.②289x x +=,2816916x x ++=+,即()2425x +=,∴45x +=±,即45x +=或45x +=-,∴11x =,29x =-.(2)∵1a =,()33b k k =--=-,12c k =-,∴()()22434112b ac k k ∆=-=--⨯⨯- ()222296482521414k k k k k k k k =-+-+=++=+++=++, ∵()210+≥k , ∴()2140k ++>,即0>, ∴关于x 的方程()23120x k x k --+-=有两个不相等的实数根.【点睛】本题考查了解一元二次方程,一元二次方程根的判别式判断一元二次方程根的情况,正确的计算是解题的关键.。
初中数学精品试卷2.3一元二次方程的应用同步练习【基础练习】一、填空题:1.已知:如图 1,线段 AB = 4cm, C 是 AB 上一点,且 AC2 = AB·BC,那么,BC =cm;2.如图 2,△ABC 中,AB = AC,∠A = 36 ,°BD 是∠ ABC 的平分线,若 BC = 5cm,则 AB =cm;3.某公司今年的年产值是1000 万元,若以后每年的平均增长率为10%,则两年后该公司的年产值是万元 .AA CB D图 1B C图 24.制造某种产品,原来每件的成本是100 元,由于连续两次降低成本,现在的成本是每件 81 元,则平均每次降低成本的百分率是;5.一块长方形硬纸片,在它的四个角上截去四个小正方形,折成一个没有盖子的长方体盒子,已知纸片的长为40cm, 宽为 32cm,要使盒子的底面积为768cm2,则截去的小正方形边长应为cm.二、选择题:1.已知两个连续奇数的积为63,求这两个数 . 设其中一个数为x,甲、乙、丙三同学分别列出方程①x(x +2) = 63;② x(x -2) = 63;③ (2x -1)(2x +1) = 63. 其中正确的有()A. 只有①B. 只有②C. 只有①②D. ①②③都正确2.某机床厂今年 1 月份生产机床 500 台, 3 月份生产机床 720 台,求月份平均每月的增长率 .设平均每月增长的百分率为x, 则列出方程正确的是2、 3()A. 500 +500x = 7202B. 500(I + x)2 = 72023.生物兴趣小组的同学,将自己采集到的标本向本组其他成员各赠送一件,全组共互赠了 182 件,全组共有多少名同学?设全组有x 名同学,则根据题意列出的方程是()A. x(x +1) = 182B. x(x -1) = 182C. 1x(x 1) = 182 D.1x( x 1) = 182 224.某经济开发区今年一月份工业产值达50 亿元,第一季度总产值 175 亿元,问二月、三月平均每月的增长率是多少?设平均每月的增长率为x, 根据题意得方程为()A. 50(1 +x)2 = 175B. 50 +50(1 +x)2 = 175C. 50(1 +x) +50(1 +x)2= 175D. 50 +50(1 +x) +50(1 +x)2= 175三、解答题:1.有一个两位数恰等于其个位与十位上的两个数字乘积的 3 倍,已知十位上的数字比个位上的数字小 2,求这个两位数 .2.在长为 a 的线段 AB 上有一点 C,且 AC 是 AB 和 BC 的比例中项,试求线段 AC 的长.3.为响应国家“退耕还林”的号召,改变我省水土流失严重的现状, 2000 年我省某地退耕还林 1600 亩,到 2002 年已退耕还林 1936 亩,问这两年平均每年退耕还林的增长率是多少?【综合练习】1.某商场销售一批衬衫,平均每天售出 20 件,每件盈利 40 元. 为减少库存,尽快回收成本,商场决定降价销售 . 经调查发现,售价每降低 1 元,每天平均可多售出 2 件. 若商场平均每天要盈利 1200 元,每件衬衫应降价多少元 .2.某人用 1000 元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券的年利率高2个百分点,到期后,此人将乙种债券兑换人民币共得本息和112 元,求甲种债券的年利率 .参考答案【基础练习】一、 1. 6-2 5; 2.5 5 5;3. 1210万元. 4. 10%;5. 4.2二、 1. C; 2. B; 3. B; 4. D.三、 1.24;2.5 1 a ;3. 10%.2【综合练习】1.每件衬衫应降价20 元.2. 10%.。
2020-2021年度浙教版八年级数学下册《2.3一元二次方程的应用》同步提升训练(附答案)1.某商场将进货价为20元的玩具以30元售出,平均每天可售出300件,调查发现,该玩具的单价每上涨1元,平均每天就少售出10件.若商场要想平均每天获得3750元利润,则每件玩具应涨价多少元?设每件玩具应涨价x元,则下列说法错误的是()A.涨价后每件玩具的售价是(30+x)元B.涨价后平均每天少售出玩具的数量是10x件C.涨价后平均每天销售玩具的数量是(300﹣10x)件D.根据题意可列方程为:(30+x)(300﹣10x)=37502.某市2019年底有2万户5G用户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则下列方程正确的是()A.2(1+2x)=8.72B.2+2(1+x)+2(1+2x)=8.72C.2(1+x)2=8.72D.2+2(1+x)+2(1+x)2=8.723.在疫情期间,口罩的需求量急剧上升.某口罩生产企业四月份生产了口罩200000只,如果要在第二季度总共生产728000只口罩,设生产口罩月平均增长的百分率为x,则可根据题意列出的方程是()A.200000(1+x)2=728000B.200000(1+x)3=728000C.200000(1+x)+200000(1+x)2=728000D.200000+200000(1+x)+200000(1+x)2=7280004.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使草坪的面积为540平方米,设道路的宽x米,则可列方程为()A.32×20﹣32x﹣20x=540B.(32﹣x)(20﹣x)+x2=540C.32x+20x=540D.(32﹣x)(20﹣x)=5405.某小组有若干人,新年大家互相发一条微信祝福,已知全组共发微信72条,则这个小组的人数为()A.7人B.8人C.9人D.10人6.某商场销售一批衬衣,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元.每件衬衣应降价()元.A.10B.15C.20D.257.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比1月份的利润增加4.2万元,设该产品利润平均每月的增长率为x,则可列方程为.8.如图,在宽为13m,长为24m的矩形场地上修建同样宽的三条小路(横向与纵向垂直),其余部分种草坪,假设草坪面积为264m2,求道路宽为多少?设宽为xm,则列出的方程是.9.如图,在Rt△ABC中,∠ABC=90°,AB=6cm,BC=8cm,动点P从点A出发沿AB 边以1cm/秒的速度向点B匀速移动,同时点Q从点B出发沿BC边以2cm/秒的速度向点C匀速移动,当P、Q两点中有一个点到达终点时,另一个点也停止运动,当△PBQ的面积为5cm2时,则点P、Q运动的时间为秒.10.已知3个连续整数的和为m,它们的平方和是n,且n=11(m﹣8),则m=.11.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?设衬衫的单价降了x元,则可列方程为.12.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是.13.某种物品经过两次降价,其价格为降价前的81%,则平均每次降价的百分数为.14.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润不变,该产品的成本价平均每月应降低为.15.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x,则可列方程为.16.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.17.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.18.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是cm2.19.某服装经营户以20元/件的价格购进一批衣服,以30元/件的价格出售,每天可售出20件.为了促销,该经营户决定降价销售,经调查发现,这种衣服每件降价1元,每天可多售出5件.另外,每天的房租等固定成本共25元,该经营户要想每天盈利200元,应将每件衣服的售价降低多少元?20.全球疫情爆发时,医疗物资极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了1条口罩生产线生产口罩.经调查发现:1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天,是否能增加生产线,使得每天生产口罩15000万件,若能,应该增加几条生产线?若不能,请说明理由.21.如图,利用足够长的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分别出2个小长方形,与墙平行的一边上各开一扇宽为1米的门,总共用去篱笆34米;(1)为了使这个长方形ABCD的面积为96平方米,求边AB为多少米?(2)用这些篱笆,能使围成的长方形ABCD面积是110平方米吗?说明理由.22.商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价2元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1050元?23.“疫情”期间,某商场积压了一批商品,现欲尽快清仓,确定降价促销.据调查发现,若每件商品盈利50元时,可售出500件,商品单价每下降1元,则可多售出20件.设每件商品降价x元.(1)每件商品降价x元后,可售出商品件(用含x的代数式表示).(2)若要使销售该商品的总利润达到28000元,求x的值.(3)销售该商品的总利润能否达到30000元?若能,请求出此时的单价;若不能,请说明理由.24.为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工作.2020年10月,国内某企业口罩出口订单额为1000万元,2020年12月该企业口罩出口订单额为1210万元.(1)求该企业2020年10月到12月口罩出口订单额的月平均增长率;(2)按照(1)的月平均增长率,预计该企业2021年1月口罩出口订单额为多少万元?25.在一次聚会上,规定每两个人见面必须握1次手.(1)若参加聚会的人数为6,则共握手次,若参加聚会的人数为n(n为正整数),则共握手次;(2)若参加聚会的人共握手36次,请求出参加聚会的人数;(3)小明由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A、B),线段总数为多少呢?请直接写出结论.26.某商店将进价为10元的某种商品以14元售出,平均每天能售出220件.调查发现,这种商品的售价每上涨1元,其销售量就将减少20件.该商店计划通过提高商品售价减少销售量的办法增加利润.(1)若物价部门规定此种商品的每件利润不能超过进价的80%,且商店想要获得平均每天1080元的利润,则这种商品的售价应定为多少?(2)该商店平均每天盈利能否为1200元?参考答案1.解:设涨价x元,根据题意可得:A、∵(30+x)表示涨价后玩具的单价,∴A选项正确,不符合题意;B、∵10x表示涨价后少售出玩具的数量,∴B选项正确,不符合题意;C、∵(300﹣10x)表示涨价后销售玩具的数量,∴C选项正确,不符合题意;D、∵可列方程(30+x﹣20)(300﹣10x)=3750,故D选项错误,符合题意,故选:D.2.解:依题意得:2(1+x)2=8.72,故选:C.3.解:设该工厂生产这种零件平均每月的增长率为x,根据题意得:200000+200000(1+x)+200000(1+x)2=728000.故选:D.4.解:设道路的宽x米,则余下部分可合成长为(32﹣x)m,宽为(20﹣x)m的矩形,依题意得:(32﹣x)(20﹣x)=540.故选:D.5.解:设这个小组的人数为x人,则每人需发送(x﹣1)条微信,依题意得:x(x﹣1)=72,整理得:x2﹣x﹣72=0,解得:x1=﹣8(不合题意,舍去),x2=9.故选:C.6.解:设每件衬衫应降价x元.根据题意,得:(50﹣x)(30+2x)=2000,整理,得x2﹣35x+250=0,解得x1=10,x2=25.∵“增加盈利,减少库存”,∴x1=10应舍去,∴x=25.故选:D.7.解:依题意得:20(1+x)2=20+4.2,故答案为:20(1+x)2=20+4.2.8.解:设宽为xm,(13﹣x)(24﹣2x)=264.故答案为:(32﹣2x)(20﹣x)=570.9.解:8÷2=4(秒).设运动时间为x秒(0<x<4),则PB=(6﹣x)cm,BQ=2xcm,依题意得:×2x×(6﹣x)=5,整理得:x2﹣6x+5=0,解得:x1=1,x2=5(不合题意,舍去).故答案为:1.10.解:设三个整数分别为a,a+1,a+2,所以m=3a+3,n=a2+(a+1)2+(a+2)2=3a2+6a+5,由n=11(m﹣8),所以3a2+6a+5=11(3a﹣5),解得a=4或5,则m=15或18.11.解:由题意可得,(40﹣x)(20+2x)=1250,故答案为:(40﹣x)(20+2x)=1250.12.解:设参加会议有x人,依题意得:x(x﹣1)=78,整理得:x2﹣x﹣156=0解得x1=13,x2=﹣12,(舍去).答:参加这次会议的有13人,故答案为13.13.解:设平均每次降价的百分数为x,根据题意得:(1﹣x)2=81%,开方得:1﹣x=0.9或1﹣x=﹣0.9,解得:x1=0.1=10%,x2=1.9,则平均每次降价得百分数为10%.故答案为:10%.14.解:设该产品的成本价平均每月降低率为x,依题意得625(1﹣20%)(1+6%)﹣500(1﹣x)2=625﹣500,整理得500(1﹣x)2=405,(1﹣x)2=0.81,∴1﹣x=±0.9,∴x=1±0.9,x1=1.9(舍去),x2=0.1=10%.答:该产品的成本价平均每月应降低10%.故答案为10%.15.解:设平均每月营业额的增长率为x,则第二个月的营业额为:90×(1+x),第三个月的营业额为:90×(1+x)2,则由题意列方程为:90(1+x)+90(1+x)2=144﹣90.故答案是:90(1+x)+90(1+x)2=144﹣90.16.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.17.解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=32,∵在降价幅度不超过10元的情况下,∴x=32不合题意舍去,答:每件服装应降价4元.故答案是:4.18.解:设小长方形的长为xcm,宽为xcm,根据题意得:(x+2×x)•x=135,解得:x=9或x=﹣9(舍去),则x=3.所以3×3=9(cm2).故答案为:9.19.解:设应将每件衣服的售价降低x元,则每件的利润为(30﹣20﹣x)元,每天可售出(20+5x)件,依题意得:(30﹣20﹣x)(20+5x)﹣25=200,整理得:x²﹣6x+5=0,解得:x1=1,x2=5.答:应将每件衣服的售价降低1元或5元.20.解:设增加a条生产线,则每条生产线的最大产能为(1500﹣50a)万件/天,依题意,得:(1+a)(1500﹣50a)=15000,化简得:a2﹣29a+270=0,∵△=(﹣29)2﹣4×1×270=﹣239<0方程无解.∴不能增加生产线,使得每天生产口罩15000万件.21.解:(1)设AB的长为x米,依题意的方程:x(36﹣3x)=96,解得:x1=4,x2=8,答:当AB的长度为4米或8米时,长方形ABCD的面积为96平方米;(2)假设长方形ABCD的面积是110平方米,依题意得:x(36﹣3x)=110.即3x2﹣36x+110=0,∵△=(﹣36)2﹣4×3×110=﹣24<0,∴该一元二次方程无实数根,∴假设不成立,∴长方形ABCD的面积是不能为110平方米.22.解:(1)20+2×2=24(件).故答案为:24.(2)设当每件商品降价x元时,该商店每天销售利润为1050元,则每件盈利(40﹣x)元,平均每天的销售量为(20+2x)件,依题意得:(40﹣x)(20+2x)=1050,整理得:x2﹣30x+125=0,解得:x1=5,x2=25.当x=5时,40﹣x=35>25,符合题意;当x=25时,40﹣x=15<25,不合题意,舍去.答:当每件商品降价5元时,该商店每天销售利润为1050元.23.解:(1)每件商品降价x元后,可售出商品件(500+20x)件;故答案为:(500+20x);(2)根据题意得:(50﹣x)(500+20x)=28000,解得x1=10,x2=15,∵尽快清仓,∴x1=10舍去,答:x的值为15;(3)(50﹣x)(500+20x)=30000整理得:x2﹣25x+250=0,b2﹣4ac=625﹣1000<0,方程无解,所以总利润不能达到30000元.24.解:(1)设该企业2020年10月到12月口罩出口订单额的月平均增长率为x,依题意得:1000(1+x)2=1210,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:该企业2020年10月到12月口罩出口订单额的月平均增长率为10%.(2)1210×(1+10%)=1331(万元).答:预计该企业2021年1月口罩出口订单额为1331万元.25.解:(1)若参加聚会的人数为6,共握手×6×5=15(次),若参加聚会的人数为n(n为正整数),共握手n(n﹣1)(次).故答案为:15;n(n﹣1).(2)依题意得:n(n﹣1)=36,整理得:n2﹣n﹣72=0,解得:n1=9,n2=﹣8(不合题意,舍去).答:参加聚会的人数为9人.(3)∵线段AB上共有(m+2)(包含端点A、B)个点,∴线段总数为(m+2)(m+1)(条).26.解:(1)设这种商品的售价应定为x元,则每件的销售利润为(x﹣10)元,日销售量为220﹣20(x﹣14)=(500﹣20x)件,依题意得:(x﹣10)(500﹣20x)=1080,整理得:x2﹣35x+304=0,解得:x1=16,x2=19.∵10×(1+80%)=18(元),16<18<19,∴x=16.答:这种商品的售价应定为16元.(2)设这种商品的售价应定为y元,则每件的销售利润为(y﹣10)元,日销售量为220﹣20(y﹣14)=(500﹣20y)件,依题意得:(y﹣10)(500﹣20y)=1200,整理得:y2﹣35y+310=0.∵△=(﹣35)2﹣4×1×310=﹣15<0,∴该方程无实数根,∴该商店平均每天盈利不能为1200元.。
浙教版八年级下册第2章 2.3一元二次方程的应用同步练习一、单选题(共15题;共30分)1、新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A、7B、8C、9D、102、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A、x(x+1)=182B、x(x﹣1)=182C、x(x+1)=182×2D、x(x﹣1)=182×23、某企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为()A、2160(1﹣x)2=1500B、1500(1+x)2=2160C、1500(1﹣x)2=2160D、1500+1500(1+x)+1500(1+x)2=21604、刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如:把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(m,﹣2m)放入其中,得到实数2,则m的值是()A、3B、﹣1C、﹣3或1D、3或﹣15、某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A、168(1+x)2=108B、168(1﹣x)2=108C、168(1﹣2x)=108D、168(1﹣x2)=1086、如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m2的矩形临时仓库,仓库一边靠墙,另三边用总长为80m的栅栏围成,若设栅栏AB的长为xm,则下列各方程中,符合题意的是()A、x(80﹣x)=640B、x(80﹣2x)=640C、x(80﹣2x)=640D、x(80﹣x)=6407、某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为()A、100(1+x)2=331B、100+100×2x=331C、100+100×3x=331D、100[1+(1+x)+(1+x)2]=3318、电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x台电脑,下列方程正确的是()A、x(x+1)=81B、1+x+x2=81C、1+x+x(x+1)=81D、1+(x+1)2=819、某商品经过两次降价,零售价降为原来的,已知两次降价的百分率均为x,则列出方程正确的是()A、B、C、(1+x)2=2D、(1﹣x)2=210、如图,某小区规划在一个长30m、宽20m的长方形土地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分钟花草,要使每一块花草的面积都为78cm2,那么通道宽应设计成多少m?设通道宽为xm,则由题意列得方程为()A、(30﹣x)(20﹣x)=78B、(30﹣2x)(20﹣2x)=78C、(30﹣2x)(20﹣x)=6×78D、(30﹣2x)(20﹣2x)=6×7811、某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程正确的是()A、5.4(1+x)2=6.3B、5.4(1﹣x)2=6.3C、6.3(1+x)2=5.4D、6.3(1﹣x)2=5.412、要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,据场地和时间等条件的限制,赛程计划安排7天,每天安排4场比赛,刚好完成所有比赛.设比赛组织者邀请x个队参赛,则根据题意所列方程正确的是()A、x(x+1)=28B、x(x﹣1)=28C、x(x+1)=28D、x(x﹣1)=2813、温州某服装店十月份的营业额为8000元,第四季度的营业额共为40000元.如果平均每月的增长率为x,则由题意可列出方程为()A、8000(1+x)2=40000B、8000+8000(1+x)2=40000C、8000+8000×2x=40000D、8000[1+(1+x)+(1+x)2]=4000014、为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A、2500(1+x)2=1.2B、2500(1+x)2=12000C、2500+2500(1+x)+2500(1+x)2=1.2D、2500+2500(1+x)+2500(1+x)2=1200015、某校去年投资2万元购买实验器材,预期明年的投资额为8万元.若该校这两年购买实验器材的投资的年平均增长率为x,则下面所列方程正确的是()A、2(1+2x)=8B、2(1+x)2=8C、8(1﹣2x)=2D、8(1﹣x)2=2二、填空题(共5题;共5分)16、某种商品原售价200元,由于产品换代,现连续两次降价处理,按72元的售价销售.已知两次降价的百分率相同,若设降价的百分率为x,则可列出方程为________.17、如图,某广场一角的矩形花草区,其长为40m,宽为26m,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864m2,求路的宽度为________ m.18、由10块相同的小长方形地砖拼成面积为1.6m2的长方形ABCD(如图),则长方形ABCD的周长为________.19、如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为________米.20、如图,Rt△ABC中,∠B=90°,AC=10cm,BC=8cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AB向终点B移动;点Q以2cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连结PQ,若经x秒后P,Q两点之间的距离为4 ,那么x的值为________.三、解答题(共4题;共20分)21、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m.鸡场的面积能达到150m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22、小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?23、凤凰古城门票事件后,游客相比以往大幅减少,滨江某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去凤凰古城旅游,共支付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去凤凰古城旅游?24、某公司生产的商品的市场指导价为每件150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量y(件)与销售价格浮动的百分点x之间的函数关系为y=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.(1)求该公司生产销售每件商品的成本为多少元?(2)当实际销售价格定为多少元时,日销售利润为660元?(说明:日销售利润=(销售价格一成本)×日销售量)(3)该公司决定每销售一件商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣2时,扣除捐赠后的日销售利润随x增大而减小,直接写出a的取值范围.四、综合题(共2题;共22分)25、如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)铺设地面所用瓷砖的总块数为________(用含n的代数式表示,n表示第n个图形);(2)按上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.26、诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售________件,每件盈利________元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.答案解析部分一、单选题1、【答案】C【考点】一元二次方程的应用【解析】【解答】设这个小组有x人,则根据题意可列方程为:(x﹣1)x=72,解得:x1=9,x2=﹣8(舍去).故选C.【分析】设这个小组的人数为x个,则每个人要送其他(x﹣1)个人贺卡,则共有(x﹣1)x张贺卡,等于72张,由此可列方程.2、【答案】B【考点】一元二次方程的应用【解析】【解答】设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x ﹣1)件,所以,x(x﹣1)=182.故选B.【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.3、【答案】B【考点】一元二次方程的应用【解析】【解答】如果设李师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得今年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故选:B.【分析】是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设李师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意可用x表示今年退休金,然后根据已知可以得出方程.4、【答案】D【考点】一元二次方程的应用【解析】【解答】由题意得:m2+(﹣2m)﹣1=2,m2﹣2m﹣3=0,(m﹣3)(m+1)=0,解得m1=3,m2=﹣1.故选D.【分析】按照相应的运算方法与顺序,让得到的含m的一元二次方程的结果为2,列式求值即可.5、【答案】B【考点】一元二次方程的应用【解析】【解答】设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.6、【答案】A【考点】一元二次方程的应用【解析】【解答】设AB的长为x米,则AD=(80﹣x),根据矩形的面积得:x(80﹣x)=640,故选A.【分析】根据AB的长表示出线段AD或线段BC的长,利用矩形的面积列出方程即可.7、【答案】D【考点】一元二次方程的应用【解析】【解答】设平均每月的增长率为x,根据题意:八月份的月营业额为100×(1+x),九月份的月销售额在八月份月销售额的基础上增加x,为100×(1+x)×(1+x),则列出的方程是:100+100(1+x)+100(1+x)2=331,即:100[1+(1+x)+(1+x)2]=331.故选D.【分析】根据增长率问题,一般增长后的量=增长前的量×(1+增长率),关系式为:七月份月营业额+八月份月营业额+九月份月营业额=331,把相关数值代入即可求解.8、【答案】C【考点】一元二次方程的应用【解析】【解答】设每轮感染中平均一台电脑会感染x台电脑.根据题意,得:1+x+x(1+x)=81,故选:C.【分析】首先设每轮感染中平均一台电脑会感染x台电脑.则经过一轮感染,1台电脑感染给了x台电脑,这(x+1)台电脑又感染给了x(1+x)台电脑.利用等量关系:经过两轮感染后就会有81台电脑被感染得出即可.9、【答案】B【考点】一元二次方程的应用【解析】【解答】设原价为1,则现售价为,∴可得方程为:1×(1﹣x)2=,故选B.【分析】可设原价为1,关系式为:原价×(1﹣降低的百分率)2=现售价,把相关数值代入即可.10、【答案】C【考点】一元二次方程的应用【解析】【解答】设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,故选C.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.11、【答案】D【考点】一元二次方程的应用【解析】【解答】由题意得,5月份的利润为:6.3(1﹣x),6月份的利润为:6.3(1﹣x)(1﹣x),故可得方程:6.3(1﹣x)2=5.4.故选D.【分析】根据题意可得出5月份的利润为:6.3(1﹣x),6月份的利润为:6.3(1﹣x)(1﹣x),再由两个月内将利润降到5.4万元,可得出方程.12、【答案】B【考点】一元二次方程的应用【解析】【解答】每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.13、【答案】D【考点】一元二次方程的应用【解析】【解答】解:设平均每月的增长率为x,则十一月份的营业额为8000(1+x),十二月份的营业额为8000(1+x)2,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选:D.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果平均每月的增长率为x,根据题意即可列出方程.14、【答案】D【考点】一元二次方程的应用【解析】【解答】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选D.【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2014年投入教育经费+2014年投入教育经费×(1+增长率)+2014年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.15、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设该校这两年购买的实验器材的投资年平均增长率为x,今年的投资金额为:2(1+x);明年的投资金额为:2(1+x)2;根据题意得:2(1+x)2=8.故选B.【分析】为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果该校这两年购买的实验器材的投资年平均增长率为x,根据题意可得出的方程.二、填空题16、【答案】200(1﹣x)2=72【考点】一元二次方程的应用【解析】【解答】解:设降价的百分率为x,则第一次降价后的价格为:200(1﹣x),第二次降价后的价格为:200(1﹣x)2=72;所以,可列方程:200(1﹣x)2=72.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设降价的百分率为x,根据“原售价200元,按72元的售价销售”,即可得出方程.17、【答案】2【考点】一元二次方程的应用【解析】【解答】解:设路的宽度是xm.根据题意,得(40﹣2x)(26﹣x)=864,x2﹣46x+88=0,(x﹣2)(x﹣44)=0,x=2或x=44(不合题意,应舍去).答:路的宽度是2m.【分析】设路的宽度是xm.把两条曲路移到矩形花草区的两边,则剩下的部分是一个矩形,根据矩形的面积公式,即可列方程求解.18、【答案】5.2m【考点】一元二次方程的应用【解析】【解答】解:设每块长方形地砖的宽为xm,则长为4xm,根据题意,得4x2=1.6× ,解得x=±0.2,2×(4x+x+2×4x)=26 x=5.2(m).答:矩形ABCD的周长为5.2m.故答案为:5.2m.【分析】每块长方形地砖的宽为xm,则长为4xm,利用矩形的面积等于10块小矩形的面积列出方程求解即可.19、【答案】1【考点】一元二次方程的应用【解析】【解答】解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532,整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.故答案为:1.【分析】设小道进出口的宽度为x米,然后利用其种植花草的面积为532平方米列出方程求解即可.20、【答案】2或【考点】一元二次方程的应用【解析】【解答】解:∵∠B=90°,AC=10cm,BC=8cm,∴AB=6cm.∴BQ=2x,PB=6﹣x.∵P,Q两点之间的距离为4 ,∴BQ2+PB2=PQ2,∴(2x)2+(6﹣x)2=(4 )2,解得x1=2,x2= .故答案为:2或.【分析】首先运用勾股定理求出AB边的长度,然后根据路程=速度×时间,分别表示出BQ、PB的长度,再由P,Q两点之间的距离为4 ,列出方程(2x)2+(2x)2=(4 )2,解方程即可.三、解答题21、【答案】解:设与墙垂直的一边长为xm,则与墙平行的边长为(35﹣2x)m,可列方程为x(35﹣2x)=150,即2x2﹣35x+150=0,解得x1=10,x2=7.5,当x=10时,35﹣2x=15,当x=7.5时,35﹣2x=20>18(舍去).答:鸡场的面积能达到150m2,方案是与墙垂直的一边长为10m,与墙平行的边长为15m【考点】一元二次方程的应用【解析】【分析】可设垂直于墙的一边长x米,得到平行于墙的一边的长,根据面积为150列式求得平行于墙的一边的长小于18的值即可.22、【答案】解:(1)设返回时A,B两地间的路程为x米,由题意得:=,解得x=1800.答:A、B两地间的路程为1800米;(2)设小明从A地到B地共锻炼了y分钟,由题意得:25×6+5×10+[10+(y﹣30)×1](y﹣30)=904,整理得y2﹣50y﹣104=0,解得y1=52,y2=﹣2(舍去).答:小明从A地到C地共锻炼52分钟.【考点】一元二次方程的应用【解析】【分析】(1)可设AB两地之间的距离为x米,根据两种步行方案的速度相等,列出方程即可求解;(2)可设从A地到C地一共锻炼时间为y分钟,根据在整个锻炼过程中小明共消耗904卡路里热量,列出方程即可求解.23、【答案】解:设该单位这次共有x名员工去旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.根据题意列方程得:[1000﹣20(x﹣25)]x=27000.即(x﹣45)(x﹣30)=0,解得x1=45,x2=30.当x1=45时,1000﹣20(x﹣25)=600<700,故舍去x1;当x2=30时,1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去旅游【考点】一元二次方程的应用【解析】【分析】首先根据共支付给旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了[1000﹣20(x﹣25)]元,列出方程求解.24、【答案】解:(1)设该公司生产销售每件商品的成本为z元,依题意得:150(1﹣12%)=(1+10%)z,解得:z=120,答:该公司生产销售每件商品的成本为120元;(2)由题意得(﹣2x+24)[150(1+x%)﹣120]=660,整理得:x2+8x﹣20=0,解得:x1=2,x2=﹣10,此时,商品定价为每件135元或153元,日销售利润为660元;(3)根据题意得:1≤a≤6.【考点】一元二次方程的应用【解析】【分析】(1)设该公司生产销售每件商品的成本为z元,根据该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%列出方程,求出方程的解得到z的值,即为每件商品的成本;(2)根据日销售利润=(销售价格一成本)×日销售量,由日销售利润为660元列出关于x的方程,求出方程的解即可得到结果;(3)根据题意确定出a的范围即可.四、综合题25、【答案】(1)n2+5n+6或(n+2)(n+3)(2)解:根据题意得:n2+5n+6=506,解得n1=20,n2=﹣25(不符合题意,舍去)(3)解:根据题意得:n(n+1)=2(2n+3),解得n= (不符合题意,舍去),∴不存在黑瓷砖与白瓷砖块数相等的情形【考点】一元二次方程的应用【解析】【解答】解:(1)第一个图形用的正方形的个数=3×4=12,第二个图形用的正方形的个数=4×5=20,第三个图形用的正方形的个数=5×6=30…以此类推,第n个图形用的正方形的个数=(n+2)(n+3)个;故答案为:n2+5n+6或(n+2)(n+3);【分析】(1)第一个图形用的正方形的个数=3×4=12,第二个图形用的正方形的个数=4×5=20,第三个图形用的正方形的个数=5×6=30…以此类推,第n个图形用的正方形的个数=(n+2)(n+3)个;(2)根据题意可得(n+2)(n+3)=506,解关于n的一元二次方程即可;(3)第一个图形中白色瓷块有1×2=2,黑色瓷块=2×5=10,第二个图形中白色瓷块有2×3=6,黑色瓷块=2×7=14,第三个图形中白色瓷块有3×4=12,黑色瓷块=2×9=18…那么依此类推第n个图形中有白色瓷块=n(n+1),黑色瓷块=2(2n+3),根据题意可得n(n+1)=2(2n+3),解关于n的方程即可.26、【答案】(1)20+2x;40﹣x(2)解:根据题意,得:(20+2x)(40﹣x)=1200 解得:x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元(3)解:不能,∵(20+2x)(40﹣x)=2000 此方程无解,故不可能做到平均每天盈利2000元【考点】一元二次方程的应用【解析】【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(20+2x),(40﹣x);【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价﹣进价,列式即可;(2)根据:总利润=每件利润×销售数量,列方程求解可得;(3)根据(2)中相等关系列方程,判断方程有无实数根即可得.。
沪科版八年级数学下册一元二次方程应用专题1.(2013•珠海)某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010年﹣2012年每年平均每次捕鱼量的年平均下降率.2.(2013•重庆)“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.3.(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?4.(2013•泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?5.(2013•汕头)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?6.(2013•泉州)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?7.(2013•衢州)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.8.(2013•绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?9.(2012•徐州)为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?10.(2012•襄阳)为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)11.(2012•山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?12.(2012•钦州)近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.13.(2012•黔南州)2012年3月25日央视《每周质量播报》报道“毒胶囊”的事件后,全国各大药店的销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元.(1)问该药品的原价格是多少,下调后的价格是多少?(2)问5、6月份药品价格的月平均增长率是多少?14.(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.15.(2012•大庆)已知等边△ABC的边长为3个单位,若点P由A出发,以每秒1个单位的速度在三角形的边上沿A→B→C→A方向运动,第一次回到点A处停止运动,设AP=S,用t表示运动时间.(1)当点P由B到C运动的过程中,用t表示S;(2)当t取何值时,S等于(求出所有的t值);(3)根据(2)中t的取值,直接写出在哪些时段AP?16.(2011•襄阳)汽车产业是我市支柱产业之一,产量和效益逐年增如.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011的年产量为多少万辆?17.(2011•西宁)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?18.(2011•辽阳)随着家庭轿车拥有量逐年增加,渴望学习开车的人也越来越多.据统计,某驾校2008年底报名人数为3 200人,截止到2010年底报名人数已达到5 000人.(1)若该驾校2008年底到2010年底报名人数的年平均增长率均相同,求该驾校的年平均增长率.(2)若该驾校共有10名教练,预计在2011年底每个教练平均需要教授多少人?19.(2011•广安)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?20.(2011•常州)某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x 的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)21.(2010•天津)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000kg,2009年平均每公顷产9680kg,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x.(1)用含x的代数式表示:①2008年种的水稻平均每公顷的产量为_________;②2009年种的水稻平均每公顷的产量为_________;(2)根据题意,列出相应方程_________;(3)解这个方程,得_________;(4)检验:_________;(5)答:该村水稻每公顷产量的年平均增长率为_________%.22.(2009•天津)如图①:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.结合以上分析完成填空:如图②:用含x的代数式表示:AB=_________cm;AD=_________cm;矩形ABCD的面积为_________cm2;列出方程并完成本题解答.23.(2009•常德)常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?24.(2008•义乌市)义乌市是一个“车轮上的城市”,截止2007年底全市汽车拥有量为114508辆.己知2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同,结果精确到个位)25.(2008•西藏)黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?26.(2008•宁波)2008年5月1日,目前世界上最长的跨海大桥﹣﹣杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?27.(2007•宜昌)椐报道,2007年“五•一”黄金周宜昌市共接待游客约80万人,旅游总收入约2.56亿元.其中县区接待的游客人数占全市接待的游客人数的60%,而游客人均旅游消费(旅游总收入÷旅游总人数)比城区接待的游客人均旅游消费少50元.(1)2007年“五•一”黄金周,宜昌市城区与县区的旅游收入分别是多少万元?(2)预计2008年“五•一”黄金周与2007年同期相比,全市旅游总收入增长的百分数是游客人均旅游消费增长百分数的2.59倍,游客人数增长的百分数是游客人均旅游消费增长百分数的1.5倍.请估计2008年“五•一”黄金周全市的旅游总收入是多少亿元?(保留3个有效数字)28.(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?29.(2005•扬州)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?30.(2002•河北)图形的操作过程:在图①中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=_________,S2=_________,S3=_________.(3)联想与探索:如图④在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少并说明你的猜想是正确的.沪科版八年级数学下册一元二次方程应用专题参考答案与试题解析1.(2013•珠海)某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计1+m1+(1)求每轮传染中平均一个人传染了几个人?4.(2013•泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?l=t+甲走过的路程为+t则+t+4t=21则+t+4t=63(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.=(舍去)即正方形的边长为销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商辆,××x+不是整数,故不符合题意,=13用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;20+元,得,元.则宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?×.2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元.(1)问该药品的原价格是多少,下调后的价格是多少?xxx=10大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.角形的边上沿A→B→C→A方向运动,第一次回到点A处停止运动,设AP=S,用t表示运动时间.(1)当点P由B到C运动的过程中,用t表示S;(2)当t取何值时,S等于(求出所有的t值);(3)根据(2)中t的取值,直接写出在哪些时段AP?,建立关于×S=S=,;.S=S=;汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.××年底报名人数为3 200人,截止到2010年底报名人数已达到5 000人.(1)若该驾校2008年底到2010年底报名人数的年平均增长率均相同,求该驾校的年平均增长率.=(不合实际,舍去)政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x 的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?)根据表中的数据可得路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000kg,2009年平均每公顷产9680kg,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x.(1)用含x的代数式表示:①2008年种的水稻平均每公顷的产量为8000(1+x);②2009年种的水稻平均每公顷的产量为8000(1+x)2;(2)根据题意,列出相应方程8000(1+x)2=9680;(3)解这个方程,得x1=0.1,x2=﹣2.1;(4)检验:x1=0.1,x2=﹣2.1都是原方程的根,但x2=﹣2.1不符合题意,所以只取x=0.1;彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.结合以上分析完成填空:如图②:用含x的代数式表示:AB=(20﹣6x)cm;AD=(30﹣4x)cm;矩形ABCD的面积为(24x2﹣260x+600)cm2;列出方程并完成本题解答.,)=2x=,,答:每个横、竖彩条的宽度分别为cm的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售。
2.1一元二次方程(1)同步练习A 组1、2121003m x x m -++=是关于x 的一元二次方程,则x 的值应为( ) A 、m =2 B 、23m = C 、32m = D 、无法确定 2、下列方程中不含一次项的是( )A .x x 2532=-B .2916x x =C .0)7(=-x xD .0)5)(5(=-+x x3、下列各数是方程21(2)23x +=解的是( ) A 、6 B 、2 C 、4 D 、04、根据下列表格对应值:判断关于x 的方程的一个解的范围是( )A 、x <3.24B 、3.24<x <3.25C 、3.25<x <3.26D 、3.25<x <3.285、判断下列方程,是一元二次方程的有____________.(1)32250x x -+=; (2)21x =; (3)221352245x x x x --=-+; (4)22(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=.6、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.7.已知关于x 的方程22(1)(1)0m x m x m --++=.(1)x 为何值时,此方程是一元一次方程?(2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项B 组1.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( C ).A .2或-2B .2C .-2D .以上都不正确2.若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( D )A .1B .2C .-1D .-23.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.4.若一元二次方程20,(0)ax bx c a ++=≠有一个根为1,则=++c b a _________;若有一个根是-1,则b 与a 、c 之间的关系为________;若有一个根为0,则c=_________.5.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值6. 应用一元二次方程根的定义,你能求出下列问题吗? 一个三角形的边长是3㎝和7㎝,第三边长是整数a ㎝,且a 满足a 2-10a +21 =0,求三角形的周长。
2.3一元二次方程的应用同步练习参考答案与试题解析一.选择题1.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为x,则列出方程正确的是()A.580(1+x)2=1185B.1185(1﹣x)2=580C.580(1﹣x)2=1185D.1185(1+x)2=580解:设平均每次降价的百分率是x,根据题意列方程得,1185(1﹣x)2=580.故选:B.2.连续两个整数的乘积为12,则这两个整数中较小的一个是()A.3B.﹣4C.﹣3或4D.﹣4或3解:设这两个整数中较小的一个是x,则较大的一个是(x+1),根据题意得:x(x+1)=12,解得:x1=3,x2=﹣4.故选:D.3.某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,求每个支干长出多少个小分支?解:设主干长出x个支干,每个支干有x个小分支,由题意,所列方程正确的是()A.1+x+x2=111B.x+x2=111C.2x+1=111D.2x=111解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=111,故选:A.4.某新建火车站站前广场绿化工程中有一块长为20米,宽为12米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为112米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是()A.2米B.米C.2米或米D.3米解:设人行通道的宽度是x米,则两块绿地可合成长为(20﹣3x)米、宽为(12﹣2x)米的矩形,根据题意得:(20﹣3x)(12﹣2x)=112,整理得:x1=2,x2=,∵当x=时,20﹣3x=﹣12,∴x2=舍去.故选:A.5.下列方程没有实数根的是()A.x3+2=0B.x2+2x+2=0C.=x﹣1D.﹣=0解:A、x3+2=0,x3=﹣2,x=﹣,即此方程有实数根,故本选项不符合题意;B、x2+2x+2=0,△=22﹣4×1×2=﹣4<0,所以此方程无实数根,故本选项符合题意;C、=x﹣1,两边平方得:x2﹣3=(x﹣1)2,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;D、﹣=0,去分母得:x﹣2=0,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;故选:B.6.某次足球比赛中,每两个足球队之间要进行一次主场比赛和一次客场比赛,所以共组织了20场比赛,这次比赛共有几个队参加比赛()A.10个B.6个C.5个D.4个解:设有x个足球队参加,依题意,x(x﹣1)=20,整理,得x2﹣x﹣20=0,(x﹣5)(x+4)=0,解得:x1=5,x2=﹣4(舍去);即:共有5个足球队参加比赛.故选:C.7.在单元考试中,某班同学解答“由一个二元一次方程和一个二元二次方程组成的方程组的解为,,试写出这样的一个方程组题目,出现了下面四种答案,其中正确的答案是()A.B.C.D.解:A、第二个解不符合方程组中的第一个方程,所以方程组不符合,故本选项不符合题意;B、第一个解不符合方程组中的第一个方程,所以方程组不符合,故本选项不符合题意;C、两个解都是方程组的解,方程组也满足由一个二元一次方程和一个二元二次方程组成的,故本选项符合题意;D、方程组不是由一个二元一次方程和一个二元二次方程组成的,故本选项不符合题意;故选:C.8.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是()A.400(1+x)=640B.400(1+x)2=640C.400(1+x)+400(1+x)2=640D.400+400(1+x)+400(1+x)2=640解:设这两年的年净利润平均增长率为x,根据题意得:400(1+x)2=640.故选:B.二.填空题9.圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为x(x﹣1)=110.解:设这个小组有x人,则每人应送出x﹣1张贺卡,由题意得:x(x﹣1)=110,故答案为:x(x﹣1)=110.10.已知x+2+=10,则x等于2.解根据题意可得x>0∵x+2+=10=10=2x=2故答案为211.若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若2人患了流感,第一轮传染后患流感的人数共有22人.解:设每轮传染中1人传染给x人,则第一轮传染后共(1+x)人患流感,第二轮传染后共[1+x+x(x+1)]人患流感,根据题意得:1+x+x(x+1)=121,解得:x1=10,x2=﹣12(舍去),∴2(1+x)=22.故答案为:22.12.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,算一算张大叔购回这张矩形铁皮共花了700元钱.解:设长方体的底面长为x米,则底面宽为(x﹣2)米,由题意,得x(x﹣2)×1=15,解得:x1=5,x2=﹣3(舍去).底面宽为5﹣2=3米.矩形铁皮的面积为:(5+2)(3+2)=35米2,这张矩形铁皮的费用为:20×35=700元.故答案为:700.13.若代数式(x+1)(x+2)(x+3)(x+4)的值为24,则x的值可以是0或﹣5(写一个不扣分).解:∵代数式(x+1)(x+2)(x+3)(x+4)的值为24,∴(x+1)(x+2)(x+3)(x+4)=24,即[(x+1)(x+4)][(x+2)(x+3)]=24∴(x2+5x+4)(x2+5x+6)=24设x2+5x+4=y,则原式为y(y+2)=24整理,得y2+2y﹣24=0,∴(y+6)(y﹣4)=0,∴y1=﹣6,y2=4.当y=﹣6时,x2+5x+4=﹣6即x2+5x+10=0,△=25﹣40=﹣15<0所以此方程无解.当y=4时,x2+5x+4=4,整理,得x2+5x=0解得x1=0,x2=﹣5.故答案为:0或﹣5.14.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中第九卷《勾股》主要讲述了以测量问题为中心的直角三角形三边互求,之中记载了一道有趣的“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”译文:“今有正方形水池边长为1丈,有棵芦苇生长在它长出水面的部分为1尺.将芦苇的中央,向池岸牵引,恰好与水岸齐接.问水深,芦苇的长度分别是多少尺?”(备注:1丈=10尺)如果设水深为x尺,那么芦苇长用含x的代数式可表示为(x+1)尺,根据题意,可列方程为(x+1)2=x2+52.解:设水深为x尺,那么芦苇长用含x的代数式可表示为:(x+1)尺,根据题意,可列方程为:(x+1)2=x2+52.故答案为:(x+1);(x+1)2=x2+52.三.解答题15.根据下列问题,列出关于x的方程,并将其化为一元二次方程的一般形式(1)有一个三位数,它的个位数字比十位数字大3,十位数字比百位数字小2,三个数字的平方和的9倍比这个三位数小20,求这个三位数.(2)如果一个直角三角形的两条直角边长之和为14cm,面积为24cm2,求它的两条直角边的长.解:(1)设十位数字为x,则个位数字为x+3,百位数字为x+2,根据题意得:[100(x+2)+10x+(x+3)]﹣9[(x+3)2+x2+(x+2)2]=20,化简为9x2﹣7x﹣22=0;(2)设其中一条直角边的长为x,则另一条直角边为(14﹣x),根据题意得:x(14﹣x)=24,整理得:x2﹣14x+48=0.16.根据扬州市某风景区的旅游信息,A公司组织一批员工到该风景区旅游,支付给旅行社2800元.A 公司参加这次旅游的员工有多少人?扬州市某风景区旅游信息表旅游人数收费标准不超过30人人均收费80元超过30人每增加1人,人均收费降低1元,但人均收费不低于55元解:设参加这次旅游的员工有x人,∵30×80=2400<2800,∴x>30.根据题意得:x[80﹣(x﹣30)]=2800,解得:x1=40,x2=70.当x=40时,80﹣(x﹣30)=70>55,当x=70时,80﹣(x﹣30)=40<55,舍去.答:A公司参加这次旅游的员工有40人.17.如图有一矩形空地,一边是长为20m的墙,另三边由一长为35m的篱笆围成,要使矩形的面积等于125m2,那么这块矩形空地的长和宽分别是多少?解:设平行于墙的边长为xm,则长方形的另一对边为m,可得方程:x×=125,解得x1=10,x2=25.当x1=10时,=12.5;当x2=25时,25>20(不合题意,舍去).故矩形空地的长是12.5m宽是10m.18.某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?解:(1)设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增长率为20%.(2)720×(1+20%)2=1036.8(t),∵1036.8>1000,∴该厂今年5月份总产量能突破1000t.。
一元二次方程应用题(含答案)整理版第一篇:一元二次方程应用题(含答案)整理版一元二次方程应用题1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600 展开后化简得:x²-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍)即每件降价4元2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x(8+x)(12+x)=96+69 x=3 增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式解:(1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?解:设边长x 则(19-2x)(15-2x)=77 4x^2-68x+208=0 x^2-17x+52=0 (x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=4 5.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。
2.3 一元二次方程的应用(1)
A 练就好基础 基础达标
1.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长,若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( B )
A .100(1+x )
B .100(1+x )2
C .100(1+x 2)
D .100(1+2x )
2.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程( D )
A .48(1-x )2 =36
B .48(1+x )2 =36
C .36(1-x )2 =48
D .36(1+x )2 =48
3.2018·绵阳在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( C )
A .9
B .10
C .11
D .12
【解析】 设参加酒会的人数为x ,
根据题意,得12
x (x -1)=55, 整理,得x 2-x -110=0,
解,得x 1=11,x 2=-10(不合题意,舍去).
所以参加酒会的人数为11.
4.每个花盆植3株花卉,则每株盈利4元;每个花盆增加1株花卉,平均每株盈利减少0.5元,要使每盆盈利为15元,设每盆多植x 株,则x 满足方程( A )
A .(3+x )(4-0.5x )=15
B .(x +3)(4+0.5x )=15
C .(x +4)(3-0.5x )=15
D .(x +1)(4-0.5x )=15
5.2018·眉山我市某楼盘准备以每平方6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4 860元的均价开盘销售,则平均每次下调的百分率是( C )
A .8%
B .9%
C .10%
D .11%
【解析】 设平均每次下调的百分率为x ,由题意,得
6 000(1-x )2=4860,
解,得x 1=0.1,x 2=1.9(舍去).
所以平均每次下调的百分率为10%.
6.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为__x (x -1)=2_070__.
7.某工厂一月份产值是5万元,二、三月份的月平均增长率为x .
(1)若三月份的产值是11.25万元, 则可列方程__5(1+x )2=11.25__;
(2)若前三月份的总产值是11.25万元, 则可列方程:__5+5(1+x )+5(1+x )2=11.25__.
8.某镇2015年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2017年达到82.8公顷.
(1)求该镇2015至2017年绿地面积的年平均增长率;
(2)若年增长率保持不变,2018年该镇绿地面积能否达到100公顷?
【答案】 (1)20% (2)不能
【解析】 (1)设年平均增长率为x .
57.5(1+x )2=82.8,
(1+x )2=1.44
x +1=±1.2
∴x 1=0.2=20%
x 2=-2.2(舍去)
答:年平均增长率为20%.
(2)82.8×(1+20%)=99.36<100,
故2018年该镇绿地面积不能达到100公顷.
B 更上一层楼 能力提升
9.小芳家今年添置了新电器.已知今年5月份的用电量是120千瓦时,根据去年5至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5至6月用电量月增长率是6至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?
【答案】 180千瓦时
【解析】 设今年6月至7月用电量月增长率为x ,则今年5月至6月用电量月增长率为1.5x ,得
120(1+x )(1+1.5x )=240,
∴3x 2+5x -2=0,
∴x 1=13
,x 2=-2(不合题意,舍去), ∴小芳家6月份的用电量:
120×(1+1.5x )=120×⎝
⎛⎭⎫1+1.5×13 =180(千瓦时).
答:小芳家6月份用电量为180千瓦时.
10.2018·德州为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.
(1)求年销售量y 与销售单价x 的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10 000万元的年利润,则该设备的销售单价应是多少万元?
解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b (k ≠0),
将(40,600),(45,550)代入y =kx +b ,得
⎩⎪⎨⎪⎧40k +b =600,45k +b =550,解,得⎩
⎪⎨⎪⎧k =-10,b =1000. ∴年销售量y 与销售单价x 的函数关系式为
y =-10x +1 000.
(2)设此设备的销售单价为x 万元,则每台设备的利润为(x -30)万元,销售数量为 (-10x +1 000)台,
根据题意,得
(x -30)(-10x +1 000)=10 000,
整理,得x 2-130x +4 000=0,
解,得x 1=50,x 2=80.
∵此设备的销售单价不得高于70万元,
∴x =50.
答:该设备的销售单价应是50万元.
C 开拓新思路 拓展创新
11.某汽车销售公司4月份销售某厂汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该汽车的进价为30万元;每多售出1辆,所有售出汽车的进价均降低0.1万元/辆,月底厂家一次性返利给销售公司,每辆返利0.5万元.
(1)若该公司当月售出5辆汽车,则每辆汽车的进价为__29.6__万元;
(2)如果汽车的售价为31万/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)
【答案】 需要售出6辆汽车.
【解析】 设需售出a 辆汽车,则
a[31-(30-(a-1)×0.1)]+0.5a=12,
整理,得(a+7)2=169,
解得a1=6,a2=-20(舍去),
∴需售出6辆.
12.某草莓园的采摘套票售价为100元/人,成本为60元/人,每天平均有80人前来采摘.为吸引人气,打响品牌,扩大销售,现在草莓园采取了合理的降价措施.经调查发现,如果票价每下降1元,票便可多售出2张.已知草莓园降价后,平均每天多销售了1 000 元.
(1)降价后,草莓园平均每天的总销售价为多少元?
(2)草莓园采摘套票降价了多少元?
【答案】(1)总销售价为8 000+1 000=
9 000(元).(2)10元
【解析】(1)∵原来的售价为80×100=
8 000元,
增加了1 000元,
∴总销售价为8 000+1 000=9 000元;
(2)设草莓园采摘套票降价了x元,则
(100-x)(80+2x)=9 000.
整理,得x2-60x+500=0.
解得x1=10,x2=50,
经检验,x2=50不合题意,舍去,因为此时票价为50,小于成本,降价措施不合理.
答:降价了10元.。