4.8.相似多边形的性质(二)
- 格式:doc
- 大小:55.48 KB
- 文档页数:4
相似多边形及位似--知识讲解【学习目标】1、掌握相似多边形的性质及应用;2、了解图形的位似,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;3、了解黄金分割值及相关运算.【要点梳理】要点一、相似多边形相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点诠释:用相似多边形定义判定特殊多边形的相似情况:(1)对应角都相等的两个多边形不一定相似,如:矩形;(2)对应边的比都相等的两个多边形不一定相似,如:菱形;(3)边数相同的正多边形都相似,如:正方形,正五边形.要点二、位似1.位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质:(1)位似图形的对应点和位似中心在同一条直线上;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.要点诠释:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点三、黄金分割【高清课程名称: 位似和黄金分割 高清ID 号:394501关联的位置名称(播放点名称):黄金分割及总结】定义:如图,将一条线段AB 分割成大小两条线段AP 、PB ,若小段与大段的长度之比等于大段的长度与全长之比,即ABAP AP PB =(此时线段AP 叫作线段PB 、AB 的比例中项),则P 点就是线段AB 的黄金分割点(黄金点),这种分割就叫黄金分割.要点诠释:1.黄金分割值:设AB=1,AP=x ,则BP=x -1∵ABAP AP PB = ∴11x x x =- ∴x x -=12∴618.0215≈-=x (舍负) 2.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.【典型例题】类型一、相似多边形1.如图,矩形草坪长20m ,宽16m,沿草坪四周有2m宽的环形小路,小路内外边缘所形成的两个矩形相似吗?为什么?【答案与解析】因为矩形的四个角都是直角,所以关键是看矩形ABCD 与矩形EFGH 的对应边的比是否相等. 542016221616EF AB ==++=, 652420222020EH AD ==++= 而6554≠,∴EH AD EF AB ≠ ∴矩形ABCD 与矩形EFGH 的对应边的比不相等,因而它们不相似.【总结升华】两个边数相同的多边形,必须同时满足“对应边的比都相等,对应角都相等”这两个条件才能相似,缺一不可.举一反三【变式】如图,梯形ABCD 中,AD ∥BC ,E 、F 两点分别在AB 、DC 上.若AE=4,EB=6,DF=2,FC=3,且梯形AEFD 与梯形EBCF 相似,则AD 与BC 的长度比为( )A.1:2B. 2:3C. 2:5D.4:9【答案】D.2. 如图,在长为8cm 、宽为4cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A. 2cm 2B. 4cm 2C. 8cm 2D. 16cm 2【答案】C.A B C D E F G H【解析】长为8cm 、宽为4cm 的矩形的面积是32cm 2,留下的矩形(图中阴影部分)与原矩形相似,相似比是4:8=1:2,因而面积的比是1:4,因而留下矩形的面积是32×14=8cm 2.故选C . 【总结升华】本题考查相似多边形的性质.相似多边形面积之比等于相似比的平方.类型二、位似3. 利用位似图形的方法把五边形ABCDE 放大1.5倍.【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.4. 如图,矩形OABC 的顶点坐标分别为O (0,0),A (6,0),B (6,4),C (0,4).画出以点O 为位似中心,矩形OABC 的位似图形OA ′ B ′ C ′ ,使它的面积等于矩形OABC 面积的41,并分别写出A ′、B ′、C ′三点的坐标. AB C D E A 1 B 1 C 1D 1E 1 A B DE【答案与解析】因为矩形OA ′B ′C ′与矩形OABC 是位似图形,面积比为1:4,所以它们的位似比为1:2. 连接OB ,(1)分别取线段OA 、OB 、OC 的中点A ′、B ′、C ′,连接O A ′、A ′B ′、B ′C ′、 C ′O ,矩形OA ′B ′C ′就是所求的图形.A ′,B ′,C ′三点的坐标分别为A ′(3,0),B ′(3,2),C ′(0,2).(2)分别在线段OA ,OB ,OC 的反向延长线上截取O A ″、O B ″、O C ″,使OA ″=21OA ,OB ″=21OB ,O C ″=21OC ,连接 A ″B ″、B ″C ″,则矩形O A ″B ″C ″为所求. A ″、B ″、C ″三点的坐标分别为A ″(-3,0),B ″(-3,-2),C ″(0,-2).【总结升华】平面直角坐标系内画位似图形,若没有明确指出只画一个,一定要把两种情况都画在坐标系内,并写出两种坐标. 举一反三【高清课程名称: 位似和黄金分割 高清ID 号: 394501关联的位置名称(播放点名称):位似作图及例4】【变式】在已知三角形内求作内接正方形.【答案】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ;∴四边形DEFG 即为所求.类型三、黄金分割5.求做黄金矩形(写出具体做题步骤)并证明.【答案与解析】 51-的矩形叫黄金矩形.(心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.)黄金矩形的作法如下(如图所示):第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ;第四步:过E 作EF⊥AD,交AD 的延长线于F .即矩形DCEF 为黄金矩形. 证明:在正方形ABCD 中,取2AB a =,∵ N 为BC 的中点,∴ 12NC BC a ==. G F F'B C G' A BC D EF M N在Rt DNC △中,ND ===.又∵ NE ND =,∴ 1)CE NE NC a =-=.∴ 1122CE a CD a ==). 故矩形DCEF 为黄金矩形.【总结升华】要求熟练掌握多边形相似的比例关系.会利用相似比,求未知线段的长度或比值.举一反三【变式】美是一种感觉,当人的肚脐是人的身高的黄金分割点时,人的下半身长与身高之比约为0.618,人的身段成为黄金比例,给人一种美感.某女士身高165cm ,下半身长与身高的比值是0.60,为尽可能达到匀称的效果,她应穿高跟鞋的高度大约为( )A.4cmB.5cmC.6cmD.8cm【答案】D.。
相似多边形的性质
能量储备
● 相似多边形的定义:各角分别相等、各边成比例的两个多边形叫做相似多边形. ● 相似比
(1)相似多边形对应边的比叫做相似比.
(2)相似比是有顺序的,如若正方形ABCD ∽正方形A′B′C′D′,相似比为k 1,则正方形
A′B′C′D′与正方形ABCD 的相似比为1k 1
. (3)当相似比为1时,两个相似的多边形就全等,也就是说全等是相似的特殊情况. ● 相似多边形的性质:对应角相等,对应边成比例.
通关宝典
★ 基础方法点
1:准确找出相似多边形的对应边,再利用对应边成比例可求边长.
例1:如图所示,在长为8 cm ,宽为4 cm 的长方形中,截去一个长方形,使得留下的长方形(图中阴影部分)与原长方形相似,则留下的长方形的面积是( )
A .2 cm 2
B .4 cm 2
C .8 cm 2
D .16 cm 2
解析:由题意知留下的长方形与原长方形相似.设留下的长方形的宽为x cm ,由题意得x 4
=48
,解得x =2.故S 阴影=2×4=8(cm 2). 答案:C
★★易混易误点
蓄势待发
考前攻略
考查运用相似多边形的性质求相似多边形的对应边或对应角,在中考中多以选择题或填空题的形式出现,题目难度不大.
完胜关卡。
24.4 相似多边形的性质学习目标要求1、掌握相似多边形的性质。
2、会利用相似多边形的性质解决问题。
教材内容点拨知识点1:相似多边形边、角的性质:根据相似多边形的定义,可知当两个多边形相似时,它们的对应角相等,对应边对应成比例,其比叫做相似多边形的相似比。
知识点2:相似多边形的周长、面积的性质:相似多边形的周长比等于相似比,面积比等于相似比的平方。
由于从多边形的一个顶点出发,可引出(n-3)条对角线,这(n-3)条对角线将多边形分成了(n-2)个三角形,所以相似多边形具有与相似三角形相类似的性质,诸如相似多边形的周长比等于相似比,面积比等于相似比的平方。
典型例题点拨例1、已知图中的两个四边形相似,找出图中的成比例线段,并用比例式表示。
点拨:根据条件:“图中的两个四边形相似”,利用相似多边形的定义求解。
解答:∵四边形ABCD∽四边形EFGH,且∠A=∠E、∠B=∠F,∴。
例2、如图,在 ABCD中,延长AB到E,使,延长CD到F,使交BC于G,交AD于H,则的周长与的周长的比为_________。
点拨:在 ABCD中,AB∥CD,所以△CBE与△CFG相似,要求的周长与的周长的比,即是求这两个三角形的相似比。
解答:1:4。
例3、如图,将的高AD三等分,这样把三角形分成三部分,设三部分的面积为,则。
点拨:利用相似三角形的面积比等于相似比的性质,先求出△ADE、△AFG、△ABC这三个三角形面积之间的关系,进而求出之间的关系。
解答:∵平行线段DEFGBC将三角形的高三等分,∴,∴。
例4、如图,在梯形ABCD中,是AB上一点,,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,若,求。
点拨:根据相似多边形的定义,对应边成比例,可得AD、EF、BC之间的关系式,解得EF,从而得解。
解答:∵EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,∴,即,解得EF=6,∴。
考点考题点拨1、中考导航中考中相似多边形的考察基本是通过选择题和填空题的形式出现,但近来也出现了不少考察相似多边形的综合题,往往与平行四边形和梯形相结合。
平行线分线段成比例及相似多边形讲义【知识点拨】知识点一:图形的相似形状相同的图形叫做相似图形。
(1)两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到;(2)全等的图形可以看成是一种特殊的相似,即不仅形状相同,大小也相同;(3)判断两个图形是否相似,就是看两个图形是不是形状相同,与其他因素无关。
知识点一:图形的相似形状相同的图形叫做相似图形。
(1)两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到;(2)全等的图形可以看成是一种特殊的相似,即不仅形状相同,大小也相同;(3)判断两个图形是否相似,就是看两个图形是不是形状相同,与其他因素无关。
例1、下列命题正确的是( )A、相似多边形是全等多边形B、不全等的多边形不是相似多边形C、全等多边形是相似多边形D、不相似的多边形可能是全等多边形(变式)1、下列说法中正确的是( )A、 两个三角形不全等,那么它们也不相似B、两个三角形不相似,那么它们也不全等C、两个相似三角形一定不全等D、两个全等三角形一定不相似例2、观察下面的图形,如图形状相同的有 。
2、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E”之间的变换是( )A、平移B、旋转C、对称D、相似知识点二、相似多边形1、相似多边形的定义:对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做它们的相似比.2、相似多边形的性质: 相似多边形的对应角相等,对应边成比例.性质:相似多边形的周长之比等于相似比;相似多边形的面积之比等于相似比的平方.考点:相似多边形1、一个多边形的边长分别是2、3、4、5、6,另一个和它相似的多边形的最短边长为6,则这个多边形的最长边为 。
2、两个相似六边形的周长分别是l1,l2,面积分别是S1,S2,若 l1:l2=2︰3,S2-S1 =30,则S1= ______,S2=_____.3.如图中的两个梯形相似,求出未知边x、y、z的长度和α、β的大小.4、△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为( )A、 B、2 C、 D、5、一个多边形的边长分别是4 cm、5 cm、6 cm、4 cm、5cm,和它相似的一个多边形最长边为8 cm,那么这个多边形的周长是( )A、12 cmB、18 cmC、32 cmD、48 cm6、Rt△ABC的两条直角边分别为3 cm、4 cm,与它相似的Rt△A'B'C'的斜边为20 cm,那么Rt△A'B'C'的周长为( )A、48 cmB、28 cmC、12 cmD、10 cm7、如果一个矩形对折后和原来的矩形相似,则此矩形的长边与短边之比为( )A、2:1B、4:11C、:1D、1.5:18、两个相似三角形的对应高的比为1:,其中小三角形的最长边为10 cm,那么另一个三角形的最长边为________。
4.8相似三角形的性质(2) 学前准备 重点:相似多边形周长的比、面积的比与相似比的关系的理解和应用。
难点:相似多边形周长的比、面积的比与相似比的关系的推导和应用。
学习准备1. 怎样求三角形的周长和面积?2. 相似三角形有哪些性质?比例有哪些基本性质? 课中导学 阅读感知阅读课本149页想一想及上面的内容,思考下列问题:1. 在求两个相似三角形的周长比时,我们会应用研究比例的哪个基本性质?2. 求相似三角形的面积的比的基本思路是什么?3. 若△ABC ~△A ’B ’C ’,相似比为K ,那么△ABC 和△A ’B ’C ’周长 的比为 ,面积的比为 。
这个结论是否可以据推广?合作探究 探究1.相似三角形的周长的比与相似比的关系 例1. 已知,如图△ABC ~△A ’B ’C ’,探究下列问题:(1) △ABC 与△A ’B ’C ’的对应边有什么关系?(2) 若'''''',''''''C A C B B A ACBC AB k C A AC C B BC B A AB ++++===则的比值是否等于k ,试说明理由。
(3) 若四边形ABCD ~四边形A ’B ’C ’D ’,,''''''''k D C CDD A AD C B BC B A AB ==== ''''''''D C D A C B B A CDAD BC AB ++++++则的比值是否等于k ,试说明理由。
总结:相似三角形的周长的比等于相似比。
探究2。
相似三角形的面积比与相似比的关系 例2 已知,如图, △ABC ~△A ’B ’C ’,AD 、A ’D ’是△ABC 和△A ’B ’C ’的高,探究下列问题,(1) 请你写出图中的一对相似三角形(△ABC ~△A ’B ’C ’除外)(2) 相似三角形的对应高的比与相似比有什么关系,请用数学式子写出来。
相似多边形的性质相似多边形是指具有相同形状但尺寸不同的多边形。
在几何学中,相似多边形具有一些独特的性质和特征。
本文将探讨相似多边形的性质,并展示一些相关的数学应用和实际问题。
1. 相似多边形的定义相似多边形是指具有相同形状但尺寸不同的多边形。
两个多边形相似的条件是它们的对应角度相等,并且对应边的比例相等。
由此定义可知,如果两个多边形相似,它们的边长比例是相等的。
2. 相似多边形的比例关系对于相似多边形,存在着一种特殊的比例关系。
设两个相似多边形的对应边长分别为a和b,对应的面积分别为A和B。
根据相似多边形的性质,可以得出以下结论:- 边长比例:a:b = A:B- 面积比例:A:B = (a^2):(b^2)这些比例关系对于解决与相似多边形有关的数学问题非常重要。
3. 相似多边形的角度关系对于相似多边形,其对应角度是相等的。
这意味着,如果我们知道一个相似多边形的对应角度,就可以确定其他相似多边形的对应角度。
这对于计算多边形的角度和解决三角学问题非常有用。
4. 相似多边形的周长和面积由于相似多边形的边长比例相等,所以它们的周长比例也相等。
假设两个相似多边形的边长比例为m:n,那么它们的周长比例也为m:n。
同样地,由于相似多边形的面积比例为(a^2):(b^2),所以它们的面积比例也为(a^2):(b^2)。
5. 相似三角形的应用相似多边形的性质在实际问题中有着广泛的应用。
其中最常见的应用是解决相似三角形问题。
通过利用相似三角形的角度和边长关系,我们可以确定无法直接测量的距离和高度。
例如,在地理测量中,我们可以利用相似三角形的性质来测算高山的高度或者海洋的深度。
6. 相似多边形与比例的关系相似多边形的性质与比例密切相关。
相似多边形利用比例关系来描述形状的相似性,从而在数学和实际问题中提供了有用的工具和方法。
比例的概念在解决与相似多边形有关的计算问题中起着关键作用。
综上所述,相似多边形具有一些独特的性质和特征。
§4.8.2 相似多边形的性质(二)
●教学目标
(一)教学知识点
1.相似多边形的周长比,面积比与相似比的关系.
2.相似多边形的周长比,面积比在实际中的应用.
(二)能力训练要求
1.经历探索相似多边形的性质的过程,培养学生的探索能力.
2.利用相似多边形的性质解决实际问题训练学生的运用能力. (三)情感与价值观要求
1.学生通过交流、归纳,总结相似多边形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.
2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.
●教学重点
1.相似多边形的周长比、面积比与相似比关系的推导.
2.运用相似多边形的比例关系解决实际问题.
●教学难点
相似多边形周长比、面积比与相似比的关系的推导及运用.
●教学过程
Ⅰ.创设问题情境,引入新课
Ⅱ.新课讲解
1.做一做
-44
ABC
2.想一想
如果△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C ′的周长比和面积比分别是多少?
3.议一议
投影片(§4.8.2 B).
1)四边形
,A
似吗?
A的相似各是多少?为什
A1,△
由此可知:
相似多边形的周长比等于相似比,面积比等于相似比的平方.
4.做一做
Ⅲ.随堂练习
Ⅳ.课时小结
本节课我们重点研究了相似多边形的对应线段(高、中线、角平分线)的比,周长比都等于相似比,面积比等于相似比的平方. Ⅴ.课后作业。
相似多边形的性质与应用相似多边形是指具有相同对应角度的多边形,并且对应边的比例相等的多边形。
相似多边形在几何学中具有重要的性质和广泛的应用。
本文将探讨相似多边形的性质及其在实际问题中的应用。
一、相似多边形的性质1. 边比例性质在相似多边形中,对应边的比例是相等的。
设两个相似多边形分别为多边形ABCDEF和多边形A'B'C'D'E'F',则有:AC / A'C' = BC / B'C' = CD / C'D' = DE / D'E' = EF / E'F'2. 角度相等性质在相似多边形中,对应角度是相等的。
对于相似多边形ABCDEF 和多边形A'B'C'D'E'F',有:∠A = ∠A', ∠B = ∠B', ∠C = ∠C', ∠D = ∠D', ∠E = ∠E', ∠F = ∠F'3. 周长比例性质在相似多边形中,每条边的比例相等,则两个多边形的周长比例也相等。
设多边形ABCDEF和多边形A'B'C'D'E'F'相似,则有:周长(ABCDEF) / 周长(A'B'C'D'E'F') = AB / A'B' = BC / B'C' = CD / C'D' = DE / D'E' = EF / E'F'4. 面积比例性质在相似多边形中,对应边的比例的平方等于面积的比例。
设多边形ABCDEF和多边形A'B'C'D'E'F'相似,则有:面积(ABCDEF) / 面积(A'B'C'D'E'F') = (AB / A'B')^2 = (BC / B'C')^2 = (CD / C'D')^2 = (DE / D'E')^2 = (EF / E'F')^2二、相似多边形的应用1. 测量距离与高度通过相似多边形的性质,我们可以使用三角形的相似性来测量无法直接测量的距离或高度。
4.8.相似多边形的性质(二)
学习目标
1.经历探索相似多边形的性质的过程,理解相似三角形周长比。
面积比与相似比的关系。
2.能利用相似多边形的性质解决实际问题
一回顾导入
1.两个相似三角形的对应高之比1∶2那么它们对应中线的比为()
A、 1 ∶2
B、 1 ∶3
C、 1 ∶4
D、 1 ∶8
2.如果ΔABC∽ΔDEF,且AB=3cm,它的对应边DE=5cm,那么
ΔABC与ΔDEF的对应高的比是,对应中线的比是,对应角平分线的比是
二交流探索
3
探究㈠如图:△ABC∽△A′B′C′,相似比为
4
⑴请写出图中所有成比例的线段。
⑵△ABC与△A′B′C′的周长比是多少?你是怎么做的?
⑶△ABC的面积如何表示?△A′B′C′的面积呢?
△ABC与△A′B′C′的面积比是多少?
探究㈡、
如图:四边形A
1B
1
C
1
D
1
∽四边形A
2
B
2
C
2
D
2
,相似比为k.。
⑴四边形A
1B
1
C
1
D
1
与四边形A
2
B
2
C
2
D
2
的周长比是多少?
⑵连接相应的对角线A
1C
1
,A
2
C
2
,所得的△A
1
B
1
C
1
与△A
2
B
2
C
2
相似吗?
△A
1C
1
D
1
与△A
2
C
2
D
2
呢?如果相似,它们的相似比各是多少?为什
么?
⑶设△A
1B
1
C
1
,△A
1
C
1
D
1
,△A
2
B
2
C
2
,△A
2
C
2
D
2
的面积分别是S
△A1B1C1
,S
△A1C1D1,S
△A2B2C2
, S
△A2C2D2
那么S
△A1B1C1
∶S
△A2B2C2
和S
△A1C1D1
∶S
△A2C2D2
各是多
少?
⑷四边形A
1B
1
C
1
D
1
与四边形A
2
B
2
C
2
D
2
的面积比是多少?
⑸如果把四边形换成五边形,那么结论又如何呢?
探寻结论:相似多边形的周长比等于__________;面积比等于______________________。
三 练习反馈
1.已知ΔABC ∽ΔA'B'C' ,它们的相似比为2 :3 ,那么它们的周长比为 ,面积比为 。
2.如果两个相似多边形对应高的比为1:2,那么它们的面积比是 。
3.如果一个三角形三边的长同时扩大为原来的10倍,那么它的周长扩大为原来的 倍,面积扩大为原来的 倍
4.如果一个三角形的面积扩大为原来的9倍,那么它的三边的长都扩大为原来的 倍
5.某城市中心有一个矩形广场,设计图的比例尺是1:10000,图
上矩形与实际矩形的周长比是 面积比是
6.小明将一副矩形图片放大欣赏,经测量其中一条边由10cm 变成了40cm.那么这次放大的比例是 这幅画的面积变为原来的 倍
四 联系拓展
1.梯形ADBC 中,AB ∥CD ,AC 与BD 交于点O ,若S △COD=4
1
S △AOB
则CD :AB 为 ( )
A 、1 ∶2
B 、 1 ∶4
C 、 1 ∶3
D 、 1 ∶5
2.在ΔABC 中,DE ∥BC ,BC=6㎝ ,若S △ADE ::S 四边形BCED =1:3 ,则DE 的长为 ( ) A 、62㎝ B 、 4㎝ C 、 3㎝ D 、 22㎝
O
A
B C D A
B
C
D E
3如图:在平行四边形ABCD 中,AE :EB=1:2,且△AEF 的面积是6㎝2
(1)ΔAEF 与ΔCDF 的周长比;
(2)求△CDF 的面积?
4.如图将△ABC 沿BC 方向平移到△A'B'C',已知BC=√2cm ,△ABC 与△A'B'C'重叠部分的面积是△ABC 面积的一半求△ABC 平移的距离
A B
C
D F E。