概率统计简明教程课后习题答案(非常详细版)名师制作优质教学资料
- 格式:doc
- 大小:3.59 MB
- 文档页数:44
习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次}; (3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。
解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .2. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B ;(7)C A -. 解 (1) Ω=B A 是必然事件; (2) φ=AB 是不可能事件;(3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}; (7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A ;(2) =⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x ; (3) 因为B A ⊂,所以φ=B A ;(4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或 ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件CB A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E ); (7) 不多于两个事件出现(记为7E ); (8) 三个事件中至少有两个出现(记为8E )。
习题一解答 1. 用集合的形式写出下列随机试验的样本空间与随机事件� A (1) 抛一枚硬币两次�观察出现的面�事件}{两次出现的面相同�A � (2) 记录某电话总机一分钟内接到的呼叫次数�事件{�A 一分钟内呼叫次数不超过次}� 3(3) 从一批灯泡中随机抽取一只�测试其寿命�事件{�A 寿命在到小时之间}。
20002500解(1) )},(),,(),,(),,{(����������� )},(),,{(�����A .(2) 记X 为一分钟内接到的呼叫次数�则 },2,1,0|{������k k X � }3,2,1,0|{���k k X A .(3) 记X 为抽到的灯泡的寿命�单位�小时��则 )},0({�����X � )}2500,2000({��X A . 2. 袋中有10个球�分别编有号码1至10�从中任取1球�设�A {取得球的号码是偶数}��B {取得球的号码是奇数}�{取得球的号码小于5}�问下列运算表示什么事件� �C (1)�(2)B A �A B �(3)�(4)A C A C �(5)C A �(6)C B ��(7)C A �. 解(1) 是必然事件� ��B A � (2) ��A B 是不可能事件� (3) {取得球的号码是2�4}� �A C (4) �A C {取得球的号码是1�3�5�6�7�8�9�10}� (5) �C A {取得球的号码为奇数�且不小于5}�{取得球的号码为5�7�9}� (6) ��C B C B ��{取得球的号码是不小于5的偶数}�{取得球的号码为6�8�10}�(7) ���C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6�8�10} 3. 在区间上任取一数�记]2,0[���������121x x A ����������2341x x B �求下列事件的表达式�(1)�(2)B A �B A �(3)B A �(4)B A �. 解(1) ���������2341x x B A �;(2) ������������B x x x B A �21210或����������������2312141x x x x �;(3) 因为B A ��所以��B A � (4)������������223410x x x A B A 或��������������223121410x x x x 或或 4. 用事件的运算关系式表示下列事件� C B A ,,(1) 出现�都不出现�记为�� A C B ,1E (2) 都出现�不出现�记为�� B A ,C 2E (3) 所有三个事件都出现�记为�� 3E(4) 三个事件中至少有一个出现�记为�� 4E(5) 三个事件都不出现�记为�� 5E (6) 不多于一个事件出现�记为�� 6E (7) 不多于两个事件出现�记为�� 7E (8) 三个事件中至少有两个出现�记为�。
习题一1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次}; (3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。
解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .3. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B ;(7)C A -. 解 (1) Ω=B A 是必然事件; (2) φ=AB 是不可能事件;(3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}; (7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}4. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A ;(2) =⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x ; (3) 因为B A ⊂,所以φ=B A ;(4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或 ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件CB A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E ); (7) 不多于两个事件出现(记为7E ); (8) 三个事件中至少有两个出现(记为8E )。
习题一解答 1 用集合的形式写出下列随机试验的样本空间与随机事件 1 抛一枚硬币两次观察出现的面事件 2 记录某电话总机一分钟内接到的呼叫次数事件一分钟内呼叫次数不超过次 3 从一批灯泡中随机抽取一只测试其寿命事件寿命在到小时之间解 1 2记为一分钟内接到的呼叫次数则 3 记为抽到的灯泡的寿命单位小时则2 袋中有个球分别编有号码1至10从中任取1球设取得球的号码是偶数取得球的号码是奇数取得球的号码小于5 问下列运算表示什么事件 1 2 3 45 6 7 解 1 是必然事件 2 是不可能事件 3 取得球的号码是24 4 取得球的号码是135678910 5 取得球的号码为奇数且不小于5 取得球的号码为579 6 取得球的号码是不小于5的偶数取得球的号码为6810 7 取得球的号码是不小于5的偶数取得球的号码为6810 3 在区间上任取一数记求下列事件的表达式 1 2 3 4 解1 2 3 因为所以 4 4 用事件的运算关系式表示下列事件1 出现都不出现记为2 都出现不出现记为3 所有三个事件都出现记为 4 三个事件中至少有一个出现记为 5 三个事件都不出现记为 6 不多于一个事件出现记为 7 不多于两个事件出现记为8 三个事件中至少有两个出现记为解 1 2 3 4 5 6 7 8 5 一批产品中有合格品和废品从中有放回地抽取三次每次取一件设表示事件第次抽到废品试用表示下列事件1 第一次第二次中至少有一次抽到废品2 只有第一次抽到废品3 三次都抽到废品 4 至少有一次抽到合格品只有两次抽到废品解 1 23 4 5 6 接连进行三次射击设第次射击命中三次射击恰好命中二次三次射击至少命中二次试用表示和解习题二解答 1.从一批由45件正品5件次品组成的产品中任取3件产品求其中恰有1件次品的概率解这是不放回抽取样本点总数记求概率的事件为则有利于的样本点数于是 2.一口袋中有5个红球及2个白球从这袋中任取一球看过它的颜色后放回袋中然后再从这袋中任取一球设每次取球时袋中各个球被取到的可能性相同求 1 第一次第二次都取到红球的概率 2 第一次取到红球第二次取到白球的概率 3 二次取得的球为红白各一的概率 4 第二次取到红球的概率解本题是有放回抽取模式样本点总数记 1 2 3 4 题求概率的事件分别为ⅰ有利于的样本点数故ⅱ有利于的样本点数故ⅲ有利于的样本点数故ⅳ有利于的样本点数故 3.一个口袋中装有6只球分别编上号码1至6随机地从这个口袋中取2只球试求 1 最小号码是3的概率 2 最大号码是3的概率解本题是无放回模式样本点总数ⅰ最小号码为3只能从编号为3456这四个球中取2只且有一次抽到3因而有利样本点数为所求概率为ⅱ最大号码为3只能从123号球中取且有一次取到3于是有利样本点数为所求概率为 4.一个盒子中装有6只晶体管其中有2只是不合格品现在作不放回抽样接连取2次每次取1只试求下列事件的概率 1 2只都合格 2 1只合格1只不合格 3 至少有1只合格解分别记题 1 2 3 涉及的事件为则注意到且与互斥因而由概率的可加性知 5.掷两颗骰子求下列事件的概率 1 点数之和为7 2 点数之和不超过5 3 点数之和为偶数解分别记题 1 2 3 的事件为样本点总数ⅰ含样本点 16 61 34 43 ⅱ含样本点 11 12 21 13 31 14 41 22 23 32 ⅲ含样本点 11 13 31 15 51 22 24 42 26 62 3335 53 44 46 64 55 66 一共18个样本点 6.把甲乙丙三名学生随机地分配到5间空置的宿舍中去假设每间宿舍最多可住8人试求这三名学生住不同宿舍的概率解记求概率的事件为样本点总数为而有利的样本点数为所以 7.总经理的五位秘书中有两位精通英语今偶遇其中的三位求下列事件的概率 1 事件其中恰有一位精通英语 2 事件其中恰有二位精通英语 3 事件其中有人精通英语解样本点总数为 1 2 3 因且与互斥因而 8.设一质点一定落在平面内由轴轴及直线所围成的三角形内而落在这三角形内各点处的可能性相等计算这质点落在直线的左边的概率解记求概率的事件为则为图中阴影部分而最后由几何概型的概率计算公式可得 9.见前面问答题2 3 10.已知求 1 2 3 4 5 解 1 2 3 4 5 11.设是两个事件已知试求及解注意到因而于是习题三解答 1.已知随机事件的概率随机事件的概率条件概率试求及解 2.一批零件共100个次品率为10从中不放回取三次每次取一个求第三次才取得正品的概率解 3.某人有一笔资金他投入基金的概率为058购买股票的概率为028两项投资都做的概率为019 1 已知他已投入基金再购买股票的概率是多少 2 已知他已购买股票再投入基金的概率是多少解记基金股票则 1 2 4.给定验证下面四个等式解 5.有朋自远方来他坐火车船汽车和飞机的概率分别为03020104若坐火车迟到的概率是025若坐船迟到的概率是03若坐汽车迟到的概率是01若坐飞机则不会迟到求他最后可能迟到的概率解迟到坐火车坐船坐汽车乘飞机则且按题意由全概率公式有 6.已知甲袋中有6只红球4只白球乙袋中有8只红球6只白球求下列事件的概率 1 随机取一只袋再从该袋中随机取一球该球是红球 2 合并两只袋从中随机取一球该球是红球解 1 记该球是红球取自甲袋取自乙袋已知所以 2 7.某工厂有甲乙丙三个车间生产同一产品每个车间的产量分别占全厂的253540各车间产品的次品率分别为542求该厂产品的次品率解 8.发报台分别以概率0604发出和由于通信受到干扰当发出时分别com同样当发出信号时com收到和求 1 收到信号的概率 2 当收到时发出的概率解记收到信号发出信号 1 2 9.设某工厂有三个车间生产同一螺钉各个车间的产量分别占总产量的253540各个车间成品中次品的百分比分别为542如从该厂产品中抽取一件得到的是次品求它依次是车间生产的概率解为方便计记事件为车间生产的产品事件次品因此 10.设与独立且求下列事件的概率解 11.已知独立且求解因由独立性有从而导致再由有所以最后得到 12.甲乙丙三人同时独立地向同一目标各射击一次命中率分别为131223求目标被命中的概率解记命中目标甲命中乙命中丙命中则因而 13.设六个相同的元件如下图所示那样安置在线路中设每个元件不通达的概率为求这个装置通达的概率假定各个元件通达与否是相互独立的解记通达元件通达则所以 14.假设一部机器在一天内发生故障的概率为02机器发生故障时全天。
习题七1. 已知总体X 的概率密度为(1),01,(,)0,x x f x θθθ⎧+<<=⎨⎩其他. 其中1θ>-为未知参数,n X X X ,,,21 是来自总体X 的一组样本,试求θ的最大似然估计量. 解 构造似然函数11()(;)(1)()n nnjjj j L f x x θθθθ====+∏∏,故1ln ()ln(1)ln()ni j L n x θθθ==++∑, 令1ln ()ln 01nj j d L nx d θθθ==+=+∑, 所以θ的最大似然估计量为 1ˆ 1.ln njj nxθ==--∑2. 已知总体X 的概率密度为(1),,(,)0,C x x C f x θθθθ-+⎧>=⎨⎩其他. 其中0>C 为已知,1>θ为未知参数,n X X X ,,,21 是来自总体X 的样本,试求θ的矩估计量与最大似然估计量. 解 (1)()()1cC E X xf x dx x C x dx θθθθθ∞∞-+-∞===-⎰⎰, 由1-=θθC X ,所以θ的矩估计量为CX X -=θˆ. 构造似然函数(1)1()njj L C xθθθθ-+==∏, 12,,,,n x x x C >1ln ()ln ln (1)ln ,nj j L n n c x θθθθ==+-+∑令方程1ln ()ln ln 0,nj j d L nn C x d θθθ==+-=∑ 所以θ的最大似然估计量为1ln ln njj nXn Cθ==-∑.3. 设总体X 服从参数为n ,p 的二项分布,n 为已知,p 为未知,),,,(21n X X X 是总体X 的一个样本,),,,(21n x x x 为其样本观察值,试求(1) 参数p 的矩估计量和最大似然估计量; (2) p 与()1p -之比的矩估计值.解 (1)()E X np =,令()1,E X A X ==所以p 的矩估计量为ˆ.Xp n=构造似然函数()()11,jj jnn x xx n j L p C pp -==-∏取对数()()()1ln ln ln ln 1,j nx nj j j L p Cx p n x p =⎡⎤=++--⎣⎦∑ ()()111ln ln ln 1,j nnnx nj j j j j Cp x p n x ====++--∑∑∑令()()11ln 110,1n n j j j j d L p x n x dp p p ===--=-∑∑ 所以p 最大似然估计量ˆ.Xpn= (2) 1p p -的矩估计值为.1XXn X n Xn=--4. 设总体X 的概率密度为1(1)(1),01,(,)0,x x x f x θθθθ-⎧+-<<=⎨⎩其它.其中0>θ为未知参数,),,,(21n X X X 是总体X 的一个样本,试求(1) 参数θ的矩估计量;(2) 当样本观察值为(43.0,35.0,5.0,6.0,4.0,2.0)时,求未知参数θ的矩估计量; (3) 未知参数θ的最大似然估计量. 解 (1) ()()110(1)(1)E X xf x dx x x x dx θθθ+∞--∞==+-⎰⎰()11111120001(1)(1)2x dx x dx x x θθθθθθθθθθθθ++++=+-+=-+⎰⎰()122θθθθθθ+=-=++,令()1,E X A X ==所以θ的矩估计量为2ˆ.1XXθ=- (2) 0.20.40.60.50.350.43 1.2463X +++++==所以θ的矩估计量为 1.2423ˆ 1.409.1.2413θ⨯==-(3)构造似然函数()11(1)(1),nj j j L x x θθθθ-==+-∏取对数 ()()()()1ln ln ln 11ln ln 1njj j L xx θθθθ=⎡⎤=+++-+-⎣⎦∑()()()11ln ln 11ln ln 1,n njjj j n n x x θθθ===+++-+-∑∑令()1ln ln 0,1nj j d L n n x d θθθθ==++=+∑得()1211ln ,1n j j x c n θθθ=+=-=+∑ 即()()2224210,2c c c c cθθθ-±++--==由于0θ>所以θ的最大似然估计量为()21241ln .2nj j c c c x cn θ=-+==-∑5. 设总体X 的分布律为2}1{θ==X p ,)1(2}2{θθ-==X p ,2)1(}3{θ-==X p其中θ,)10(<<θ为未知参数,已知取得了样本值11=x ,22=x ,13=x ,试求未知参数θ的矩估计值和最大似然估计值.解 ()2222(1)3(1)32,E X θθθθθ=+⨯-+⨯-=-令()132,E X A X θ===-所以θ的矩估计量为3ˆ,2X θ-=又因为1214,33X ++== 所以4353ˆ.26θ-== 构造似然函数()()()()()()()32251,1,2,1,2121,j j L f x f f f θθθθθθθθθθθ====-=-∏取对数 ()()ln 25ln ln 1,L θθθ=+-⎡⎤⎣⎦ 令()ln 5120,1d L d θθθθ⎛⎫=-= ⎪-⎝⎭所以θ的最大似然估计量为5.6θ= 6. 设),(321X X X 是总体X 的一个样本,试证统计量3211525152X X X T ++=, 3212213161X X X T ++= , 321314914371X X X T ++= 都是总体X 的均值()E X 的无偏估计量,并指出那一个统计量的估计最有效.解 ()()()()()()1123123212212212.555555555E T E X X X E X E X E X E X E X ⎛⎫⎛⎫=++=++=++= ⎪ ⎪⎝⎭⎝⎭同理 ()()()2123111111.632632E T E X X X E X E X ⎛⎫⎛⎫=++=++=⎪ ⎪⎝⎭⎝⎭()()()3123139139.7141471414E T E X X X E X E X ⎛⎫⎛⎫=++=++= ⎪ ⎪⎝⎭⎝⎭所以123T T T ,,都是无偏估计量.()()()()()()()12341491447,,.252525253698D T D X D X D T D X D T D X ⎛⎫=++=== ⎪⎝⎭因为()()()()1213,,D T D T D T D T <<所以1T 最有效.7. 设总体2~(,)X N μσ,),,,(21n X X X 是总体X 的一个样本,如果参数μ为已知,试证统计量∑=-=nj j X n 122)(1ˆμσ是总体方差2σ的无偏估计量. 解 2222221111111ˆ()22,n n nn j j j j j j j j X X u X nu X u X u n n n σμ====⎛⎫=-=-+=-+ ⎪⎝⎭∑∑∑∑ 又因为()()()()2222,,j j jE X D X EX u E X u σ=+=+=所以()()22222221111ˆ22.n n j j j E E X u X u u uu u n n σσσ==⎛⎫=-+=+-+= ⎪⎝⎭∑∑ 所以统计量∑=-=nj j X n 122)(1ˆμσ是总体方差2σ的无偏估计量. 8. 设n X X X ,,,21 是来自总体),(~2σμN X 的一个样本,记∑==ni i X n X 11,212)(11X X n S n i i --=∑=,221S nX U -=,证明:U 是2μ的无偏估计量. 证 )1()()1()(2222S nE X E S n X E U E -=-= 221()[()]()D X E X E S n=+-22221μσμσ=-+=nn , 所以U 是2μ的无偏估计量。
习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件:A(1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同.A;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{.A一分钟内呼叫次数不超过次};3(3) 从一批灯泡中随机抽取一只,测试其寿命,事件{.A寿命在到小时之间}。
20002500解(1) )},(),,(),,(),,{(..........,)},(),,{(.....A.(2) 记X为一分钟内接到的呼叫次数,则},2,1,0|{......kkX,}3,2,1,0|{...kkXA.(3) 记X为抽到的灯泡的寿命(单位:小时),则)},0({.....X,)}2500,2000({..XA.2. 袋中有10个球,分别编有号码1至10,从中任取1球,设.A{取得球的号码是偶数},.B{取得球的号码是奇数},{取得球的号码小于5},问下列运算表示什么事件:.C(1);(2)BA.AB;(3);(4)ACAC;(5)CA;(6)CB.;(7)CA..解(1) 是必然事件;..BA.(2) ..AB是不可能事件;(3) {取得球的号码是2,4};.AC(4) .AC{取得球的号码是1,3,5,6,7,8,9,10};(5) .CA{取得球的号码为奇数,且不小于5}.{取得球的号码为5,7,9};(6) ..CBCB..{取得球的号码是不小于5的偶数}.{取得球的号码为6,8,10};(7) ...CACA{取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间上任取一数,记]2,0[BA.........121xxA,.........2341xxB,求下列事件的表达式:(1);(2)BA.;(3)BA;(4)BA..解(1).........2341xxBA.;(2) ............BxxxBA.21210或................2312141xxxx.;(3) 因为BA.,所以..BA;(4)............223410xxxABA或..............223121410xxxx或或4. 用事件的运算关系式表示下列事件:CBA,,(1) 出现,都不出现(记为);ACB,1E(2) 都出现,不出现(记为);BA,C2E(3) 所有三个事件都出现(记为);3E(4) 三个事件中至少有一个出现(记为);4E(5) 三个事件都不出现(记为);5E(6) 不多于一个事件出现(记为);6E(7) 不多于两个事件出现(记为);7E(8) 三个事件中至少有两个出现(记为)。
概率统计简明教程习题答案概率统计简明教程习题答案概率统计是一门研究随机事件发生规律的学科,它在各个领域中都有广泛的应用。
为了帮助读者更好地掌握概率统计的知识,我们为你准备了一些习题,并提供了详细的答案解析。
通过解答这些习题,相信你会对概率统计有更深入的理解。
1. 掷骰子问题问题:一个六面骰子,每个面的数字为1、2、3、4、5、6。
如果我们连续掷两次骰子,求以下事件的概率:(1)两次掷得的点数之和为7;(2)第一次掷得的点数比第二次掷得的点数大。
解答:(1)两次掷得的点数之和为7的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1)共6种,而每次掷骰子的可能结果有6种,所以该事件的概率为6/36=1/6。
(2)第一次掷得的点数比第二次掷得的点数大的情况有(2,1)、(3,1)、(3,2)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)、(5,4)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)共15种,而每次掷骰子的可能结果有6种,所以该事件的概率为15/36=5/12。
2. 抽样问题问题:有一箱中有10个球,其中3个红球,7个蓝球。
现从箱中随机抽取两个球,求以下事件的概率:(1)两个球都是红球;(2)两个球都是蓝球;(3)一个球是红球,一个球是蓝球。
解答:(1)两个球都是红球的情况只有一种,即从3个红球中选取2个红球,所以该事件的概率为C(3,2)/C(10,2)=3/45=1/15。
(2)两个球都是蓝球的情况只有一种,即从7个蓝球中选取2个蓝球,所以该事件的概率为C(7,2)/C(10,2)=21/45=7/15。
(3)一个球是红球,一个球是蓝球的情况有C(3,1) * C(7,1) = 3 * 7 = 21种,所以该事件的概率为21/45=7/15。
3. 正态分布问题问题:某商品的重量服从正态分布,平均重量为500g,标准差为10g。
习题三解答1.已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求)(AB P 及)(B A P .解 4.08.05.0)|()()(=⨯==A B P A P AB P)()()(1)(1)()(AB P B P A P B A P B A P B A P +--=-==3.04.06.05.01=+--=2.一批零件共100个,次品率为10%,从中不放回取三次(每次取一个),求第三次才取得正品的概率。
解 10789989981989910090910=⨯=⨯⨯⨯⨯=p . 3.某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19(1) 已知他已投入基金,再购买股票的概率是多少? (2) 已知他已购买股票,再投入基金的概率是多少?解 记=A {基金},=B {股票},则19.0)(,28.0)(,58.0)(===AB P B P A P(1) .327.058.019.0)()()|(===A P AB P A B P (2) 678.028.019.0)()()|(===B P AB P B A P . 4.给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下面四个等式:),()|(),()|(A P B A P A P B A P == )()|(B P A B P =,).()|(B P A B P =解 )(213.015.0)()()|(A P B P AB P B A P ====)(5.07.035.07.015.05.0)(1)()()()()|(A P B P AB P A P B P B A P B A P ===-=--==)(3.05.015.0)()()|(B P A P AB P A B P ====)(5.015.05.015.03.0)(1)()()()()|(B P A P AB P B P A P B A P A B P ==-=--==5.有朋自远方来,他坐火车、船、汽车和飞机的概率分别为0.3,0.2,0.1,0.4,若坐火车,迟到的概率是0.25,若坐船,迟到的概率是0.3,若坐汽车,迟到的概率是0.1,若坐飞机则不会迟到。
习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次}; (3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。
解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .2. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B ;(7)C A -. 解 (1) Ω=B A 是必然事件; (2) φ=AB 是不可能事件; (3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}; (7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A ;(2) =⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x ; (3) 因为B A ⊂,所以φ=B A ;(4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或 ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件CB A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E ); (7) 不多于两个事件出现(记为7E );(8) 三个事件中至少有两个出现(记为8E )。
解 (1)C B A E =1; (2)C AB E =2; (3)ABC E =3; (4)C B A E =4;(5)C B A E =5; (6)C B A C B A C B A C B A E =6; (7)C B A ABC E ==7;(8)BC AC AB E =8.5. 一批产品中有合格品和废品,从中有放回地抽取三次,每次取一件,设i A 表示事件“第i 次抽到废品”,3,2,1=i ,试用i A 表示下列事件:(1) 第一次、第二次中至少有一次抽到废品; (2) 只有第一次抽到废品; (3) 三次都抽到废品; (4) 至少有一次抽到合格品; (2) 只有两次抽到废品。
解 (1)21A A ; (2)321A A A ; (3)321A A A ;(4)321A A A ; (5)321321321A A A A A A A A A .6. 接连进行三次射击,设i A ={第i 次射击命中},3,2,1=i ,=B {三次射击恰好命中二次},=C {三次射击至少命中二次};试用i A 表示B 和C 。
解 321321321A A A A A A A A A B = 323121A A A A A A C =习题二解答1.从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率。
解 这是不放回抽取,样本点总数⎪⎪⎭⎫⎝⎛=350n ,记求概率的事件为A ,则有利于A 的样本点数⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=15245k . 于是39299!2484950!35444535015245)(=⨯⨯⨯⨯⨯⨯=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==n k A P 2.一口袋中有5个红球及2个白球,从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球,设每次取球时袋中各个球被取到的可能性相同。
求(1) 第一次、第二次都取到红球的概率; (2) 第一次取到红球,第二次取到白球的概率; (3) 二次取得的球为红、白各一的概率; (4) 第二次取到红球的概率。
解 本题是有放回抽取模式,样本点总数27=n . 记(1)(2)(3)(4)题求概率的事件分别为D C B A ,,,.(ⅰ)有利于A 的样本点数25=A k ,故 492575)(2=⎪⎭⎫⎝⎛=A P(ⅱ) 有利于B 的样本点数25⨯=B k ,故 4910725)(2=⨯=B P(ⅲ) 有利于C 的样本点数252⨯⨯=C k ,故 4920)(=C P(ⅳ) 有利于D 的样本点数57⨯=D k ,故 754935757)(2==⨯=D P .3.一个口袋中装有6只球,分别编上号码1至6,随机地从这个口袋中取2只球,试求:(1) 最小号码是3的概率;(2) 最大号码是3的概率。
解 本题是无放回模式,样本点总数56⨯=n .(ⅰ) 最小号码为3,只能从编号为3,4,5,6这四个球中取2只,且有一次抽到3,因而有利样本点数为32⨯,所求概率为 515632=⨯⨯.(ⅱ) 最大号码为3,只能从1,2,3号球中取,且有一次取到3,于是有利样本点数为22⨯,所求概率为 1525622=⨯⨯.4.一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样,接连取2次,每次取1只,试求下列事件的概率:(1) 2只都合格;(2) 1只合格,1只不合格; (3) 至少有1只合格。
解 分别记题(1)、(2)、(3)涉及的事件为C B A ,,,则522562342624)(=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=A P 15856224261214)(=⨯⨯⨯=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=B P注意到B A C =,且A 与B 互斥,因而由概率的可加性知151415852)()()(=+=+=B P A P C P5.掷两颗骰子,求下列事件的概率:(1) 点数之和为7;(2) 点数之和不超过5;(3) 点数之和为偶数。
解 分别记题(1)、(2)、(3)的事件为C B A ,,,样本点总数26=n (ⅰ)A 含样本点)2,5(),5,2(,(1,6),(6,1),(3,4),(4,3)6166)(2==∴A P(ⅱ)B 含样本点(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,2),(2,3),(3,2)185610)(2==∴B P(ⅲ)C 含样本点(1,1),(1,3),(3,1),(1,5),(5,1);(2,2),(2,4),(4,2),(2,6),(6,2),(3,3),(3,5),(5,3);(4,4),(4,6),(6,4);(5,5);(6,6), 一共18个样本点。
213618)(==∴C P6.把甲、乙、丙三名学生随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8人,试求这三名学生住不同宿舍的概率。
解 记求概率的事件为A ,样本点总数为35,而有利A 的样本点数为345⨯⨯,所以 25125345)(3=⨯⨯=A P . 7.总经理的五位秘书中有两位精通英语,今偶遇其中的三位,求下列事件的概率:(1) 事件A :“其中恰有一位精通英语”; (2) 事件B :“其中恰有二位精通英语”; (3) 事件C :“其中有人精通英语”。
解 样本点总数为⎪⎪⎭⎫⎝⎛35(1) 53106345!332352312)(==⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=A P ; (2) 103345!33351322)(=⨯⨯⨯=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=B P ; (3) 因B AC =,且A 与B 互斥,因而10910353)()()(=+=+=B P A P C P .8.设一质点一定落在xOy 平面内由x解 记求概率的事件为A ,则A S为图中阴影部分,而2/1||=Ω,1859521322121||2=⨯=⎪⎭⎫ ⎝⎛-=A S最后由几何概型的概率计算公式可得 952/118/5||||)(==Ω=A S A P .9.(见前面问答题2. 3)10.已知B A ⊂,4.0)(=A P ,6.0)(=B P ,求(1))(A P ,)(B P ;(2))(B A P ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P . 解 (1)6.04.01)(1)(=-=-=A P A P ,4.06.01)(1)(=-=-=B P B P ; (2)6.0)()()()()()()()(==-+=-+=B P A P B P A P AB P B P A P B A P ; (3)4.0)()(==A P AB P ;图2.3(4)0)()()(==-=φP B A P A B P , 4.06.01)(1)()(=-=-==B A P B A P B A P ; (5).2.04.06.0)()(=-=-=A B P B A P11.设B A ,是两个事件,已知5.0)(=A P ,7.0)(=B P ,8.0)(=B A P ,试求)(B A P -及).(A B P - 解注意到)()()()(AB P B P A P B A P -+= ,因而)()()(B P A P AB P +=)(B A P -4.08.07.05.0=-+=. 于是,)()()()(AB P A P AB A P B A P -=-=- 1.04.05.0=-=;3.04.07.0)()()()(=-=-=-=-AB P B P AB B P A B P .习题三解答1.已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求)(AB P 及)(B A P .解 4.08.05.0)|()()(=⨯==A B P A P AB P)()()(1)(1)()(AB P B P A P B A P B A P B A P +--=-==3.04.06.05.01=+--=2.一批零件共100个,次品率为10%,从中不放回取三次(每次取一个),求第三次才取得正品的概率。