1.集合(学生版)
- 格式:pdf
- 大小:295.25 KB
- 文档页数:6
目录集合 (2)模块一:集合与元素 (2)考点1:集合与元素的关系 (2)模块二:集合间关系与运算 (4)考点2:集合相等 (5)考点3:已知集合关系反求参 (6)考点4:集合关系、运算综合 (7)课后作业 (9)集合模块一:集合与元素1.集合:一些能够确定的不同的对象所构成的整体叫做集合.构成集合的每个对象叫做这个集合的元素.集合一般用英文大写字母,,,A B C 表示.元素一般用英文小写字母,,,a b c 表示;不含任何元素的集合叫做空集,记作∅.2.元素与集合的关系:∈、∉;3.常见的数集的写法:45.集合的表示法⑴ 列举法.⑵ 描述法(又称特征性质描述法):形如{|()}x A p x ∈,()p x 称为集合的特征性质,x 称为集合的代表元素.A 为x 的范围,有时也写为{|()}x p x x A ∈,.⑶ 图示法,又叫韦恩(Venn )图.⑷ 区间表示法:用来表示连续的数集.考点1:集合与元素的关系例1.(1)(2016秋•凉州区校级月考)已知集合{M a =,b ,}c 中的三个元素可构成某一个三角形的三边的长,那么此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形(2)(2017秋•河南月考)若1{2-∈,21a a --,21}a +,则(a = )A .1-B .0C .1D .0 或1例2.(1)(2010•安徽模拟)已知集合2{|210A x ax x =++=,}a R ∈只有一个元素,则a 的值( )A .0B .1C .0或1D .1-(2)(2018秋•宽城区校级期末)已知集合2{|320}A x ax x =-+=至多有一个元素,则a 的取值范围是 .例3.(2016秋•钦州月考)已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈- (1)若2a =,求出A 中其他所有元素;(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中所有元素.例 4.(2017秋•杨浦区校级期中)设a ,b ,c 为实数,2()()()f x x a x bx c =+++,2()(1)(1)g x ax cx bx =+++记集合{|()0S x f x ==,}x R ∈,{|()0T x g x ==,}x R ∈.若||S ,||T 分别为集合S ,T 的元素个数,则下列结论不可能的是( )A .||1S =且||0T =B .||1S =且||1T =C .||2S =且||2T =D .||2S =且||3T =模块二:集合间关系与运算1.子集:如果集合A 中的任意一个元素都是集合B 的元素,则A 是B 的子集,记作A B ⊆或B A ⊇;规定:∅是任意集合的子集.如果集合A 中存在着不是集合B 中的元素,那么集合A 不包含于B ,记作A B 或B A . 2.真子集:如果集合A B ⊆,且存在x B ∈,但x A ∉,我们称集合A 是集合B 的真子集,记作A B (或B A ),读作A 真包含于B (B 真包含A ). 规定:∅是任意非空集合的真子集.3.集合相等:如果A B ⊆,且B A ⊆,我们说集合A 与集合B 相等,记作A =B .4.交集:{}|AB x x A x B =∈∈且; 5.并集:{}|AB x x A x B =∈∈或;6.补集:①全集:如果所研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,常用U 表示.②补集:A 在U 中的补集的数学表达式是{}|U A x x U x A =∈∉,且.7.A B A B A A B B ⊆⇔=⇔=. 考点2:集合相等例5.(1)(2014秋•大竹县校级月考)设a ,b R ∈,集合{0,b ,}{1b a=,a ,}a b +,则2(a b += )A .1B .0C .1-D .不确定(2)(2018•浙江模拟)已知集合{1A =,2},2{|(1)0B x x a x a =-++=,}a R ∈,若A B =,则(a = )A .1B .2C .1-D .2-(3)(2018秋•香坊区校级月考)已知{3M a =-,21a -,21}a +,{2N =-,43a -,31}a -,若M N =,则实数a 的值为 .考点3:已知集合关系反求参例6.(1)(2017秋•雁峰区校级期中)若集合2{|60}P x x x =+-=,{|10}S x mx =+=,且S P ⊆,求由m 的可能取值组成的集合.(2)(2019•湘潭三模)已知集合2{|}A x ax x ==,{0B =,1,2},若A B ⊆,则实数a 的值为( )A .1或2B .0或1C .0或2D .0或1或2(3)(2019•临沂三模)已知集合2{|2}A x x x =<+,{|}B x x a =<,若A B ⊆,则实数a 的取值范围为( )A .(-∞,1]-B .(-∞,2]C .[2,)+∞D .[1-,)+∞(4)(2018秋•磐安县校级月考)已知{|1}A x x =<,2{|40}B x x x m =--,若A B ,则实数m 的取值范围是( )。
第9讲数学广角-集合解决重叠问题,可以从条件入手进行分析,画出示意图,借助示意图进行思考。
为了不重复计数,应从它们的和中减去重复部分。
方法1:只参加A+只参加B+A、B都参加=总人数方法2:参加A+参加B-A、B都参加=总人数知识点一:容斥原理1.解决重叠问题,可以从条件入手进行分析,画出示意图,借助示意图进行思考。
为了不重复计数,应从它们的和中减去重复部分,也可以先用其中一部分减去重叠部分,再加上另一部分。
2.在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数-既是A类又是B类的元素个数用符号可表示成:A∪B=A+B-A∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B 类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C考点一:容斥原理【例1】(2019春•北京月考)在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,参加田赛又参加径赛的有7人,没有参加比赛的有21人.那么甲班共有人.1.(2018•绵阳)一根木棒长50厘米,从木棒左端开始每隔3厘米画一条红线,每隔5厘米画一条黄线,最后沿线锯开后.这个木棒被分成了段.2.(2009•余姚市校级自主招生)甲、乙、丙三个班共有学生161人,甲比乙班多2人,乙班比丙班多6人,乙班有人.3.黑、白、蓝三种颜色的盖子共有100个,将它们盖在红、白、黄三种颜色的100个瓶子上.其中蓝盖26个,黑盖25个,红瓶29个,黄瓶46个,有12个白瓶和4个红瓶盖着白盖,15个红瓶和4个黄瓶盖着蓝盖.那么盖着黑盖的红瓶有个,盖着黑盖的白瓶有个,盖着黑盖的黄瓶有个.一.选择题(共6小题)1.一昼夜钟面上的时针和分针重叠()次.A.22B.12C.20D.132.有两张一样长的纸条粘贴起来,成为长30厘米的纸条,粘贴部分长10厘米,求这两张纸条各长几厘米?()A.20B.153.左边这条细线拉直后长约()厘米.A.7厘米B.8厘米C.9厘米D.10厘米4.三位同学竞选体育委员和卫生委员各1名,一共有()种不同的竞选结果.A.4B.6C.85.小明把两张长9厘米的纸条粘贴在一起.粘贴后总长15厘米,小明的粘法是下面的()A.B.C.6.(2011•新安县模拟)三角形内部有2008个点,将这2008个点与三角形的三个顶点连接,将三角形分割成互不重叠的三角形共()个.A.4017B.2008C.4016D.6024二.填空题(共6小题)7.(2009•广州校级自主招生)右图是由7个正方形重叠起来的,连接点正好是正方形的中点,若正方形边长是a,则下图的周长是.8.两根木条,一根长60cm,另一根长80m,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是cm9.小红和小芳共有10元钱,小明和小红共有6元钱,小芳和小明共有8元钱,他们平均每人有元钱.10.有两个同样的长5厘米,宽1厘米的长方形如图摆放,得到这个“T”字型图案的周长是厘米.11.如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米.8个这样的铁环依此连在一起长厘米.12.用10张同样长的纸条接成一条长31厘米的纸带,如果每个接头都重叠1厘米,那么每张纸条长厘米.三.应用题(共10小题)13.有两根细竹竿和一个透明的玻璃管,一根竹竿长35厘米.另一根长42厘米,玻璃管长60厘米,将一根竹竿从左边插入玻璃管中,尾端和玻璃管的左口对齐,另一根从右边插入玻璃管,尾端和玻璃管的右口对齐.两根竹竿的重叠部分长多少厘米?14.有两块一样宽的长条形木板,一块长72厘米,另一块长56厘米.如果把两块木板按下图方式重叠后钉成一块木板,重叠部分是20厘米,钉成后的木板长多少厘米?15.用5张同样长的纸条粘接成一条长32厘米的纸条,如果每个接头处都重叠2厘米,那么原来每张纸条长多少厘米?16.把3张4厘米的纸条黏到一起,黏合的部分长5毫米,黏成的纸条长多少厘米?17.把两根长都是15厘米的铁条焊接为一根,接头处(如图)是5厘米.焊接后的铁条长多少厘米?18.淘气、笑笑、小迪三人去测体重.三人共重106千克,淘气和笑笑共重69千克,笑笑和小迪共重72千克,他们三人各自的体重是多少千克?19.有3根彩带,每根彩带长27厘米,如果把它们按如图接到一起,接好的彩带有多长?20.如图,4根长短相同的钢管接在一起(衔接处长度相等),接在一起有多长?21.如图,5张同样大小的纸板部分重叠着,每张纸板都是边长为6cm的正方形,重叠部分的边长是正方形边长的一半.你能求出这个图形的周长吗?22.水果店运来三种水果.苹果和香蕉一共220千克,香蕉和梨一共180千克,苹果和梨一共240千克.三种水果各是多少千克?四.解答题(共2小题)23.(2019秋•宜昌期末)有两个相同的长方形按图1放置,现在将这两个长方形同时向左右方向平移至图2所示.求每个长方形的长是多少厘米?24.(2019•广州模拟)四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?。
领航第一章 集 合集合的含义与表示(一)一、选择题1、下列各组对象①接近于0的数的全体; ②比较小的正整数全体; ③平面上到点O 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数有( ) A .2组 B .3组 C .4组 D .5组 2、设集合M ={大于0小于1的有理数},N ={小于1050的正整数}, P ={定圆C 的内接三角形},Q ={所有能被7整除的数}, 其中无限集是( ) A .M 、N 、P B .M 、P 、Q C .N 、P 、Q D .M 、N 、Q 3、下列命题中正确的是( )A .{x |x 2+2=0}在实数范围内无意义B .{(1,2)}与{(2,1)}表示同一个集合C .{4,5}与{5,4}表示相同的集合D .{4,5}与{5,4}表示不同的集合4、直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( ) A .第一象限内的点 B .第三象限内的点 C .第一或第三象限内的点 D .非第二、第四象限内的点5、已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( ) A .x +y ∈M B .x +y ∈X C .x +y ∈Y D .x +y ∈M6、下列各选项中的M 与P 表示同一个集合的是( ) A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0}B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R }C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R }D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z } 二、填空题7、由实数x ,-x ,|x |所组成的集合,其元素最多有______个. 8、集合{3,x ,x 2-2x }中,x 应满足的条件是______.9、对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______. 10、用符号∈或 填空:①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②21______R ,5______Q ,|-3|______N +,|-3|______Z . 11、若方程x 2+mx +n =0(m ,n ∈R )的解集为{-2,-1},则m =______,n =______. 12、若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______. 14、已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______. 15、用描述法表示下列各集合:①{2,4,6,8,10,12}________________________________________________. ②{2,3,4}___________________________________________________________.③}75,64,53,42,31{______________________________________________________.16、已知集合A ={-2,-1,0,1},集合B ={x |x =|y |,y ∈A },则B =______. 三、解答题17、集合A ={有长度为1的边及40°的内角的等腰三角形}中有多少个元素?试画出这些元素来.18、设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5∈B ,求实数a 的值.20、已知集合A ={x |ax 2-3x +2=0},其中a 为常数,且a ∈R①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.21、用列举法把下列集合表示出来:③C ={y |y =-x 2+6,x ∈N ,y ∈N };④D ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N };22、已知集合A ={p |x 2+2(p -1)x +1=0,x ∈R },求集合B ={y |y =2x -1,x ∈A }.集合的含义及表示(二)1、已知A ={x|3-3x>0},则下列各式正确的是( )A .3∈AB .1∈AC .0∈AD .-1∉A 2、下列四个集合中,不同于另外三个的是( )A .{y|y =2}B .{x =2}C .{2}D .{x|x 2-4x +4=0} 3、下列关系中,正确的个数为________.①12∈R;②2∉Q;③|-3|∉N*;④|-3|∈Q.4、已知集合A={1,x,x2-x},B={1,2,x},若集合A与集合B相等,求x的值.一、选择题1、下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.A.只有①和④B.只有②和③C.只有②D.以上语句都不对2、用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}3、已知集合A={x∈N*|-5≤x≤5},则必有()A.-1∈A B.0∈A C.3∈A D.1∈A4、定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.6二、填空题5、已知集合A={1,a2},实数a不能取的值的集合是________.6、已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.三、解答题7、选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.8、设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.9、已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.1、集合{a,b}的子集有()A.1个B.2个C.3个D.4个2、下列各式中,正确的是()A.23∈{x|x≤3} B.23∉{x|x≤3} C.23⊆{x|x≤3} D.{23≤3}3、集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.4、已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.一、选择题1、集合A={x|0≤x<3且x∈Z}的真子集的个数是()A.5 B.6 C.7 D.82、在下列各式中错误的个数是()①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2 C.3 D.43、已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.C.B⊆A D.A⊆B4、下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若,则A≠Ø.其中正确的有()A.0个B.1个C.2个D.3个二、填空题5、已知2-x+a=0},则实数a的取值范围是________.6、已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.三、解答题7、设集合A={x,y},B={0,x2},若A=B,求实数x,y.8、若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.9、已知集合M={x|x=m+16,m∈Z},N={x|x=n2-13,n∈Z},P={x|x=p2+16,p∈Z},请探求集合M、N、P之间的关系.1、设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( ) A .{x|x ≥3} B .{x|x ≥2} C .{x|2≤x <3} D .{x|x ≥4}2、已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( ) A .{3,5} B .{3,6} C .{3,7} D .{3,9}3、50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.4、已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.一、选择题1、集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .42、设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}3、已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( )A .{x|x ≥-1}B .{x|x ≤2}C .{x|0<x ≤2}D .{x|-1≤x ≤2}4、满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3 D .4 二、填空题5、已知集合A ={x|x ≤1},B ={x|x ≥a},且A ∪B =R ,则实数a 的取值范围是________.6、满足{1,3}∪A ={1,3,5}的所有集合A 的个数是________. 三、解答题7、已知集合A ={1,3,5},B ={1,2,x 2-1},若A ∪B ={1,2,3,5},求x 及A ∩B.8、已知A ={x|2a ≤x ≤a +3},B ={x|x<-1或x>5},若A ∩B =Ø,求a 的取值范围.9、某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?经典练习(一)1、设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A∩(C R B )=( )A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4)5、已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为( )(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}6、若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( ) A .5 B.4 C.3 D.27、设集合M={-1,0,1},N={x|x 2≤x},则M∩N=( ) A.{0} B.{0,1} C.{-1,1} D.{-1,0,0}8、设集合U={1,2,3,4,5,6}, M={1,2,4 },则CuM=( ) A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}9、已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则A∩B=( ) A (-∞,-1) B (-1,-23) C (-23,3) D (3,+∞) 10、已知集合A ={1.3. m },B ={1,m} ,AB =A, 则m=( )A 0或3B 0或3C 1或3D 1或311、已知集合P={x ︱x 2≤1},M={a }.若P∪M=P,则a 的取值范围是( ) A .(-∞, -1] B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)12、已知集合A={ (x ,y)|x ,y 为实数,且x 2+y 2=l},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为( )A .0B . 1C .2D .313、已知A ,B 均为集合U={1,3,5,7,9}的子集,且A∩B={3},u ðB∩A={9},则A=( ) (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}14、若集合A={x -2<x <1},B={x 0<x <2}则集合A ∩B=( )A. {x -1<x <1}B. {x -2<x <1}C. {x -2<x <2}D. {x 0<x <1}15、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=_________.A)∩B等于()16、已知全集U=R,且A={x︱︱x-1︱>2},B={x︱x2-6x+8<0},则(UA.[-1,4]B. (2,3)C. (2,3)D.(-1,4)17、已知全集U=R,且A={x︱︱x-1︱≤2},B={x︱x2-6x+8<0},则A∩B等于()A.[-1,4]B. (2,3)C. (2,3)D.(-1,4)18、集合P={x」x2-16<0},Q={x」x=2n,n∈Z},则P Q=()A.{-2,2}B.{-2,2,-4,4}C.{2,0,2}D.{-2,2,0,-4,4}19、已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6≤0}, 则P∩Q等于( )A. {2}B.{1,2}C.{2,3}D.{1,2,3}20、已知集合U={1,2,3,4,5,6,7}, A={2,4,5,7},B={3,4,5},则(u A)∪(u B)=(A){1,6} (B){4,5} (C){1,2,3,4,5,7} (D){1,2,3,6,7}m}.若B⊆A,则实数m=.21、已知集合A={-1,3,2m-1},集合B={3,222、设集合P={1,2,3,4},Q={x||x|≤2,x∈R},则P∩Q等于()(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}23、已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N=( )A {x|x<-2}B {x|x>3}C {x|-1<x<2}D {x|2<x<3}24、若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-825、满足条件M∪{1}={1,2,3}的集合M的个数是()A.4B.3C.2D.126、设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈B且|x|≤5},则A∪B中元素的个数是()A.11B.10C.16D.1527、设全集为R,A={x|x2-5x-6>0},B={x||x-5|<a}(a为常数),且11∈B,则()A.R A∪B=RB.A∪R B=RC.R A∪R B=RD.A∪B=R28、设集合M={x|0≤x<2},集合N={x|x2-2x-3<0},集合M∩N等于()A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}29、已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为()A.x=3,y=-1B.(3,-1)C.{3,-1}D.{(3,-1)}30、设全集I={1,2,3,4,5,6,7},集合A={1,3,5,7},B={3,5},则()A.I=A∪BB.I=I A∪BC.I=A∪I BD.I=I A∪I B31、如果P={x|(x-1)(2x-5)<0},Q={x|0<x<10},那么()A.P∩Q=∅B.P QC.P QD.P∪Q=R32、已知全集I={0,-1,-2,-3,-4},集合M={0,-1,-2},N={0,-3,-4},则I M∩N 等于()A.{0}B.{-3,-4}C.{-1,-2}D.∅33、设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则I A∪I B等于()A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}34、已知集合A={x||x|≤2,x∈R},B={x|x≥a},且A B,则实数a的取值范围是_____.经典习题(二)一、选择题1、下列集合中,结果是空集的为()(A)(B)(C)(D)2.设集合,,则()(A)(B)(C)(D)3.下列表示①②③④中,正确的个数为( )(A)1 (B)2 (C)3 (D)44.满足的集合的个数为()(A)6 (B) 7 (C) 8 (D)95.若集合、、,满足,,则与之间的关系为()(A)(B)(C)(D)6.下列集合中,表示方程组的解集的是()(A)(B)(C)(D)7.设,,若,则实数的取值范围是()(A)(B)(C)(D)8.已知全集合,,,那么是()(A)(B)(C)(D)9.已知集合,则等于()(A)(B)(C)(D)10.已知集合,,那么()(A)(B)(C)(D)11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()(A)(B)(C)(D)12.设全集,若,,,则下列结论正确的是()(A)且(B)且(C)且(D)且二、填空题13.已知集合,,则集合—14.用描述法表示平面内不在第一与第三象限的点的集合为——---------15.设全集,,,则的值为16.若集合只有一个元素,则实数的值为-----------三、解答题17.若,求实数的值。
专题1.1 集合的概念-重难点题型精讲1.元素与集合的概念及表示(1)元素:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.2.元素的特性(1)确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.(2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.(3)无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.3.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.4.常用的数集及其记法5.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.注意:(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.6.描述法(1)定义:一般地,设A表示一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.【题型1 集合的基本概念】【例1】(2021秋•雨花区期末)下列对象不能组成集合的是()A.不超过20的质数B.π的近似值C.方程x2=1的实数根D.函数y=x2,x∈R的最小值【变式1-1】(2021秋•鲤城区校级期中)以下各组对象不能组成集合的是()A.中国古代四大发明B.地球上的小河流C.方程x2﹣7=0的实数解D.周长为10cm的三角形【变式1-2】(2021春•广南县期中)下列各对象可以组成集合的是()A.与1非常接近的全体实数B.北附广南实验学校2020~2021学年度第二学期全体高一学生C.高一年级视力比较好的同学D.中国著名的数学家【变式1-3】(2021秋•大安市校级月考)有下列各组对象:①接近于0的数的全体;②比较小的正整数的全体;③平面上到点O的距离等于1的点的全体;④直角三角形的全体.其中能构成集合的个数是()A.2B.3C.4D.5【题型2 判断元素与集合的关系】【例2】(2021秋•河北区期末)下列关系中正确的个数是()①12∈Q ;②√2∉R ;③0∈N *;④π∈Z . A .1 B .2 C .3 D .4【变式2-1】(2021秋•桂林期末)下列关系中,正确的是( )A .﹣2∈{0,1}B .32∈ZC .π∈RD .5∈∅【变式2-2】(2021秋•岳阳期末)下列元素与集合的关系中,正确的是( )A .﹣1∈NB .0∉N *C .√3∈QD .25∉R 【变式2-3】(2021秋•绿园区校级月考)设集合A ={2,3,5},B ={2,3,6},若x ∈A ,且x ∉B ,则x 的值为( )A .2B .3C .5D .6【题型3 利用集合中元素的特异性求参数】【例3】(2022•渭滨区校级模拟)设集合A ={2,1﹣a ,a 2﹣a +2},若4∈A ,则a =( )A .﹣3或﹣1或2B .﹣3或﹣1C .﹣3或2D .﹣1或2【变式3-1】(2021秋•兴宁区校级月考)若a ∈{1,a 2﹣2a +2},则实数a 的值为( )A .1B .2C .0D .1 或2【变式3-2】(2021秋•大安市校级月考)已知集合A 含有三个元素2,4,6,且当a ∈A ,有6﹣a ∈A ,那么a 为( )A .2B .2或4C .4D .0【变式3-3】(2021春•西湖区期中)已知A 是由0,m ,m 2﹣3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可【题型4 用列举法表示集合】【例4】(2021秋•合肥期末)集合{x ∈N |x ﹣2<2}用列举法表示是( )A .{1,2,3}B .{1,2,3,4}C .{0,1,2,3,4}D .{0,1,2,3}【变式4-1】(2021秋•昌吉州期末)集合A ={x ∈N ∗|63−x ∈N ∗}用列举法可以表示为( )A .{3,6}B .{1,2}C .{0,1,2}D .{﹣2,﹣1,0,1,2}【变式4-2】(2021秋•重庆月考)集合{x ∈N |x ﹣4<1}用列举法表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}【变式4-3】(2021秋•番禺区校级期中)将集合{(x ,y )|{x +y =52x −y =1}表示成列举法,正确的是( ) A .{2,3} B .{(2,3)} C .{x =2,y =3} D .(2,3)【题型5 用描述法表示集合】【例5】(2021秋•金山区校级期中)用描述法表示所有偶数组成的集合 .【变式5-1】(2021秋•浦东新区校级月考)用描述法表示被5整除的整数组成的集合 .【变式5-2】(2021秋•长宁区校级月考)用描述法表示被3除余2的所有自然数组成的集合 .【变式5-3】(2020秋•徐汇区校级月考)平面直角坐标系中坐标轴上所有点的坐标组成的集合可以用描述法表示为 .【题型6 集合中的新定义问题】【例6】(2021秋•长寿区期末)设集合P ={3,4,5},Q ={6,7},定义P ⊗Q ={(a ,b )|a ∈P ,b ∈Q },则P ⊗Q 中元素的个数为( )A.3B.4C.5D.6【变式6-1】(2021秋•秦淮区校级月考)设P={1,2,3,4},Q={4,5,6,7,8},定义P*Q={(a,b)|a∈P,b∈Q,a≠b},则P*Q中元素的个数为()A.4B.5C.19D.20【变式6-2】(2021秋•黄陵县校级期末)设集合A={﹣2,1},B={﹣1,2},定义集合A⊗B={x|x=x1x2,x1∈A,x2∈B},则A⊗B中所有元素之积为()A.﹣8B.﹣16C.8D.16【变式6-3】(2021秋•黄陵县校级月考)定义集合运算:A⊗B={z|z=xy,x∈A,y∈B}.设A={2,0},B={0,8},则集合A⊗B的所有元素之和为()A.16B.18C.20D.22。
第1讲集合的概念,集合的表示方法集合之间的关系【基础知识】一、集合的意义1.集合:某些指定的对象集在一起就形成一个集合(简称集)。
2.元素:集合中每个对象叫做这个集合的元素。
3.属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉4.不属于:如果a不是集合A的元素,就说a不属于A,记作A5.有限集:含有有限个元素的集合。
6.无限集:含有无限个元素的集合。
7.集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
8.数学上,常常需要用到数的集合.数的集合简称数集9.空集:我们把不含任何元素的集合,记作φ。
二、集合的表示方法1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
通常元素个数较少时用列举法。
2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
区间:在数学上,常常需要表示满足一些不等式的全部实数所组成的集合.为了方便起见,我们引入区间(interval)的概念.闭区间在数轴上表示开区间在数轴上表示半开半闭区间在数轴上表示这里的实数a,b统称为这些区间的端点.三、集合之间的关系1、子集:定义:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,此时我们称A 是B 的子集。
即:B A B x A x ⊆∈⇒∈,则若任意 记作:A B B A ⊇⊆或;读作:A 包含于B 或B 包含A ;注意:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合 2、真子集:【考点剖析】考点一:集合的意义例1.下列所给对象不能构成集合的是________. (1)高一数学课本中所有的难题; (2)某一班级16岁以下的学生; (3)某中学的大个子;(4)某学校身高超过1.80米的学生; (5)1,2,3,1.例2.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .B .C .M ∉-4D .M ∈4 例3.用“∈”或“∉”填空(1)-3______N ; (2)3.14______Q ; (3)13______Z ;(4)-12______R ; (5)1______N *; (6)0________N .例4.已知集合},012{2R x x ax x A ∈=++=,且A 中只有一个元素,求x 的值.例5.已知},0,1{2x x ∈,求实数x 的值.例6.已知集合S 的三个元素a .、b 、c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 例7.设A 为实数集,且满足条件:若a .∈A ,则a-11∈A (a .≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集. 证明.例8.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?考点二:集合的表示方法例1.写出下列集合中的元素(并用列举法表示):(1)既是质数又是偶数的整数组成的集合 (2)大于10而小于20的合数组成的集合例2.用描述法表示下列集合:(1)被5除余1的正整数所构成的集合(2)平面直角坐标系中第一、第三象限的点构成的集合 (3)函数122+-=x x y 的图像上所有的点 (4)例3.用列举法表示下列集合:(1)},,5),{(N y N x y x y x ∈∈=+(2)},032{2R x x x x ∈=--(3)},032{2R x x x x ∈=+-(4)},512{Z x N xx ∈∈-例4.用适当的方法表示下列集合(1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C例5.下列表示同一个集合的是( )A .)}3,2{()},2,3{(==N MB .}3,2{},2,3{==N MC .)}3,2{(},2,3{==N MD .φ==N M },0{ 例6.已知集合,用列举法分别表示集合B A 、例7.设∇是R 上的一个运算,A 是R 的非空子集,若对任意A b a ∈,,有A b a ∈∇,则称A 对运算∇封闭,下列数集对加法、减法、乘法和除法(除法不等于零)四则运算都封闭的是()A .自然数集B .整数集C .有理数集D .无理数集例8.(2021·上海曹杨二中高一期末)已知集合{}{}2230,M x x x N x x a =--<=>,若M N ⊆,则实数a 的取值范围是__________. 考点三:集合之间的关系例1.已知A ={0,1},B ={x |x ⊆A },则A 与B 的关系正确的是( )A .A ⊆B B .A B =C .B A ⊆D .A ∈B例2.已知集合}2,,{b a b a a A ++=,集合},,{2ac ac a B =,若B A =,求实数c 的值例3.已知集合}01{},06{2=+==-+=ax x B x x x A 且A ≠⊂B ,求a 的值.例4.定义A *B ={x |x ∈A ,且x ∉B },若A ={1,3,4,6},B ={2,4,5,6},则A *B 的子集个数为例5.设}2,1{B }4,3,2,1{A ==,,试求集合C ,使A C ≠⊂且C B ⊆例6.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +2a -1=0},若B ⊆A ,求实数a 的取值范围.例7.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.例8.若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值.例9.已知,则A 与B 之间的包含关系为 ;【难度】★★ 【答案】B ≠⊂A例10.已知集合}3{>=x x A ,集合}1{m x x B >+=,若A B ≠⊂,实数m 的取值范围是,若A B ⊆,实数m 的取值范围是【过关检测】一、单选题1.(2021·上海市实验学校高一期末)设Q 是有理数,集合{|,,0}X x x a a b x ==+∈≠Q ,在下列集合中;(1){|2,}y y x x X =∈;(2){|}y y x X =∈;(3)1{|,}y y x X x =∈;(4)2{|,}y y x x X =∈;与X 相同的集合有( ) A .4个B .3个C .2个D .1个2.(2021·上海高一期末)已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题: ①M 的元素不都是P 的元素;②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉; 这四个命题中,真命题的个数为( ). A .1个 B .2个C .3个D .4个3.(2020·上海高一专题练习)下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .某校2015-2016学年度笫一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数4.(2020·上海高一专题练习)下面每一组的两个集合,相等的是( ) A .{(1,2)}M =,{(2,1)}N = B .{1,2}M =,{(1,2)}N =C .M =∅,{}N =∅D .{}2|210M x x x =-+=,{1}N =5.(2020·上海高一专题练习)方程组的解构成的集合是 A .{1}B .(1,1)C .{(1,1)}D .{1,1}6.(2020·上海高一专题练习)下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对7.(2020·上海高一课时练习)已知非零实数,,a b c ,则代数式a b ca b c++表示的所有的值的集合是( ) A .{3} B .{3}- C .{3,3}-D .{3,3,1,1}--8.(2020·上海高一课时练习)集合是指( ) A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点9.(2020·上海高一专题练习)如果{}1A x x =>-,那么错误的结论是( ) A .0A ∈B .C .A φ∈D .A φ⊆10.(2020·上海高一专题练习)以下六个关系式:{}00∈,{}0⊇∅,0.3Q ∉, , ,是空集,错误的个数是( ) A .4 B .3C .2D .1二、填空题11.(2021·上海高一期末)10的所有正因数组成的集合用列举法表示为__________. 12.(2021·上海市实验学校高一期末)集合6{|3P x x =∈-Z 且}x ∈Z ,用列举法表示集合P =________ 13.(2021·上海市西南位育中学高一期末)已知集合(){}21320A x m x x =-+-=有且仅有两个子集,则实数m =______.14.(2021·上海市南洋模范中学高一期末)已知集合(){}lg 4A x y x =∈=-N ,则A 的子集个数为______. 15.(2021·上海市西南位育中学高一期末)设,,则A ___________B .(填“⊂”、“”、“”或“”) 16.(2020·上海高一课时练习)已知集合A ={1,2,a 2-2a },若3∈A ,则实数a =______. 17.(2020·上海高一专题练习)用符号“∈”或“∉”填空(1)0______N ,N ,N (2)12-_____,Q π______Q(3)________{}|,,x x a a Q b Q =+∈∈18.(2020·上海高一专题练习)集合2{|(6)20}A x ax a x =+-+=是单元素集合,则实数a =________ 19.(2020·上海高一专题练习)1∈{a 2−a −1,a ,−1},则a 的值是_________.20.(2020·上海高一专题练习)已知集合{}2|320M x x x =-+=,集合{}2|220,N x x x k k R=++=∈非空,若M N ⋂=∅,则k 的取值范围是___; 21.(2020·上海高一专题练习)定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合AB 所有元素之和为________22.(2020·上海高一专题练习)集合{1,4,9,16,25}用描述法来表示为________.23.(2020·上海高一专题练习)已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.24.(2020·上海高一课时练习)定义“×”的运算法则为:集合{(,)|,}A B x y x A y B ⨯=∈∈,设集合{1,23}P =,,{2,4,6,8}Q =,则集合P Q ⨯中的元素个数为________.25.(2020·上海高一课时练习)已知集合{}2|1,||2,A y y x x x Z ==+∈,用列举法表示为________. 26.(2020·上海高一专题练习)满足的集合A 的个数为____________个. 27.(2020·上海高一专题练习)已知A ,B 是两个集合,下列四个命题: ①A 不包含于B ⇔对任意x ∈A ,有x ∉B ②A 不包含于B ⇔AB =∅③A 不包含于B ⇔A 不包含B ④A 不包含于B ⇔存在x ∈A ,x ∉B 其中真命题的序号是______28.(2020·上海高一专题练习)集合A={x |ax −6=0},B={x |3x 2−2x=0},且A ⊆B ,则实数a =____ 29.(2020·上海高一专题练习)满足的集合M 共有___________个.30.(2020·上海高一专题练习)已知集合A 中有n 个元素,则集合A 的子集个数有_____个,真子集有_____个,非空真子集_______个. 三、解答题31.(2020·上海高一课时练习)已知2{1,0,}x x ∈,求实数x 的值.32.(2020·上海高一课时练习)含有3个实数的集合可表示为,也可表示为{}2,,0a a b +,求20092010a b +的值.33.(2020·上海高一课时练习)用适当的方法表示下列集合,并判断它是有限集还是无限集. (1)第三象限内所有点组成的集合; (2)由大于-3而小于9的偶数组成的集合; (3)所有被5除余2的奇数组成的集合.34.(2020·上海高一课时练习)选择适当的方法表示下列集合. (1)Welcome 中的所有字母组成的集合; (2)所有正偶数组成的集合; (3)二元二次方程组的解集; (4)所有正三角形组成的集合.35.(2020·上海高一课时练习)用适当的方法表示下列集合 (1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C36.(2020·上海高一课时练习)用适当的方法表示下列集合. (1)由所有小于20的既是奇数又是质数的正整数组成的集合; (2)由所有非负偶数组成的集合;(3)直角坐标系内第三象限的点组成的集合.37.(2020·上海高一专题练习)A ={x |x <2或x >10},B ={x |x <1-m 或x >1+m }且BA ,求m 的范围.38.(2020·上海高一专题练习)已知A ={x |},B ={x |25x -≤≤},若AB ,求实数m 的取值范围.。
教案:集合年级:三年级学科:数学教材版本:人教版2023-2024学年第一学期教学目标:1. 让学生理解集合的概念,知道集合是由一些确定的、彼此不同的对象构成的整体。
2. 培养学生运用集合思想解决问题的能力。
3. 使学生能够识别和描述生活中的集合现象。
教学重点:1. 集合的概念和表示方法。
2. 集合中元素的确定性、无序性和互异性。
教学难点:1. 集合中元素的无序性和互异性。
2. 集合与集合之间的关系。
教学准备:1. 课件或黑板。
2. 相关教具或实物。
教学过程:一、导入1. 利用课件或黑板展示一些学生熟悉的物品,如水果、文具等,引导学生观察并说出它们的共同特点。
2. 引入集合的概念:像这样由一些确定的、彼此不同的对象构成的整体,我们称之为集合。
二、新课1. 讲解集合的概念,强调集合中元素的确定性、无序性和互异性。
2. 介绍集合的表示方法,如列举法、描述法等。
3. 通过实例,让学生了解集合与集合之间的关系,如包含关系、相等关系等。
三、巩固练习1. 让学生举例说明生活中的集合现象。
2. 让学生运用集合思想解决问题,如找出两个集合的并集、交集等。
四、课堂小结1. 让学生回顾本节课所学内容,总结集合的概念、表示方法和集合之间的关系。
2. 强调集合中元素的确定性、无序性和互异性。
五、作业布置1. 让学生完成教材中的相关练习题。
2. 让学生观察生活中的集合现象,并记录下来。
教学反思:本节课通过生活中的实例,让学生理解集合的概念和表示方法,培养学生的集合思想。
在教学过程中,要注意让学生充分参与,发挥学生的主体作用,提高学生的数学素养。
同时,要关注学生的学习反馈,及时调整教学策略,确保教学目标的达成。
附:板书设计集合1. 概念:由一些确定的、彼此不同的对象构成的整体。
2. 特点:确定性、无序性、互异性。
3. 表示方法:列举法、描述法等。
4. 集合之间的关系:包含关系、相等关系等。
注意事项:1. 本教案适用于人教版数学三年级上册。
§1.1集合的概念第1课时集合的概念学习目标1.通过实例了解集合的含义.2.理解集合中元素的特征.3.体会元素与集合的“属于”关系,记住常用数集的表示符号并会应用.知识点一元素与集合的概念1.元素:一般地,把统称为元素(element),常用小写拉丁字母表示.2.集合:把一些组成的总体叫做集合(set)(简称为集),常用大写拉丁字母…表示.3.集合相等:指构成两个集合的元素是的.4.集合中元素的特性:给定的集合,它的元素必须是、.思考某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?知识点二元素与集合的关系知识点关系概念记法读法元素与集合的关系属于如果,就说a 属于集合A “a 属于A ”不属于如果,就说a 不属于集合A“a 不属于A ”思考设集合A 表示“1~10以内的所有素数”,3,4这两个元素与集合A 有什么关系?如何用数学语言表示?知识点三常用数集及表示符号名称自然数集正整数集整数集有理数集实数集记法1.接近于0的数可以组成集合.()2.分别由元素0,1,2和2,0,1组成的两个集合是相等的.()3.一个集合中可以找到两个相同的元素.()4.由方程x2-4=0和x-2=0的根组成的集合中有3个元素.()一、对集合概念的理解例1(1)下列对象能组成集合的是()A.2的所有近似值B.某个班级中学习好的所有同学C.2020年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员(2)下列说法中,正确的有________.(填序号)①单词book的所有字母组成的集合的元素共有4个;②集合M中有3个元素a,b,c,其中a,b,c是△ABC的三边长,则△ABC不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.跟踪训练1(多选)下列说法正确的有()A.花坛上色彩艳丽的花朵构成一个集合B.正方体的全体构成一个集合C.未来世界的高科技产品构成一个集合D.不大于3的所有自然数构成一个集合二、元素与集合的关系例2(1)设集合M是由不小于25的数组成的集合,a=15,则下列关系中正确的是() A.a∈M B.a∉MC.a=M D.a≠M(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.跟踪训练2用符号“∈”或“∉”填空:(1)设集合B是小于11的所有实数的集合,则23________B,1+2________B;(2)设集合C是满足方程x=n2+1(其中n为正整数)的实数x的集合,则3________C,5________C;(3)设集合D是满足方程y=x2的有序实数对(x,y)组成的集合,则-1________D,(-1,1)________D.三、元素特性的应用例3已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求实数a.跟踪训练3设集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2∈A,求实数x的值.1.下列各组对象能构成集合的有()①接近于1的所有正整数;②小于0的实数;③(2020,1)与(1,2020).A.1组B.2组C.3组D.0组2.若a是R中的元素,但不是Q中的元素,则a可以是()D.7A.3.14B.-5 C.373.已知集合A中的元素x满足x-1<3,则下列各式正确的是()A.3∈A且-3∉A B.3∈A且-3∈AC.3∉A且-3∉A D.3∉A且-3∈A4.由方程x2-2x-3=0和x2-1=0的根组成的集合中的元素的个数为________.5.设集合A是由1,k2为元素构成的集合,则实数k的取值范围是________.1.知识清单:(1)元素与集合的概念、元素与集合的关系.(2)常用数集的表示.(3)集合中元素的特性及应用.2.方法归纳:分类讨论.3.常见误区:忽视集合中元素的互异性.1.(多选)下列选项中能构成集合的是()A.高一年级跑得快的同学B.中国的大河C.3的倍数D.大于6的有理数2.给出下列关系:①13∈R;②5∈Q;③-3∉Z;④-3∉N,其中正确的个数为() A.1B.2C.3D.43.集合M是由大于-2且小于1的实数构成的,则下列关系式正确的是()A.5∈M B.0∉MC.1∈M D.-π2∈M4.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形D.矩形5.集合A中有三个元素2,3,4,集合B中有三个元素2,4,6,若x∈A且x∉B,则x等于() A.2B.3C.4D.66.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=________.7.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.8.若由a,b2,a+b,0组成的集合相等,则a2020+b2020的值为________.a,1组成的集合与由a9.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值.10.已知集合A 含有两个元素1和a 2,若a ∈A ,求实数a 的值.11.(多选)由a 2,2-a,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值不可能是()A .1B .-2C .-1D .212.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是()A .0∈MB .-1∈MC .3∉MD .1∈M13.已知集合M 中的元素x 满足x =a +2b ,其中a ,b ∈Z ,则下列实数中不属于集合M 中元素的个数是()①0;②-1;③32-1;④23-22;⑤8;⑥11-2.A .0B .1C .2D .314.已知集合A 含有两个元素1和2,集合B 表示方程x 2+ax +b =0的解组成的集合,且集合A 与集合B 相等,则a =________;b =________.15.已知集合M有2个元素x,2-x,若-1∉M,则下列说法一定错误的是________.(填序号)①2∈M;②1∈M;③x≠3.16.设集合A中的元素均为实数,且满足条件:若a∈A,则11-a∈A(a≠1,且a≠0).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.。
1.1集合的概念7题型分类知识点1 元素与集合的概念1.元素与集合的概念(1)一般地,我们把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示,把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.(2)集合中元素的特性:确定性、互异性、无序性.①确定性给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.②互异性一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.③无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.(3)只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.知识点2 元素与集合的关系1.元素与集合的关系 2.元素与集合的关系只能是属于或不属于,有且仅有一种情况成立.知识点3 常用数集及表示符号名称自然数集正整数集整数集有理数集实数集Q R记法N N*或N+Z知识点4 集合的表示方法1列举法把集合的所有元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法,一般可将集合表示为{a,b,c,…}.注:列举法表示的集合的结构:2.描述法一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法,有时也用冒号或分号代替竖线,写成{x∈A:P(x)}或{x∈A;P(x)}.注:描述法表示的集合的结构:(一)1、集合概念的理解(1)含义:集合是一个原始的不加定义的数学术语,像初中学过的点、直线一样,只能描述性说明.(2)对象:集合中的“对象”所指的范围非常广泛,现实生活中我们看到的听到的、触摸到的想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.(3)整体:集合是一个整体,即暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成集合,那么这个集合就是这些对象的全体,而非个别对象.2、判断一组对象是否为集合的三依据(1)确定性:负责判断这组元素是否构成集合.(2)互异性:负责判断构成集合的元素的个数.(3)无序性:表示只要一个集合的元素确定,则这个集合也随之确定,与元素之间的排列顺序无关.题型1:判断对象是否能构成集合1-1.(2024高一上·贵州铜仁·阶段练习)下列各组对象中,能组成集合的有(填序号).①所有的好人;②平面上到原点的距离等于2的点;③正三角形;④比较小的正整数;x+>的x的取值.⑤满足不等式101-2.(2024高一下·云南·阶段练习)下列各对象可以组成集合的是()A.与1非常接近的全体实数-学年度第二学期全体高一学生B.北大附中云南实验学校20202021C.高一年级视力比较好的同学D.高一年级很有才华的老师1-3.(2024高一·全国·课后作业)下列各组对象的全体能构成集合的有()(1)正方形的全体;(2)高一数学书中所有的难题;(3)平方后等于负数的数;(4)某校高一年级学生身高在1.7米的学生;(5)平面内到线段AB两端点距离相等的点的全体.A.2个B.3个C.4个D.5个(二)1、集合中的元素的性质及应用元素与集合的关系有属于与不属于两种:元素a属于集合A,记作a∈A,读作“a属于集合A";元素a不属于集合A.记作a∉A,读作“a不属于集合A".(1)a∈A与aÏA取决于a是不是集合A中的元素,根据集合中元素的确定性,可知对任何a与A.在a∈A与aÏA这两种情况中必有一种且只有一种成立.(2)符号“∈”,“在”是表示元素与集合之间的关系的,不能用来表示集合与集合之间的关系,这一点千万要记准.(3)a与{a}的区别和联系:a表示一个元素,{a}表示一个集合,该集合只有一个元素a;它们之间的联系为{}a aÎ.2、元素与集合关系的判断(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.3、根据元素与集合的关系求参数由集合中元素的特性求解字母取值(范围)的步骤③3-ÎN ;④3Q -Î.其中正确的个数为( )A .1B .2C .3D .4题型3:根据元素与集合的关系求参数3-1.(2024高一上·上海虹口·期中)集合()(){}2140,A x x x ax x R =-++=Î中所有元素之和为3,则实数a =.3-2.(2024高一上·四川泸州·期末)已知{}(1,2)(,)230x y x ay Î+-=,则a 的值为 .3-3.(2024·河南·模拟预测)已知{}210A xx ax =-+<∣,若2A Î,且3A Ï,则a 的取值范围是( )A .5,2æö+¥ç÷èøB .510,23æùçúèûC .510,23öé÷êëøD .03,1æù-¥çúèû题型4:利用集合元素的互异性求参数4-1.(2024·北京海淀·模拟预测)设集合{}21,3M m m =--,若3M -Î,则实数m =( )A .0B .1-C .0或1-D .0或14-2.(2024·北京海淀·模拟预测)设集合{}22,2,1A a a a =-+-,若4A Î,则a 的值为( ).A .1-,2B .3-C .1-,3-,2D .3-,24-3.(2024高一上·安徽滁州·阶段练习)已知集合A 中的元素1,4,a ,且实数a 满足2a A Î,求实数a 的值.4-4.(2024高三·全国·专题练习)已知{}222,(1),33A a a a a =++++,若1A Î,则实数a 构成的集合B 的元素个数是( )A .0B .1C .2D .34-5.(2024高一上·山东聊城·期中)若{}21,3,a aÎ,则a 的可能取值有( )A .0B .0,1C .0,3D .0,1,34-6.(2024高一上·四川自贡·期末)若{}22,a a a Î-,则a 的值为( )A .0B .2C .0或2D .2-(三)用列举法表示集合1.列举法表示的集合的种类(1)元素个数少且有限时.全部列举:如1,2,3,4;(2)元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1000的所有自然数”可以表示为1,2,3,...,1 000} ;(3)元素个数无限但有规律时,可类似于(2),如自然数集N 可以表示为10,1,2,3....2.使用列举法表示集合时需注意(1)元素之间用“,”而不用“、"隔开;(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法.但是必须把元索间的规律表述清楚后才能用省略号.注意(1)用列举法表示集合,要注意是数集还是点集.(2)列举法适合表示有限集,当集合中元素个数较少时,用列举法表示一目了然.题型5:用列举法表示集合5-1.(2024高一·全国·专题练习)方程组13x y x y +=ìí-=î的解集是( )A .{}2,1-B .{}2,1x y ==-C .(){},2,1x y -D .(){}2,1-5-2.(2024高一上·北京海淀·期中)已知集合12{|N 7A x x=Î-,Z}x Î,用列举法表示集合A = .5-3.(2024高一上·四川·阶段练习)设集合6ZN 2A x x ìü=ÎÎíý+îþ,则用列举法表示集合A 为 .5-4.(2024高一·全国·课后作业)集合{}41x N x Î-<用列举法表示为( )A .{}0,1,2,3,4B .{}1,2,3,4C .{}0,1,2,3,4,5D .{}1,2,3,4,5(四)用描述法表示集合1.描述法的一般形式是(){}x I p x Î,其中“x ”是集合中元素的代表形式.例如用描述法表示方程2 320x x -+=的实数根为{}2320x x x Î-+=R .如果从上下文的关系来看,x I Î是明确的,那么x I Î也可省略,只写其元素x .例如集合}5{A x x =Î>R 也可表示为}5{A x x =>.2.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.3.使用描述法时应注意以下几点(1)写清楚该集合的代表元素,如数或点等;(2)说明该集合中元素的共同属性;(3)不能出现未被说明的字母;(4)所有描述的内容都要写在花括号内,用于描述的内容力求简洁、准确.注:(1)用描述法表示集合时,一定要体现描述法的形式,不要漏写集合的代表元素及元素所具有的性质,且用“|”隔开.(2)当描述部分出现集合的代表元素以外的字母时,要对新字母说明其含义或指出其取值范围.题型6:用描述法表示集合6-1.(2024高一上·全国·课后作业)用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)24的正因数组成的集合.(3)自然数的平方组成的集合.(4)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.6-2.(2024高一·全国·专题练习)用描述法表示下列集合:(1)被3除余1的正整数的集合.(2)坐标平面内第一象限内的点的集合.(3)大于4的所有偶数.6-3.(2024高一·全国·课后作业)选择适当的方法表示下列集合:(1)被5除余1的正整数组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合;(五)集合表示法的综合应用(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如集合A={x|kx2-8x+16=0}中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.(2)在学习过程中要注意数学素养的培养,如等价转化思想和分类讨论的思想.一、单选题1.(2024高一·全国·课后作业)方程组2210x yx y+=ìí-+=î的解集可以表示为()A .{1,1}x y ==B .{1}C .{(1,1)}D .{1,1}2.(2024高二下·河南焦作·阶段练习)已知集合{}21,,3M m m =+,且4M Î,则m 取值构成的集合为( )A .{}1,4B .{}1,4-C .{}1,1,4-D .Æ3.(2024高一上·四川成都·阶段练习)已知{}22,25,12A a a a =-+其3A -Î,则由a 的值构成的集合是( )A .ÆB .31,2ìü--íýîþC .{}-1D .32ìü-íýîþ4.(2024高一上·北京·阶段练习)已知集合2{2,4,10}A a a a =-+,若3A -Î,则实数a 的值为( )A .-1B .-3C .-3或-1D .无解5.(2024高一上·浙江·课后作业)下面四个命题正确的个数是( ).①集合*N 中最小的数是1;②若*N a -Î,则*N a Î;③若**N ,N a b ÎÎ,则a b +的最小值是2;④296+=x x 的解集是{}3,3.A .0B .1C .2D .36.(2024高一·全国·单元测试)若关于x 的方程()22140ax a x +++=的解集为单元素集合,则( )A .0a =B .1a =C .0a =或1a =D .0a ¹且1a ¹7.(2024高一上·湖北·期末)已知集合{}{}{}1,0,1,2,,,A B C x x ab a A b B =-===-ÎÎ,则C 集合中元素的个数为( )A .2B .3C .4D .58.(2024高一上·山东泰安·阶段练习)已知集合M=6*,5a N a ìÎí-î且}a Z Î,则M 等于( )A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}9.(2024高一上·广东茂名·期中)若22{1,1,1}a a Î++,则a =( )A .2B .1或-1C .1D .-110.(2024高一·全国·假期作业)方程x 2=x 的所有实数根组成的集合为A .()0,1B .(){}0,1C .{}0,1D .{}2x x =11.(2024高三上·安徽芜湖·期末)集合{}50A x x *=Î-<N 中的元素个数是( )A .0B .4C .5D .612.(2024高一·全国·课后作业)设有下列关系:R ;②4Q Î;③0N Î;④{}00,1Î.其中正确的个数为.A .1个B .2个C .3个D .4个13.(2024高二下·浙江宁波·学业考试)已知集合{}()(){}3,4,30,M N xx x a a ==-+=ÎR ∣, 若M N =, 则a = ( )A .3B .4C .3-D .4-14.(2024高三下·河南新乡·开学考试)已知集合{}4,,2A x y =,{}22,,1B x y =--,若A B =,则实数x 的取值集合为( )A .{1,0,2}-B .{2,2}-C .{}1,0,2-D .{2,1,2}-15.(2024高一·全国·课后作业)已知集合{}2|1A x x =<,且a A Î,则a 的值可能为( )A .2-B .1-C .0D .116.(2024高一上·广东江门·期中)已知集合(){}|10M x x x =-=,那么( )A .0MÎB .1MÏC .1M-ÎD .0MÏ17.(2024高一上·海南·期中)下列表示正确的是( )A .*3N -ÎB .0NÎC .2Z7ÎD .πQÎ18.(2024·辽宁·模拟预测)设集合{},0M a =,{}2,N a b =,若M N =,则a b +=( )A .0B .1C .2D .1-19.(2024高一上·云南西双版纳·期末)若不等式3-2x<0的解集为M ,则下列结论正确的是 ( )A .0∈M ,2∈MB .0∉M ,2∈MC .0∈M ,2∉MD .0∉M ,2∉M20.(2024·贵州黔东南·三模)已知集合{}{}2|1,(,)|0,S y y x T x y x y ==-=+=下列关系正确的是( )A .2S-ÎB .()2,2T-ÏC .1S-ÏD .()1,1T-Î21.(2024高一上·浙江·课后作业)下列四组对象中能构成集合的是( )A .宜春市第一中学高一学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数22.(陕西省榆林市府谷中学2023-2024学年高一上学期第一次月考数学试题)下列各组对象不能构成集合的是( )A .上课迟到的学生B .2022年高考数学难题C .所有有理数D .小于x 的正整数23.(2024高一上·全国·课后作业)下列集合中,不同于另外三个集合的是( )A .{}2020x x =B .(){}220200y y -=C .{}2020x =D .{}202024.(2024高一·全国·课后作业)已知关于x 的方程2230x mx m -+-=的解集只有一个元素,则m 的值为( )A .2B .2-C .2±D .不存在25.(2024高一·全国·课后作业)由a 2,2a -,3组成的一个集合A ,若A 中元素个数不是2,则实数a 的取值可以是( )A .1-B .1C D .226.(2024高一上·江苏南京·阶段练习)下列说法正确的是( )A 30+=的解集是1,12ìü-íýîþB .方程260x x --=的解集为{(-2,3)}C .集合M ={y |y =x 2+1,x ∈R }与集合P ={(x ,y )|y =x 2+1,x ∈R }表示同一个集合D .方程组2030x y x y +=ìí-+=î的解集是{(x ,y )|x =-1且y =2}27.(2024·四川绵阳·模拟预测)已知集合{2,1,0,1,2,3}A =--,{}B x A x A =Î-Ï,则B =( )A .{1,2}B .{2,1}--C .{0,3}D .{3}28.(2024高一·全国·课后作业)下列语句中,正确的个数是( )(1)0ÎN ;(2)πÎQ ;(3)由3、4、5、5、6构成的集合含有5个元素;(4)数轴上由1到1.01间的线段的点集是有限集;(5)方程20x =的解能构成集合.A .2B .3C .4D .529.(2024·湖南岳阳·一模)定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B Ä==-ÎÎ,若{}1,0A =-,{}1,2B =,则A B Ä中的元素个数为( )A .1B .2C .3D .430.(2024高三·山西·阶段练习)设A 是一个数集,且至少含有两个数,若对任意,a b A Î,都有,,,aa b a b ab A b+-Î(除数0b ¹),则称A 是一个数域,则下列集合为数域的是( )A .NB .ZC .QD .{}|0,R x x x ¹Î31.(2024·全国)已知集合(){}22,3Z Z A x y xy x y =+£ÎÎ,,,则A 中元素的个数为( )A .9B .8C .5D .432.(2024高一·全国·课前预习)已知集合A ={x |x 2+px +q =x },B ={x |(x -1)2+p (x -1)+q =x +3},当A ={2}时,集合B =( )A .{1}B .{1,2}C .{2,5}D .{1,5}33.(2024高一下·广西·阶段练习)若集合2{|320}A x R ax x =Î-+=中只有一个元素,则(a = )A .92B .98C .0D .0或9834.(2024高一·全国·专题练习)由实数x ,x -,||x ,( )A .2B .3C .4D .535.(2024高一·全国·课后作业)集合{}2|0,A x x px q x R =++=Î{}2=,则p q +=( )A .1-B .0C .1D .236.(2024高一上·河北邯郸·阶段练习)下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{2,3}M =,{3,2}N =C .{(,)1}M x y x y =+=∣,{1}N y x y =+=∣D .{2,3}M =,{(2,3)}N =37.(2024高一上·北京海淀·阶段练习)若{}21,,0,,b a a a b a ìü=+íýîþ,则a 2020+b 2020的值为( )A .0B .﹣1C .1D .1或﹣138.(2024高一上·重庆北碚·期末)定义|,,,m A B x x m A n B n ìü==ÎÎíýîþÄ若{}{}1,2,4,2,4,8A B ==则A BÄ中元素个数为( )A .1B .2C .4D .539.(2024高一上·陕西西安·阶段练习)下列关系中,正确的个数为( )R ②1Q 3Î③0N Ï④p ÎQ ⑤3-ÎZA .5B .4C .3D .240.(江西省五市九校协作体2023届高三第二次联考数学(文)试题)已知集合{}1,,A a b =,{}2,,B a a ab =,若A B =,则20232022a b +=( )A .1-B .0C .1D .241.(2024高一上·山西运城·阶段练习)集合{}2320A x x x =-+=,用列举法表示为( )A .1B .2C .{}1,2D .{}242.(江苏省南京市栖霞区南京师范大学附属实验学校2023-2024学年高一上学期10月月考数学试题)已知集合{}20,,32A m m m =-+,且2A Î,则实数m 为( )A .2B .3C .0或3D .0,2,343.(2024高一上·上海浦东新·期末)设Q 是有理数,集合{|,,0}X x x a a b x ==+ιQ ,在下列集合中;(1){|2,}y y x x X =Î;(2){|}y y x X =Î;(3)1{|,}y y x X x =Î;(4)2{|,}y y x x X =Î;与X 相同的集合有( )A .4个B .3个C .2个D .1个44.(2024高一·全国·课后作业)下列说法正确的是( )A .由1,2,3组成的集合可表示为{}1,2,3或{}3,2,1B .Æ与{}0是同一个集合C .集合{}21x y x =-与集合{}21y y x =-是同一个集合D .集合{}2560x x x ++=与集合{}2560x x ++=是同一个集合45.(2024高一上·上海黄浦·阶段练习)直角坐标平面中除去两点(1,1)A 、(2,2)B -可用集合表示为( )A .{(,)|1,1,2,2}x y x y x y ¹¹¹¹-B .1{(,)|1x x y y ¹ìí¹î或2}2x y ¹ìí¹-îC .2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+--++¹D .2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+-+-++¹二、多选题46.(2024高一上·福建莆田·阶段练习)下列说法中不正确的是( )A .0与{}0表示同一个集合B .集合M ={}3,4与N =(){}3,4表示同一个集合C .方程()2(1)2x x --=0的所有解的集合可表示为{}1,1,2D .集合{|45}x x <<不能用列举法表示47.(2024高一上·广东佛山·期中)下列关系式正确的是( )A .1R2ÎB .|3|-ÏNC.QD .0{0}Î48.(2024高一上·广西百色·阶段练习)已知集合{}N 6A x x =Î<,则下列关系式成立的是( )A .0AÎB .1.5AÏC .1A-ÏD .6AÎ49.(2024高一上·江苏常州·期中)已知集合{},,A x x m m n Z ==Î,则下列说法中正确的是( )A .0A Î但2(1A-ÏB.若111222,x m x m ==,其中1122,,,m n m n Z Î,则12x x A ±ÎC.若111222,x m x m ==,其中1122,,,m n m n Z Î,则12x x A ×ÎD.若111222,x m x m =+=,其中1122,,,m n m n Z Î,则12x A x Î50.(2024高一上·江苏镇江·开学考试)已知Z a Î,{(,)|3}A x y ax y =-£且,(2,1)A Î,(1,4)A -Ï,则a 取值可能为( )A .1-B .0C .1D .251.(2024高一上·甘肃庆阳·期中)已知集合{N |A x x =Σ£,则有( )A .1A -ÏB .0A ÎC AD .2AÎ52.(2024高一下·湖南邵阳·开学考试)若对任意x A Î,1A x Î,则称A 为“影子关系”集合,下列集合为“影子关系”集合的是( )A .{}1,1-B .1,22ìüíýîþC .{}21x x >D .{}0x x >53.(2024高一上·辽宁大连·阶段练习)关于x 的方程221x k xx x x-=--的解集中只含有一个元素,则k 的值可能是( )A .0B .1-C .1D .3三、填空题54.(2024高三下·上海浦东新·阶段练习)已知集合{}{}21,,a a a =,则实数a = .55.(2024高一上·江苏淮安·期中)集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =.56.(2024高一上·全国·课后作业)已知R ;②1Q 3Î;③0={0};④0N Ï;⑤πQ Î;⑥3Z -Î,其中正确的个数为 .57.(2024高一上·广东汕头·期中)在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ] ={4n + k ︱n ∈Z } ,k =0,1,2,3.给出下列四个论①2025∈[1] ;②-2025∈[1] ; ③若a ∈[1],b ∈[2],则3a +b ∈[3] ;④若a ∈[1],b ∈[3],则a -3b ∈[0].其中正确的结论是.58.(2024高一上·全国·专题练习)集合12ZZ 3A x y y x ìü=Î=Îíý+îþ∣的元素个数为 .59.(2023-2024学年河北成安一中高一上月考一数学试卷(带解析))已知集合{}223,2,A m m m A =++Î,则m 的值为.60.(2.1.2集合间的基本关系(分层练习)-2022年初升高数学无忧衔接)含有三个实数的集合可表示为,,1ba a ìüíýîþ,也可以示为{}2,,0a a b +,则20132014a b +的值为 .61.(2024高一上·上海浦东新·期末)请将下列各组对象能组成集合的序号填在后面的横线上 .①上海市2022年入学的全体高一年级新生;②在平面直角坐标系中,到定点(00),的距离等于1的所有点;③影响力比较大的中国数学家;④不等式3100x -<的所有正整数解.62.(2024高一上·吉林·期末)设,a b ÎR ,{}1,P a =,{}23,Q a b =+,若P Q =,则a b -= .63.(2024高一上·天津东丽·期中)若集合{}23,21,4A a a a =---,且3A -Î,则实数a =.四、解答题64.(2024高一·江苏·课后作业)用适当方法表示下列集合:(1)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合;(2+|y ﹣2|=0的解集;(3)由二次函数y =3x 2+1图象上所有点组成的集合.65.(2024高一·全国·专题练习)把下列集合用适当方法表示出来:(1){2,4,6,8,10};(2){|37}x N x Î<<;(3){}2|9A x x ==;(4){}|12B x N x =Σ£;(5){}2|320C x x x =-+=.66.(2024高一上·陕西咸阳·阶段练习)已知集合{}2410C x ax x =-+=.(1)若C 是空集,求a 的取值范围;(2)若C 中至多有一个元素,求a 的取值范围.67.(2024高一·湖南·课后作业)用自然语言描述下列集合:(1){}1,3,5,7,9;(2){}32x R x Î;(3){}3,5,7,11,13,17,19.68.(2024高一上·上海·课后作业)已知集合A ={x|x 为小于6的正整数},B ={x|x 为小于10的素数},集合{|C x x =为24和36的正公因数}.(1)试用列举法表示集合{|M x x A =Î且}x C Î;(2)试用列举法表示集合{|N x x B =Î且}x C Ï.69.(2024高一上·湖南岳阳·阶段练习)已知集合{}2|210A x R ax x =Î++=,其中a ∈R .(1)1是A 中的一个元素,用列举法表示A ;(2)若A 中至多有一个元素,试求a 的取值范围.70.(2024高一·全国·课后作业)定义满足“如果a ∈A ,b ∈A ,那么a ±b ∈A ,且ab ∈A ,且ab∈A (b ≠0)”的集合A 为“闭集”.试问数集N ,Z ,Q ,R 是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.71.(2024高一·全国·课后作业)(1)如果集合{|}(,)A x x m m n Z ==Î,12,x x A Î,证明:12x x A Î.(2)如果集合{}B x x m ==+,整数,m n 互素,那么是否存在x ,使得x 和1x都属于B ?若存在,请写出一个;若不存在,请说明理由.注:x 的取值不唯一.)72.(2024高一上·上海虹口·阶段练习)设关于x 的不等式21241x x k k +-³+的解集为A .(1)求A ;(2)若2A Î,求实数k 的取值范围.73.(2024高一上·上海奉贤·阶段练习)已知集合{}2|440,,A x ax x a R x R =+=ÎÎ+.(1)若A 中只有一个元素,求a 及A ;(2)若A 中至多有一个元素,求a 的取值范围.74.(2024高一·全国·课后作业)已知集合}{2340A x ax x =--=.(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数的a 取值范围.。
01集合及其表示法(9种题型)【课程细目表】一、知识梳理二、考点剖析1.集合的含义2.元素与集合关系的判断3.集合的确定性、互异性、无序性4.集合相等5.有限集与无限集.6.集合的表示法--描述法7.集合的表示法--列举法8.集合的表示法--区间法9.集合的表示法--综合应用三、过关检测【知识梳理】一、集合的意义1.集合的概念我们把能够确切指定的一些对象组成的整体叫做集合,简称集.集合中的各个对象叫做这个集合的元素.对于一个给定的集合,集合中的元素具有确定性、互异性、无序性.确定性是指一个对象要么是给定集合的元素,要么不是这个集合的元素,二者必居其一.比如“著名的数学家”、“较大的数”、“高一一班成绩好的同学”等都不能构成集合,因为组成集合的元素不确定.互异性是指对于一个给定的集合,集合中的元素是各不相同的,也就是说,一个给定的集合中的任何两个元素都是不同的对象,集合中的元素不重复出现.例如由元素1,2,1组成的集合中含有两个元素:1,2.无序性是指组成集合的元素没有次序,只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.2.集合与元素的字母表示、元素与集合的关系集合常用大写字母A、B、C⋯来表示,集合中的元素用a、b、c⋯表示,如果a是集合A的元素,就记作a∈A,读作“a属于A”;如果a不是集合A的元素,就记作a∉A,读作“a不属于A”3.常用的数集及记法数的集合简称数集,我们把常用的数集用特定的字母表示:全体自然数组成的集合,即自然数集,记作N,不包含零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R常用的集合的特殊表示法:实数集R(正实数集R+)、有理数集Q(负有理数集Q-)、整数集Z(正整数集Z+)、自然数集N(包含零)、不包含零的自然数集N*;4.集合相等如果两个集合A与B的组成元素完全相同,就称这两个集合相等,记作A=B.5.集合的分类我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集我们引进一个特殊的集合--空集,规定空集不含元素,记作∅,例如,方程x2+1=0的实数解所组成的集合是空集,又如,两个外离的圆,它们的公共点所组成的集合也是空集.6.空集我们把不含任何元素的集合,记作φ。
2023年高考数学总复习第一章集合与常用逻辑用语第1节集合考试要求1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集A 中任意一个元素均为B 中的元素A ⊆B 真子集A 中任意一个元素均为B 中的元素,且B 中至少有一个元素不是A 中的元素A B空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}表示4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()2.若集合P={x∈N|x≤2023},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P3.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}4.(易错题)(2021·南昌调研)集合A={-1,2},B={x|ax-2=0},若B⊆A,则由实数a的取值组成的集合为()A.{-2}B.{1}C.{-2,1}D.{-2,1,0}5.(2021·西安五校联考)设全集U=R,A={x|y=2x-x2},B={y|y=2x,x∈R},则(∁U A)∩B=()A.{x|x<0}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x>2}6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.62.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.考点二集合间的基本关系例1(1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是________.训练1(1)(2022·大连模拟)设集合A={1,a,b},B={a,a2,ab},若A=B,则a2022+b2023的值为()A.0B.1C.-2D.0或-1(2)已知集合A={x|log2(x-1)<1},B={x||x-a|<2},若A⊆B,则实数a的取值范围为()A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]考点三集合的运算角度1集合的基本运算例2(1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}角度2利用集合的运算求参数例3(1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是()A.a <-2B.a ≤-2C.a >-4D.a ≤-4训练2(1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N x |13≤x <aM ∩N =N ,则a 的取值范围为()A.a ≤13B.a >4C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例1设全集U ={x |0<x <10,x ∈N +},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________.例2(2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%例3向100名学生调查对A,B两件事的看法,得到如下结果:赞成A的人数是全体的35,其余不赞成;赞成B的人数比赞成A的人数多3人,其余不赞成.另外,对A,B都不赞成的人数比对A,B都赞成的学生人数的13多1人,则对A,B都赞成的学生人数为________,对A,B都不赞成的学生人数为________.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±15.已知集合A={x∈Z|y=log5(x+1)},B={x∈Z|x2-x-2<0},则()A.A∩B=AB.A∪B=BC.B AD.A B6.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是()A.0B.1C.2D.37.(2022·太原模拟)已知集合M={x|(x-2)2≤1},N={y|y=x2-1},则(∁R M)∩N=()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)8.设集合A ={x |(x +2)(x -3)≤0},B ={a },若A ∪B =A ,则a 的最大值为()A.-2B.2C.3D.49.(2021·合肥模拟)已知集合A ={-2,-1,0,1,2},集合B ={x ||x -1|≤2},则A ∩B =________.10.(2021·湖南雅礼中学检测)设集合A ={x |y =x -3},B ={x |1<x ≤9},则(∁R A )∩B =________.11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}14.(2020·浙江卷)设集合S ,T ,S ⊆N +,T ⊆N +,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x ∈S .下列命题正确的是()A.若S 有4个元素,则S ∪T 有7个元素B.若S 有4个元素,则S ∪T 有6个元素C.若S 有3个元素,则S ∪T 有5个元素D.若S 有3个元素,则S ∪T 有4个元素15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M={x|ax2-1=0,a>0},N={-12,12,1},若M与N“相交”,则a=________.。