2017年北京市海淀区初三数学二模试题及答案
- 格式:doc
- 大小:926.50 KB
- 文档页数:16
海淀区九年级第二学期期末练习数学1.6 的绝对值是()A.6B. 61D.1C.662. 以下运算正确的选项是()A. a a 2a 2B. a 2 a 3a 6 C. a 3 a 3 D. ( a) 3 a 33. 如图, RtABC 中, ACB90 ,过点 C 的直线 DF 与BAC 的均分线 AE 平行,若 B 50,则 BCF ()A.100B.80 C. 70 D. 50D CFEAB4. 已知关于 x 的一元二次方程 x 2x1 m 1 0 有实数根,则 m 的取值范围是()4A. m 2B. m 5C. m 2D. m 55. 在 6 张完整同样的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。
从这 6 张卡片随机地抽取一张卡片, 则这张卡片上的图形是中心对称图形的概率是()11 C.1 2A.B.D.36 326. 两个半径不等的圆相切,圆心距为 6cm ,且大圆半径是小圆半径的2 倍,则小圆的半径为()A. 3B. 4C.2或4 D. 2 或 67. 农科所连续四年在两块环境同样的实验田里种植甲、 乙两种不一样品种的小麦。
亩产量(单位:公斤)统计以下表。
设甲、乙品种四年亩产量的均匀数挨次为x 甲 , x 乙 ,四年亩产量的方差挨次为 S 2 甲,S 2 乙 ,则以下关系中完整正确的选项是()品种 年份20072008 2009 201022甲454457462459,甲乙S 甲S 乙A. x x乙454459465458B. x甲x乙, S2甲S2乙C. x甲x乙, S2甲S2乙D. x甲x乙, S2甲S2乙8. 一个不透明的小方体的的 6 个面上分别写有数学1, 2, 3, 4,5, 6,任意两对面上所写的两个数字之和为7。
将这样的几个小方体依据相接触的两个面上的数字之和为8 摆放成一个几何体,这个几何体的三视图如右图所示,已知图中所注明的是部分面上所见的数字,则★所代表的数是()A.1B.2C.3D.49.一个正 n 边形的每个内角都是108 ,则n_______.10.将抛物线 y x2向左平移 3 个单位,再向下平移 2 个单位后,所得抛物线的分析式为___________.11.如图,在扇形 OAB 中,AOB 90 ,C 为 OA 的中点,点 D 在AB上,且CD OB ,则ABD ______.ACDO B 12. 某种数字化的信息传输中,先将信息转变为数学0 和1 构成的数字串,并对数字串进行了加密后再传输。
北京市海淀区2017年中考二模数学试题及答案海淀区九年级第二学期期末练数学试卷2017年6月学校:________ 班级:________ 姓名:________ 准考证号:________本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
注意事项:1.在试卷和答题卡上准确填写学校名称、班级和姓名。
2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
3.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
4.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)1.如图,用圆规比较两条线段A'B'和AB的长短,其中正确的是A。
A'B'。
ABB。
A'B' = ABC。
A'B' < ABD。
不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是图略)3.下列计算正确的是A。
2a - 3a = aB。
a3/2 = a6C。
-2a = 32D。
a ÷ a = 14.如图,ABCD中,AD=5,AB=3,∠BAD的平分线AE 交BC于E点,则EC的长为图略)5.共享单车提供了便捷、环保的出行方式。
___同学在___打开某共享单车APP,如图,"-"为___同学的位置,"★"为检索到的共享单车停放点。
为了到达距离最近的共享单车停放点,下列四个区域中,___同学应该前往的是图略)6.在单词happy中随机选择一个字母,选到字母为p的概率是A。
1/5B。
2/5C。
3/5D。
1/47.如图,OA为⊙O的半径,弦BC⊥OA于P点。
若OA=5,AP=2,则弦BC的长为图略)8.在下列函数中,其图象与x轴没有交点的是A。
y = 2xB。
y = -3x + 1C。
y = x2D。
y = 1/x9.如图,在等边三角形三个顶点和中心处的每个"○"中各填有一个式子,使得每条边上的三个式子之和相等,则a/b的值为图略)10.利用量角器可以制作锐角正弦值速查卡。
北京市各区2017年中考数学二模试卷分类汇编---代数几何综合1昌平29.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大时,称∠MPN 为点P关于⊙C的“视角”.(1)如图,⊙O的半径为1,○1已知点A(0,2),画出点A关于⊙O的“视角”;若点P在直线x = 2上,则点P关于⊙O的最大“视角”的度数;○2在第一象限内有一点B(m,m),点B关于⊙O的“视角”为60°,求点B的坐标;○3若点P在直线23y x=-+上,且点P关于⊙O的“视角”大于60°,求点P的横坐标Px的取值范围.(2)⊙C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,-1),若线段EF上所有的点关于⊙C的“视角”都小于120°,直接写出点C的横坐标Cx的取值范围.x2朝阳29. 在平面直角坐标系xOy中,对于半径为r(r>0)的⊙O和点P,给出如下定义:若r≤PO≤32r,则称P为⊙O的“近外点”.(1)当⊙O的半径为2时,点A(4,0),B (52-,0),C(0,3),D (1,-1)中,⊙O的“近外点”是;(2)若点E(3,4)是⊙O的“近外点”,求⊙O的半径r的取值范围;(3)当⊙O的半径为2时,直线3y b=+(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“近外点”,直接写出b的取值范围.3东城 29.在平面直角坐标系xOy 中,点P 与点Q 不重合.以点P 为圆心作经过点Q 的圆,则称该圆为点P ,Q 的“相关圆”. (1)已知点P 的坐标为(2,0),①若点Q 的坐标为(0,1),求点P ,Q 的“相关圆”的面积;②若点Q 的坐标为(3,n ),且点P ,Q 的“相关圆”,求n 的值.(2)已知△ABC 为等边三角形,点A 和点B0),点C 在y 轴正半轴上.若点P ,Q 的“相关圆”恰好是△ABC 的内切圆且点Q 在直线y =2x 上,求点Q 的坐标.(3)已知△ABC 三个顶点的坐标为:A (3-,0),B (92,0),C (0,4),点P 的坐标为(0,32),点Q 的坐标为(m ,32).若点P ,Q 的“相关圆”与△ABC 的三边中至少一边存在公共点,直接写出m 的取值范围.4房山()()()29. 如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0). (1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P 为线段AB的“等角点”. 显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和⊙C的半径;②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P在y轴正半轴上运动时,∠APB是否有最大值?如果有,说明此时∠APB最大的理由,并求出点P的坐标;如果没有,也请说明理由.5丰台29. 在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若()()⎩⎨⎧<-≥='00x y x y y ,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为 ;(2)若点P 在函数162+-=x y 的图象上,其“可控变点”Q 的纵坐标y′是7,求“可控变点”Q 的横坐标;(3)若点P 在函数162+-=x y (a x ≤≤-5)的图象上,其“可控变点”Q的纵坐标y′ 的取值范围是1616≤'≤-y ,求实数a 的取值范围.6海淀29.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q 到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.(1)已知点A 的坐标为(3-,1),①在点R (0,4),S (2,2),T (2,3-)中,为点A 的同族点的是 ; ②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为 ; (2)直线l :3y x =-,与x 轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x n =上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0为半径的圆上存在点N ,使得M ,N 两点为同族点,直接写出m 的取值范围.7怀柔29. 在平面直角坐标系xOy 中,点P 和点P '关于y=x 轴对称,点Q 和点P '关于R (a,0)中心对称,则称点Q 是点P 关于y=x 轴,点R (a,0)的“轴中对称点”.(1)如图1,已知点A (0,1).①若点B 是点A 关于y=x 轴,点G (3,0)的“轴中对称点”,则点B 的坐标为 ;②若点C (-3,0)是点A 关于y=x 轴,点R (a,0)的“轴中对称点”,则a= ; (2)如图2,⊙O 的半径为1,若⊙O 上存在点M ,使得点M '是点M 关于y=x 轴,点T (b ,0)的“轴中对称点”,且点M '在射线y=x-4(x ≥4)上.①⊙O 上的点M 关于y=x 轴对称时,对称点组成的图形是 ; ②求b 的取值范围;(3)⊙E 的半径为2,点E (0,t )是y 轴上的动点,若⊙E 上存在点N ,使得点N '是点N 关于y=x 轴,点(2,0)的“轴中对称点”,并且N '在直线3333+-=x y 上,请直接写出t 的取值范围.8石景山xx图1图2x备用图29.在平面直角坐标系xOy 中,点P 的坐标为(,)a b ,点P 的变换点P '的坐标定义如下:当a b >时,点P '的坐标为(,)a b -;当a b ≤时,点P '的坐标为(,)b a -. (1)点(3,1)A 的变换点A '的坐标是 ;点(4,2)B -的变换点为B ',连接OB ,OB ',则BOB '∠= ; (2)已知抛物线2(2)y x m =-++与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E .点P 在抛物线2(2)y x m =-++上,点P 的变换点为P '.若点P '恰好在抛物线的对称轴上,且四边形ECP D '是菱形,求m 的值; (3) 若点F 是函数26y x =--(42x --≤≤)图象上的一点,点F 的变换点为F ',连接FF ',以FF '为直径..作⊙M ,⊙M 的半径为r ,请直接写出r 的取值范围.9顺义备用图3 备用图429.在平面直角坐标系xOy 中,已知点M (1,1),N (1,-1),经过某点且平行于OM 、ON 或MN 的直线,叫该点关于△OMN 的“关联线”.例如,如图1,点P (3,0)关于△OMN 的“关联线”是: y =x +3,y =-x +3,x =3.(1)在以下3条线中, 是点(4,3)关于△OMN 的“关联线”(填出所有正确的序号;①x =4; ②y =-x -5; ③y =x -1 .(2)如图2,抛物线n m x y +-=2)(41经过点A (4,4),顶点B 在第一象限,且B 点有一条关于△OMN 的“关联线”是y = -x +5,求此抛物线的表达式;(3)在(2)的条件下,过点A 作AC ⊥x 轴于点C ,点E 是线段AC 上除点C 外的任意一点,连接OE ,将△OCE 沿着OE 折叠,点C 落在点C ′的位置,当点C ′在B 点关于△OMN 的平行于MN 的“关联线”上时,满足(2)中条件的抛物线沿对称轴向下平移多少距离,其顶点落在OE 上?10通州29.我们规定:平面内点A 到图形G 上各个点的距离的最小值称为该点到这个图形的最小距离d ,点A 到图形G 上各个点的距离的最大值称为该点到这个图形的最大距离D ,定义点A 到图形G 的距离跨度为R =D -d .(1)①如图1,在平面直角坐标系xOy 中,图形G 1为以O 为圆心,2为半径的圆,直接写出以下各点到图形G 1的距离跨度: A (1,0)的距离跨度 ; B (21-,23)的距离跨度 ; C (-3,-2)的距离跨度 ;②根据①中的结果,猜想到图形G 1的距离跨度为2的所有的点组成的图形的形状是 .(2)如图2,在平面直角坐标系xOy 中,图形G 2为以D (-1,0)为圆心,2为半径的圆,直线)1(-=x k y 上存在到G 2的距离跨度为2的点,求k 的取值范围。
海淀区九年级第二学期期末练习数学2015.6考生须知1.本试卷共8页,共五道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(此题共30分,每题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3 119万册,其中古籍善本约有2 000 000册.2 000 000用科学记数法能够表示为A.70.210⨯B.6210⨯C.52010⨯D.6102⨯2.假设二次根式2x-成心义,那么x的取值范围是A.0≤x B.0≥x C.2≤x D.2≥x3.我国古代把划分成十二个时段,每一个时段叫一个,古时与今时的对应关系(部份)如下表所示.天文爱好小组的小明等4位同窗从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的前后顺序随机抽签确信,小明在子时观测的概率为古时子时丑时寅时卯时今时23:00~1:00 1:00~3:00 3:00~5:00 5:00~7:00A.13B.14C.16D.1124.如图,小明将几块六边形纸片别离减掉了一部份(虚线部份),取得了一个新多边形.假设新多边形的内角和为540°,那么对应的是以下哪个图形A B C D5.如图,依照计算正方形ABCD 的面积,能够说明以下哪个等式成立A .()2222a b a ab b +=++ B. ()2222a b a ab b -=-+C. ()()22a b a b a b +-=-D. ()2a a b a ab -=-6.甲和乙入选学校的定点投篮大赛,他们天天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.那么以下对甲、乙数据描述正确的选项是 A .甲的方差比乙的方差小 B .甲的方差比乙的方差大 C .甲的平均数比乙的平均数小 D .甲的平均数比乙的平均数大7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:关于“想一想”中的问题,以下回答正确的选项是:A .依照“边边边”可知,△'''C O D ≌△COD ,因此∠'''A OB =∠AOB B .依照“边角边”可知,△'''C OD ≌△COD ,因此∠'''A O B =∠AOB C .依照“角边角”可知,△'''C O D ≌△COD ,因此∠'''A O B =∠AOB D .依照“角角边”可知,△'''C O D ≌△COD ,因此∠'''A O B =∠AOBD CB A abab ab b a8.小明家端午节推出粽子“买10赠1”的促销活动,即顾客每买粽子单价是5元/个,按此促销方式,小明至少应付钱A .45元B .50元C .55元D . 60元9.如图,点A ,B 是棱长为1的正方体的两个极点,将正方体按图中所示展开,那么在展开图中A ,B 两点间的距离为 A .2 B .5 C .22 D .1010.如右图所示,点Q 表示蜜蜂,它从点P 动身,依照着箭头所示的方向沿P →A →B →P →C →D →P 的途径匀速飞行,此飞行途径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时刻为x ,∠POQ 的大小为y ,那么以下图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(此题共18分,每题3分)11. 将函数y =x 2 −2x + 3写成()2y a x h k =-+的形式为 . 12. 点A,B 是一个反比例函数图象上A (2,5),写出一个知足条件的B 点的坐标是 .13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,那么∠BAC 的度数为 . 14.如图,在一次测绘活动中,某同窗站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 南偏东75°方向20米处,点C 在点A 南偏西15°方向20米处,那么点B 与点C 的距离为 米.东南北B CA BOADBAC PQOA15. 如图,在Rt △ABC 中,∠C =90°,∠BAC =30°, BC =1,以B 为圆心, BA 为半径画弧交CB 的延长线与点D ,那么AC 的长为 .16. 五子棋是一种两人对弈的棋类游戏,规那么是:在正方形棋盘中,由黑方先行,白方后行,连番弈子,下在棋盘横线与竖线的交叉点上,直到某一方第一在任一方向(横向、竖向或是斜着的方向)上连成五子者为胜.如图,这一部份棋盘是两个五子棋爱好者的对弈图.观看棋盘,以点O 为原点,在棋盘上成立平面直角坐标系,将每一个棋子看成一个点,假设黑子A 的坐标为(7,5),那么白子B 的坐标为______________;为了不让白方获胜,现在黑方应该下在坐标为______________的位置处.三、解答题(此题共30分,每题5分)17.计算:11tan 45+()3-+︒-. 2(1)13x x -≤+,并把它的解集在数轴上表示出来.19.如图,已知∠BAC =∠BCA ,∠BAE =∠BCD =90°,BE=BD .求证:∠E =∠D .2410x x --=,求代数式314x x x---的值.21.列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同窗相约早上八点学校见,他七点半从家跑步动身,平均每分钟比平常快了40米,结果七点五十五分就抵达了学校,求小明家到学校的距离.22.已知关于x 的方程24310x x a -+-=有两个实数根. (1)求实数a 的取值范围;(2)假设a 为正整数,求方程的根.DA四、解答题(此题共20分,每题5分),ABC △中,D 是BC 上的一点,且∠DAC=30°,过点D 作ED ⊥AD 交AC 于点E ,4AE =,2EC =.(1)求证:AD=CD ;(2)假设tan B=3,求线段AB 的长.24. 小明和小腾大学毕业后预备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合公共口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每一个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是不是适中.调查问卷如下所示:通过调查,他们取得了如下36个数据:B C B A D A C D B C B C D C D C E C C A B E A D E C B C B C E D E D D C(1)小明用表格整理了上面的调查数据,写出表格中m 和n 的值; (2)小腾依照调查数据画出了条形统计图,请你补全那个统计图;(3)依照所调查的数据,你以为他们做的腊汁肉夹馍味道适中吗? .(填“适中”或“不适中”)调查问卷 年 月你觉得这种肉夹馍的口味 (单选) A. 太咸 B. 稍咸 C. 适中 D. 稍淡 E. 太淡ECD25.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.x的个数.小明发y x=的图象(如图)的请回答:(1)当k=1时,使得原等式成立的x的个数为_______;(2)当0<k<1时,使得原等式成立的x的个数为_______;(3)当k>1时,使得原等式成立的x的个数为_______.参考小明试探问题的方式,解决问题:关于x的不等式240 ()x a ax+-<>0只有一个整数解,求a的取值范围.五、解答题(此题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy中,抛物线224y mx m mx-++=与y轴交于点A(0,3),与x轴交于点B,C (点B在点C左侧).(1)求该抛物线的表达式及点B,C的坐标;(2)抛物线的对称轴与x轴交于点D,假设直线y kx b=+通过点D和点E(1,2)--,求直线DE的表达式;(3)在(2)的条件下,已知点P(t,0),过点P作垂直于x轴的直线交抛物线于点M,交直线DE于点N,假设点M和点N中至少有一个点在x轴下方,直接写出t的取值范围.28.如图1,在△ABC中,AB=AC,∠ABC =α,D是BC边上一点,以AD为边作△ADE,使AE=AD,DAE∠+BAC∠=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,假设点F恰好落在DE上,求证:BD=CD;②如图3,假设点F恰好落在BC上,求证:BD=CF.图1 图2 图329. 如图1,在平面直角坐标系xOy内,已知点(1,0)A-,(1,1)B-,(1,0)C,(1,1)D,记线段AB为1T,线段CD为2T,点P概念:假设存在过点P的直线l与1T,2T都有公共点,那么称点P是12T T-联络点.()例如,点P 1(0,)2是12T T -联络点.(1)以下各点中,__________________是12T T -联络点(填出所有正确的序号);①(0,2);②(4,2)-;③(3,2).图1备用图(2)直接在图1中画出所有12T T -联络点所组成的区域,用阴影部份表示;(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为12T T -联络点, ①若1r =,求点M 的纵坐标; ②求r 的取值范围.海淀区九年级第二学期期末练习数学试卷答案及评分参考2015.6一、 选择题(此题共30分,每题3分)二、填空题(此题共18分,每题3分)三、解答题(此题共30分,每题5分)17.(本小题总分值5分)解:原式213+-……………………..……………………………………………………...4分4=.……………………………………………………………………………………...5分18. (本小题总分值5分) 解法一:去括号,得22133x x -+≤.…………………………………………………………………..1分 移项, 得22133x x -+≤.…………………………………………………………………..2分 归并,得 1533x -≤. ……………………………………………………………………3分系数化为1,得 5x -≥. …………………………………………………………...……4分不等式的解集在数轴上表示如下:. …………………………………………………………5分解法二:去分母,得 2233x x -+≤. …………………………………………………………………1分移项, 得 2332x x -+≤.……………………………………………………………………2分归并, 得 5x -≤. ………………………………………………………………..3分 系数化为1,得 5x -≥. …………………………………………………………………..4分不等式的解集在数轴上表示如下:. …………………………………………………………5分19.(本小题总分值5分) 证明:在△ABC 中 ∵∠BAC =∠BCA ,∴AB =CB . ……………………………………………1分 ∵∠BAE =∠BCD =90°, 在Rt △EAB 和Rt △DCB 中, ,,AB CB BE BD =⎧⎨=⎩∴Rt △EAB ≌Rt △DCB . ……………………………………4分 ∴∠E =∠D . …………………………………………5分20.(本小题总分值5分) 解:原式()()()3444x x x x x x x --=---……………………………………………………………………….1分()2344x x x x x --+=-……………………………………………..………………………………2分22444x x x x-+=-.………………………………………………………………………………3分DA∵2410x x --=,∴241x x -=.………………………………………………………………………………………4分 ∴原式1451+==.………………………………………………………………………………..5分 21. (本小题总分值5分)解:设小明家到学校的距离为x 米.……………………………………………………………………..1分由题意,得403025x x +=.………………………………………………………………………..3分解得 6000x =. ……………………………………………………………………..4分答:小明家到学校的距离为6000米. ………………………………………………………………….5分22. (本小题总分值5分)解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.……………………………………………………………………..1分 解得 53a ≤.……………………………………………………………………………………2分∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.…………………………………………………………………………………………3分∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222x x ==………………………………………………………5分四、解答题(此题共20分,每题5分) 23. (本小题总分值5分) (1)证明: ∵ED ⊥AD ,∴∠ADE =90°.在Rt △ADE 中,∠DAE=30°,AE =4, ∴60DEA =∠,122DE AE ==.………………………………………………………………1分 ∵2EC =, ∴DE EC =. ∴EDC C =∠∠. 又60,EDC C DEA +=∠=∠∠∴30C DAE =∠=∠.∴AD=DC . ………………….…………………………………………………………………2分(2)解:过点A 作AF ⊥BC 于点F ,如图. ∴∠AFC =∠AFB =90°.∵AE =4,EC =2, ∴AC =6.在Rt △AFC 中,∠AFC =90°,∠C=30°, ∴132AF AC == …………………………………………………………………………3分 在Rt △AFB 中,∠AFB =90°,tan B=3, ∴1tan AFBF B==.……….………………………………………………………………………4分 ∴2210AB AF FB =+=.……….……………………………………………………………5分24. (本小题总分值5分)(1)8m =;5n =;………………………………………………………………………………...2分 (2)………………………………………………………………...4分(3)适中. ………………………………………………………………………………….5分ECD25.(本小题总分值5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩∴△OEC ≌△OAC .………………………………………………………………………………..1分 ∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E .∴CF 与⊙O 相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF =,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=,∴tan 6AC AF F =⋅=.…………………………………………………………………………4分 ∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC∴BD=…………………………………………………………………………………….5分26. (本小题总分值5分)解:(1)当k =1时,使得原等式成立的x 的个数为 1 ;…………………………………….………1分FF(2)当0<k <1(3)当k >1时,使得原等式成立的x 解决问题:将不等式240 (x a a x +-<研究函数2(0)y x a a =+>与函数4y x=∵函数4y x=的图象通过点A (1,4),B 函数2y x =的图象通过点C (1,1),D 假设函数2(0)y x a a =+>通过点A 分结合图象可知,当03a <<时,关于x 也确实是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ……………………5分五、解答题(此题共22分,第27题7分,第28题7分,第29题8分)27. (本小题总分值7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-.∴抛物线的表达式为232y x x =-++.…………………………………………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =. 又∵点B 在点C 左侧,∴点B 的坐标为(1,0)-,点C 的坐标为(3,0).…………………………………………………...……3分(2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D ,∴点D 的坐标为(1,0).…………………………………………………………………………...………4分 ∵直线y kx b =+通过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩ 解得1,1.k b =⎧⎨=-⎩∴直线DE 的表达式为1y x =-. ………………………………………………………………………5分 (3)1t <或3t > ……………………………………………………………………………………………7分28.(本小题总分值7分)(1)∠ADE =90α︒-.…………………………………………………………………………………….…1分 (2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=. …………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC ,∴BD =CD .……………………………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =α,∴C Bα∠=∠=.∵四边形ABFE是平行四边形,∴AE∥BF, AE=BF.∴EAC Cα∠=∠=.……………………………………………………………………………………………5分由(1)知,2∠=,DAEα∴DACα∠=.…………………………………………………………………………………………………6分∴DAC C∠=∠.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.………………………………………………………………………………………………………7分∴点M的坐标为(0,1-)或(0②阴影部份关于直线12y=∵点M在y轴上,⊙M阴影部份关于y轴对称,∴⊙M与直线AC相切于O(0作ME⊥AD于E,设AD与∴MO = r,ME > r,F(0,12在Rt△AOF中,∠AOF=90∴AF,sinAOAFOAF∠==.在Rt△FEM中,∠FEM=90°,FM = FO + OM = r +12,sin sinEFM AFO∠=∠=∴sinME FM EFM=⋅∠=.r>.又∵0r>,∴02r<<.……………………………………………………………………………………8分。
海淀区九年级第二学期期末练习2018. 5学校姓名成绩考1.本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、班级和准考证号。
生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
须4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个..1,若代数式—有意义,则实数x的取值范围是x 1A . X 1 B. X 1C. X 1D. X 02.如图,圆。
的弦GH , EF , CD , AB中最短的是A . GH B. EFC. CDD. AB3. 2018年4月18日,被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为A. 5.19 10-2B. 5.19 10-3C. 519 10-5D. 519 10-64.下列图形能折叠成三棱柱的是A B8 .“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中M ,N,S,T 四位同学的单词记忆效率y 与复习的单词个数 x 的情况,则这四位同学在这次单词复习中正确默写出的单词 个数最多的是B. NC. S5 .如图,直线DE 经过点A, DE // BC ,A. 60B. 65C. 70D. 756 .西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 高为a .已知,冬至时北京的正午日光入射角 ABC 约为26.5。
,则立柱根部与圭表的冬至线的距离(即 BC 的长)约为A . a sin 26.5 B. --------tan26.5C. acos26.5_ aD. ---------cos26.7 .实数a,b,c 在数轴上的对应点的位置如图所示,若a b则下列结论中一定成立的是A. b c 0 C.B. a c 2 D. abc 0D. T、填空题(本题共16分,每小题2分)29 . 分解因式:3a 6a 310 .如图,AB 是。
北京市海淀区初三年级综合练习(二)数学试卷(答题时间: 100 分钟)一 . 认真选一选:11. 3 的相反数是()11A. 3B. 3C.3D. 32.以下计算受骗算正确的有()个()(3 102) (6108) 2 10 4() 3a2 b34a3b 2a2 b3 12(3) 3m 2· 2m36m6(4)若|a2| a 2,则 a 2个个个个3.已知关于x的方程 x 2mx 1 0 的根的鉴识式的值为5,则 m的值为()A. 3B. 3C.1D. 12x y13m4.已知方程组x2y1m满足xy0 ,则()A. m 1B. m1C.m1D.m15.中央电视台“好运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则以下:在 20 个商标牌中,有 5 个商标牌的反面注明必定的奖金额,其他商标牌的反面是一张哭脸,若翻到哭脸,就不得奖,参加这个游戏的观众有三次翻牌机遇,(翻过的牌不可以再翻),某观众前两次翻牌均获取若干奖金,那么他第三次翻牌获奖的概率是()1113A. 4B. 5C. 6D. 20二. 精心填一填6.在两个齐心圆中,大圆的弦 AB 切小圆于点 C,若 AB=8cm ,OC=3cm,则大圆的半径为 _________m。
7.若二次三项式kx 2mx9 是一个完整平方式,则k 与 m的关系是_____________。
8.关于实数a,b,有a b a bab1,则(( 2))[5718, a b( 4)]7的值是29______________。
9.初三(1)班甲、乙两组各选 10 名同学进行数学抢答赛,共有 10 道选择题,答对 8 题(含 8 题)以上为优秀,各组选手成绩统计以下:答对题数5678910甲组人数101521乙组人数004321均匀数中位数众数方差优秀率甲组88880%乙组10. 将矩形纸片如图示沿EF 折叠,若EFB55,则AED '=____________o。
海淀九年级第二学期期末练习数学答案2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠12.答案不唯一,例如(0,0)13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.原式 =23--------------------------------------------------------------------------4分 =5 --------------------------------------------------------------------------5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ----------------------------------------------------------------- 1分解得2x ≥; -----------------------------------------------------------------2分由不等式①,得1233x x +>-,------------------------------------------------------------------ 3分解得4x <;-------------------------------------------------------------------4分∴ 原不等式组的解集是24x ≤<.--------------------------------------------------------------- 5分19.连接AC ,则△ABC ≌ △ADC .----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,----------------------------4分 ∴△ABC ≌ △ADC .----------------------------5分 20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=.------------------------------------------------------------------------------1分∴4m =.------------------------------------------------------------------------------2分∴()2428m m --+DCBA()244248=--⨯+ ------------------------------------------------------------------------------ 4分0=.-------------------------------------------------------------------------------- 5分21.解:(1)∵直线3l y mx =-:过点A (2,0),∴023m =-. ------------------------------------------------------------------------------ 1分 ∴32m =. ------------------------------------------------------------------------------ 2分 ∴直线l 的表达式为332y x =-.-----------------------------------------------------3分 (2)n =32-或92.------------------------------------------------------------------------- 5分22.(1)C ; ---------------------------------------------------------------------------------------------- 2分 (2)① B ; ---------------------------------------------------------------------------------------------- 4分 ② 100. ---------------------------------------------------------------------------------------------- 5分 23.(1)证明:∵EF 垂直平分AC ,∴F A =FC ,EA =EC ,----------------------------------------------------------------1分 ∵ AF ∥BC , ∴∠1=∠2. ∵AE =CE , ∴∠2=∠3. ∴ ∠1=∠3. ∵EF ⊥AC ,∴∠ADF =∠ADE =90°.∵ ∠1+∠4=90°,∠3+∠5=90°. ∴∠4=∠5.∴ AF =AE .----------------------------------------------------------------2分 ∴AF =FC =CE =EA .∴四边形AECF 是菱形.----------------------------------------------------------------3分 (2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE , ∴四边形ABEF 为平行四边形. ∵AB =10,∴FE =AB =10.-----------------------------------------------------------------------------------4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形----------------------------------------------------------5分54321F E DCB A24.(1)北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表(单位:万人)北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计图(单位:万人)---------------------------------- 2分(2)35.1;-------------------------------------------------------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可.--------------------- 5分25.(1)证明:∵D 为 AC的中点,∴∠CBA =2∠CBE .------------------------------------ 1分 ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠1+∠CBA =90°. ∴∠1+2∠CBE =90°. ∵AP 是⊙O 的切线,∴∠P AB =∠1+∠P AC =90°.----------------------------- 2分∴∠P AC =2∠CBE .--------------------------------------3分(2)思路:①连接AD ,由D 是 AC的中点,∠2=∠CBE , 由∠ACB =∠P AB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE ,得PE =2PD =2m ,∠5=12∠P AC =∠CBE =α-------- 4分③在Rt △P AD 中,由PD =m ,∠5=α,可求P A 的长; ④在Rt △P AB 中,由P A 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长.------------------- 5分A26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等;-------------------------------2分 (2)答案不唯一,符合题意即可;-----------------------------------------------------------------4分 (3)所写的性质与图象相符即可.----------------------------------------------------------------- 5分 27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--.------------------------------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). --------------------------------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). ------------------------------------------- 4分 ∵12CD AB =, ∴CD =2.∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). --------------------------------------------------5分(3)11t -≤≤.------------------------------------------------------------------------------------ 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. --------------------------------------1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点, ∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ----------------------------------------2分(2)①画出一种即可. ----------------------------------------------------------------------------------3分MPN ECDB AFEAPN ECB A②证明:想法1:连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠1=∠APE.--------------------------------- 4分∵∠ADC=90°,E为AC中点,∴12AE DE CE AC===.同理可证12AE NE CE AC===.∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上.-----5分∴∠1=2∠MAD.------------------------------------------ 6分∴∠APE=2∠MAD.------------------------------------------- 7分想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90°.∵E为AC中点,∴12AE NE AC==.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.--------------------- 4分∴∠NEC=∠ANE+∠NAC=2α+2β.------------------------ 5分∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC-∠BAC=2α.--------------------------------- 6分∴∠APE=2∠MAD.--------------------------------------------- 7分想法3:在NE上取点Q,使∠NAQ=2∠MAD,连接AQ,∴∠1=∠2.∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∴∠BAD-∠1=∠CAD-∠2,即∠3=∠4.----------------------------------------- 4分∴∠3+∠NAQ=∠4+∠NAQ,即∠P AQ=∠EAN.∵CN⊥AM,ED C BAPMN4321QNMPABCDE∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN .---------------------------------------------------------------- 5分 ∴∠P AQ =∠ANE . ∵∠AQP =∠AQP ,∴△P AQ ∽△ANQ .---------------------------------------------------------------- 6分 ∴∠APE =∠NAQ =2∠MAD .-------------------------------------------------------- 7分29.(1)①R ,S ;----------------------------------------------------------------------------------------------- 2分 ②(4-,0)或(4,0);------------------------------------------------------------------------ 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-). 点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上. ∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤.--------------------------------------------------------------------------------------- 6分 ②m ≤1-或m ≥1.------------------------------------------------------------------------------------ 8分x。
此文档下载后即可编辑北京市各区2017年中考数学二模试卷分类汇编---代数几何综合1昌平29.在平面直角坐标系xOy 中,给出如下定义:对于⊙C 及⊙C 外一点P ,M ,N 是⊙C 上两点,当∠MPN 最大时,称∠MPN 为点P 关于⊙C 的“视角”. (1)如图,⊙O 的半径为1,○1已知点A (0,2),画出点A 关于⊙O 的“视角”; 若点P 在直线x = 2上,则点P 关于⊙O 的最大“视角”的度数 ;○2在第一象限内有一点B (m ,m ),点B 关于⊙O 的“视角”为60°,求点B 的坐标; ○3若点P在直线23y x =-+上,且点P 关于⊙O 的“视角”大于60°,求点P 的横坐标P x 的取值范围.(2)⊙C 的圆心在x 轴上,半径为1,点E 的坐标为(0,1),点F的坐标为(0,-1),若线段EF 上所有的点关于⊙C 的“视角”都小于120°,直接写出点C 的横坐标C x 的取值范围.xx2朝阳29. 在平面直角坐标系xOy 中,对于半径为r (r >0)的⊙O 和点P ,给出如下定义: 若r ≤PO ≤32r ,则称P 为⊙O 的“近外点”.(1)当⊙O 的半径为2时,点A (4,0), B (52,0),C (0, 3),D (1,-1)中,⊙O 的“近外点”是 ;y –1–2123–1–2123O y –1–2123–1–2123O(2)若点E(3,4)是⊙O的“近外点”,求⊙O的半径r的取值范围;(3)当⊙O的半径为2时,直线3=+(b≠0)与x轴交于y x b点M,与y轴交于点N,若线段MN上存在⊙O的“近外点”,直接写出b的取值范围.3东城29.在平面直角坐标系xOy 中,点P 与点Q 不重合.以点P 为圆心作经过点Q 的圆,则称该圆为点P ,Q 的“相关圆”. (1)已知点P 的坐标为(2,0),①若点Q 的坐标为(0,1),求点P ,Q 的“相关圆”的面积; ②若点Q 的坐标为(3,n ),且点P ,Q,求n 的值.()(2)已知△ABC 为等边三角形,点A 和点0),点C 在y 轴正半轴上.若点P ,Q 的“相关圆”恰好是△ABC的内切圆且点Q 在直线y =2x 上,求点Q 的坐标.()(3)已知△ABC 三个顶点的坐标为:A (3-,0),B (92,0),C (0,4),点P 的坐标为(0,32),点Q 的坐标为(m ,32).若点P ,Q 的“相关圆”与△ABC 的三边中至少一边存在公共点,直接写出m 的取值范围.。
海淀区九年级第二学期期末练习数 学2011。
061. 的绝对值是( ) A 。
B 。
C.D 。
2. 下列运算正确的是( ) A 。
B. C 。
D.3。
如图,中,,过点C 的直线DF 与的平分线AE 平行,若,则( ) A 。
B 。
C 。
D 。
4. 已知关于x 的一元二次方程有实数根,则m 的取值范围是( ) A.B.C.D 。
5. 在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。
从这6张卡片随机地抽取一张卡片,则这张卡片上的图形是中心对称图形的概率是( ) A 。
B 。
C.D.6. 两个半径不等的圆相切,圆心距为6cm ,且大圆半径是小圆半径的2倍,则小圆的半径为( )A. B. C. 或 D. 或7. 农科所连续四年在两块环境相同的实验田里种植甲、乙两种不同品种的小麦.亩产量(单位:公斤)统计如下表。
设甲、乙品种四年亩产量的平均数依次为,,四年亩产量的方差依次为,,则下列关系中完全正确的是( ) A 。
,B 。
,C 。
,D. ,8。
一个不透明的小方体的的6个面上分别写有数学1,2,3,4,5,6,任意两对面上所写的两个数字之和为7。
将这样的几个小方体按照相接触的两个面上的数字之和为8摆放成一个几何体,这个几何体的三视图如右图所示,已知图中所标注的是部分面上所见的数字,则★所代表的数是( ) A 。
B.C. D.9。
一个正n边形的每个内角都是,则_______。
10. 将抛物线向左平移3个单位,再向下平移2个单位后,所得抛物线的解析式为___________。
11. 如图,在扇形中,,C为OA的中点,点D在上,且,则______.12。
某种数字化的信息传输中,先将信息转化为数学0和1组成的数字串,并对数字串进行了加密后再传输。
现采用一种简单的加密方法:将原有的每个1都变成10,原有的每个0变成01.我们用表示没有经过加密的数字串。
这样对进行一次加密就得到一个新的数字串,对再进行一次加密又得到一个新的数学串,依此类推,…,例如::10,则:1001。
()★★★★★765FED海淀区九年级第二学期期末练习数 学 2017.6一、选择题(本题共30分,每小题3分)1.如图,用圆规比较两条线段A B ''和AB 的长短,其中正确的是 A .A B AB ''> B .A B AB ''= C .A B AB ''< D . 不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是A B C D 3.下列计算正确的是A .23a a a -=B .()236a a =C=D .632a a a =÷4.如图, ABCD 中,AD =5,AB =3,∠BAD 的平分 线AE 交BC 于E 点,则EC 的长为 A .4 B .3 C .2D .5.共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP ,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是 A .F 6 B .E 6 C .D 5D .F 76.在单词happy 中随机选择一个字母,选到字母为p 的概率是 A .15B .25C .35D .45B E CA D7.如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC 的长为 A .10B .8C .6D .48.在下列函数中,其图象与x 轴没有交点的是 A .2y x = B .31y x =-+ C .2y x =D .1y x=9.如图,在等边三角形三个顶点和中心处的每个“○”中各填有一个式子, 若图中任意三个“○”中的式子之和均相等,则a 的值为 A .3 B .2 C .1D .010.利用量角器可以制作“锐角正弦值速查卡”.制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用“锐角正弦值速查卡”可以读出相应锐角正弦的近似值.例如:sin 600.87︒≈,sin 450.71︒=.下列角度中正弦值最接近0.94的是A .70°B .50°C .40°D .30°二、填空题(本题共18分,每小题3分) 11.若分式12x -有意义,则x 的取值范围是 .12.如图,在平面直角坐标系xOy 中,A (3,4)为⊙O 上一点,B 为⊙O内一点,请写出一个符合要求的点B 的坐标. 13.计算:111mm m+--= .14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km的几组对应值如下表:若每向上攀登1 km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为 2.5km 时,登山队所在位置的气温约为℃.15.下图是测量玻璃管内径的示意图,点D 正对“10mm ”刻度线,点A 正对“30mm ”刻度线,DE∥AB .若量得AB 的长为6mm ,则内径DE 的长为mm .16.在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是,你的理由是 .三、解答题(本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分) 1722tan 60-°113-+⎛⎫⎪⎝⎭.18.解不等式组:()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩,.甲乙19.如图,在四边形ABCD 中,AB =AD ,CB =CD .请你添加一条线把它分成两个全等三角形,并给出证明.20.若关于x 的方程412m xx-=的根是2,求()2428m m --+的值.21.如图,在平面直角坐标系xOy 中,过点A (2,0)的直线l :3y mx =-与y 轴交于点B . (1)求直线l 的表达式;(2)若点C 是直线l 与双曲线ny x=的一个公共点,AB =2AC ,直接写出n 的值.DCA BDB E CA F22.为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查. (1)为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理的是; A .对某小区的住户进行问卷调查 B .对某班的全体同学进行问卷调查C .在市里的不同地铁站,对进出地铁的人进行问卷调查(2)调查小组随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示./元频数/① 根据图中信息,估计平均每人乘坐地铁的月均花费的范围是元; A .20—60 B .60—120 C .120—180②为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.根据图中信息,乘坐地铁的月均花费达到元的人可以享受折扣.23.如图,在△ABC 中,∠BAC =90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E 点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)若AB =10,∠ACB =30°,求菱形AECF 的面积.24.阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了“十三五”良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约亿元,你的预估理由是.25.如图,AB是⊙O的直径,BC为弦,D为 AC的中点,AC,BD相交于E点,过点A作⊙O的切线交BD的延长线于P点.Array(1)求证:∠P AC=2∠CBE;(2)若PD=m,∠CBE=α,请写出求线段CE长的思路.26.已知y是x的函数,该函数的图象经过A(1,6),B(3,2)两点.(1)请写出一个符合要求的函数表达式;x≥,该函数无最小值.(2)若该函数的图象还经过点C(4,3),自变量x的取值范围是0①如图,在给定的坐标系xOy中,画出一.个.符合条件的函数的图象;x 对应的函数值y约为;②根据①中画出的函数图象,写出6(3)写出(2)中函数的一条性质(题目中已给出的除外).27.抛物线2224y x mx m =-+-与x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,抛物线的对称轴为x =1. (1)求抛物线的表达式;(2)若CD ∥x 轴,点D 在点C 的左侧,12CD AB =,求点D 的坐标; (3)在(2)的条件下,将抛物线在直线x =t 右侧的部分沿直线x =t 翻折后的图形记为G ,若图形G 与线段CD 有公共点,请直接写出t 的取值范围.28.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.(1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数; (2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB 交于P 点. ①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α. 想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)EFA图1 图229.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q 到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.(1)已知点A 的坐标为(3-,1),①在点R (0,4),S (2,2),T (2,3-)中,为点A 的同族点的是; ②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为; (2)直线l :3y x =-,与x轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x n =上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0N ,使得M ,N 两点为同族点,直接写出m 的取值范围.海淀九年级第二学期期末练习数学答案2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠12.答案不唯一,例如(0,0)13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.原式 =23--------------------------------------------------------------------------4分 =5 --------------------------------------------------------------------------5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ----------------------------------------------------------------- 1分解得2x ≥; -----------------------------------------------------------------2分由不等式①,得1233x x +>-,------------------------------------------------------------------ 3分解得4x <;-------------------------------------------------------------------4分∴ 原不等式组的解集是24x ≤<.--------------------------------------------------------------- 5分19.连接AC ,则△ABC ≌ △ADC .----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,----------------------------4分 ∴△ABC ≌ △ADC .----------------------------5分 20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=.------------------------------------------------------------------------------1分∴4m =.------------------------------------------------------------------------------2分DCBA∴()2428m m --+()244248=--⨯+ ------------------------------------------------------------------------------ 4分0=.-------------------------------------------------------------------------------- 5分21.解:(1)∵直线3l y mx =-:过点A (2,0),∴023m =-. ------------------------------------------------------------------------------ 1分 ∴32m =. ------------------------------------------------------------------------------ 2分 ∴直线l 的表达式为332y x =-.-----------------------------------------------------3分 (2)n =32-或92.------------------------------------------------------------------------- 5分22.(1)C ; ---------------------------------------------------------------------------------------------- 2分 (2)① B ; ---------------------------------------------------------------------------------------------- 4分 ② 100. ---------------------------------------------------------------------------------------------- 5分 23.(1)证明:∵EF 垂直平分AC ,∴FA =FC ,EA =EC ,----------------------------------------------------------------1分 ∵ AF ∥BC ,∴∠1=∠2.∵AE =CE ,∴∠2=∠3.∴ ∠1=∠3. ∵EF ⊥AC ,∴∠ADF =∠ADE =90°.∵ ∠1+∠4=90°,∠3+∠5=90°.∴∠4=∠5.∴ AF =AE .----------------------------------------------------------------2分 ∴AF =FC =CE =EA .∴四边形AECF 是菱形.----------------------------------------------------------------3分 (2)解:∵∠BAC =∠ADF =90°,∴AB ∥FE . ∵AF ∥BE ,∴四边形ABEF 为平行四边形. ∵AB =10,∴FE =AB =10.-----------------------------------------------------------------------------------4分 ∵∠ACB =30°,∴tan AB AC ACB==∠∴12AECF S AC FE ⋅==菱形----------------------------------------------------------5分24.(1)北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表(单位:万人)54321F E DCBA北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计图(单位:万人)---------------------------------- 2分(2)35.1;-------------------------------------------------------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可.--------------------- 5分25.(1)证明:∵D 为 AC的中点,∴∠CBA =2∠CBE .------------------------------------ 1分 ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠1+∠CBA =90°.∴∠1+2∠CBE =90°. ∵AP 是⊙O 的切线,∴∠PAB =∠1+∠PAC =90°.----------------------------- 2分∴∠PAC =2∠CBE .--------------------------------------3分(2)思路:①连接AD ,由D 是 AC的中点,∠2=∠CBE , 由∠ACB =∠PAB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE , 得PE =2PD =2m ,∠5=12∠PAC =∠CBE =α-------- 4分③在Rt △PAD 中,由PD =m ,∠5=α,可求PA 的长; ④在Rt △PAB 中,由PA 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长.------------------- 5分 26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等;------ -----------2分 (2)答案不唯一,符合题意即可;-----------------------------------------------------------------4分 (3)所写的性质与图象相符即可.----------------------------------------------------------------- 5分A27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--.------------------------------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). ------------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). - ------------------ 4分 ∵12CD AB =, ∴CD =2.∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). ------------5分(3)11t -≤≤.------- ------------------------- 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. --------------------------------------1分 ∵CF ⊥AB ,∴∠AFC =90°. ∵E 为AC 中点, ∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ----------------------------------------2分(2)①MPN ECDB A画出一种即可. - --------------------------------------------3分 ②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.FEAM PN ECDBA∵E为AC中点,∴ED∥AB,∴∠1=∠APE.--------------------------------- 4分∵∠ADC=90°,E为AC中点,∴12AE DE CE AC===.同理可证12AE NE CE AC===.∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上.-----5分∴∠1=2∠MAD.------------------------------------------ 6分∴∠APE=2∠MAD.------------------------------------------- 7分想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90°.∵E为AC中点,∴12AE NE AC==.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.--------------------- 4分∴∠NEC=∠ANE+∠NAC=2α+2β.------------------------ 5分∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC-∠BAC=2α.--------------------------------- 6分∴∠APE=2∠MAD.--------------------------------------------- 7分想法3:在NE上取点Q,使∠NAQ=2∠MAD,连接AQ,∴∠1=∠2.∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∴∠BAD-∠1=∠CAD-∠2,即∠3=∠4.----------------------------------------- 4分∴∠3+∠NAQ=∠4+∠NAQ,即∠PAQ=∠EAN.∵CN⊥AM,∴∠ANC=90°.∵E为AC中点,∴12AE NE AC==.∴∠ANE=∠EAN.---------------------------------------------------------------- 5分∴∠PAQ=∠ANE.∵∠AQP=∠AQP,∴△PAQ∽△ANQ.---------------------------------------------------------------- 6分∴∠APE=∠NAQ=2∠MAD.------- ------------------ 7分ED C BAPMN4321QNMPABCDE29.(1)①R ,S ;----------------------------------------------------------------------------------------------- 2分 ②(4-,0)或(4,0);------------------------------------------------------------------------ 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-). 点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤.--------------------- -------------- 6分 ②m ≤1-或m ≥1.----------- --------------------- 8分x。