2018年高考数学江苏专版三维二轮专题复习训练:3个附加题综合仿真练(三) Word版含解析
- 格式:doc
- 大小:68.50 KB
- 文档页数:5
3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD , 又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换] 已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b cd ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3), 所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.②由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1221. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,已知直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)化为普通方程为y 2=8x .将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n(n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2. 法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x,将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n (n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝ ⎛⎭⎪⎫92-122+-2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x ) =3x +6+14-x=3×x +2+1×14-x , 由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值.解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝ ⎛⎭⎪⎫0,22,0,D ⎝ ⎛⎭⎪⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝ ⎛⎭⎪⎫-22,22,-1,则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12, 故AB 与MD 所成角为60°.(2)OP ―→=⎝ ⎛⎭⎪⎫0,22,-2,OD ―→=⎝ ⎛⎭⎪⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎪⎨⎪⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n) ,B n =⎝⎛⎭⎪⎫a +b 2n .(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝ ⎛⎭⎪⎫a +b 22=112(a -b )2>0.(2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1; 当n ≥3时,A n =1n +1·a n +1-bn +1a -b,B n =⎝⎛⎭⎪⎫a +b 2n ,令a +b =x ,a -b =y ,且x >0,y >0,于是A n =1n +1·⎝ ⎛⎭⎪⎫x +y 2n +1-⎝ ⎛⎭⎪⎫x -y 2n +1y=12n +1n +y[(x +y )n +1-(x -y )n +1],B n =⎝ ⎛⎭⎪⎫x 2n,因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x ny +2C 3n +1·xn -2y 3+…)≥2C 1n +1x ny ,所以A n ≥12n +1n +y·2C 1n +1x ny =x n 2n =⎝ ⎛⎭⎪⎫x 2n=B n .。
3个附加题专项强化练(一) 选修4系列(理科)A 组1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,已知圆O 的直径AB =4,C 为AO 的中点,弦DE 过点C 且满足CE =2CD ,求△OCE 的面积.解:设CD =x ,则CE =2x . 因为CA =1,CB =3,由相交弦定理,得CA ·CB =CD ·CE , 所以1×3=2x 2,解得x =62. 取DE 的中点H ,连结OH , 则OH ⊥DE .因为EH =32CD =364,所以OH 2=OE 2-EH 2=22-⎝⎛⎭⎫3642=58,所以OH =104.又因为CE =2x =6,所以△OCE 的面积S =12OH ·CE =12×104×6=154.B .[选修4-2:矩阵与变换]已知a ,b 是实数,如果矩阵A =⎣⎢⎡⎦⎥⎤3 a b -2所对应的变换T 把点(2,3)变成点(3,4).(1)求a ,b 的值;(2)若矩阵A 的逆矩阵为B ,求B 2.解:(1)由题意,得⎣⎢⎡⎦⎥⎤3 a b -2⎣⎢⎡⎦⎥⎤23=⎣⎢⎡⎦⎥⎤34,即⎩⎪⎨⎪⎧ 6+3a =3,2b -6=4.解得⎩⎪⎨⎪⎧a =-1,b =5.(2)由(1),得A =⎣⎢⎡⎦⎥⎤3 -15 -2.由矩阵的逆矩阵公式得B =⎣⎢⎢⎡⎦⎥⎥⎤-2-11-1-5-1 3-1=⎣⎢⎡⎦⎥⎤2-15 -3.所以B 2=⎣⎢⎡⎦⎥⎤2 -15 -3⎣⎢⎡⎦⎥⎤2 -15 -3=⎣⎢⎡⎦⎥⎤-11-54.C .[选修4-4:坐标系与参数方程]已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ2=x 2+y 2,且⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得圆O 1的直角坐标方程为x 2+y 2=4,由ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 得ρ2-2ρ(cos θ+sin θ)=2, x 2+y 2-2(x +y )=2,故圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0.(2)联立方程⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-2x -2y -2=0,两式相减,得经过两圆交点的直线方程为x +y-1=0,该直线的极坐标方程为ρcos θ+ρsin θ-1=0. D .[选修4-5:不等式选讲] 解不等式:|x -2|+x |x +2|>2.解:当x ≤-2时,不等式化为(2-x )+x (-x -2)>2,即-x 2-3x >0,解得-3<x ≤-2;当-2<x <2时,不等式化为(2-x )+x (x +2)>2, 即x 2+x >0,解得-2<x <-1或0<x <2;当x ≥2时,不等式化为(x -2)+x (x +2)>2,即x 2+3x -4>0,解得x ≥2. 所以原不等式的解集为{x |-3<x <-1或x >0}. 2.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,圆O 是△ABC 的外接圆,点D 是劣弧BC 的中点,连结AD并延长,与以C 为切点的切线交于点P ,求证:PC PA =BDAC.证明:连结CD ,因为CP 为圆O 的切线, 所以∠PCD =∠PAC ,又∠P 是公共角, 所以△PCD ∽△PAC ,所以PC PA =CD AC,因为点D 是劣弧BC 的中点, 所以CD =BD ,即PC PA =BDAC . B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤a 32 d ,若A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤84,求矩阵A 的特征值. 解:因为A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a 32 d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ a +62+2d =⎣⎢⎡⎦⎥⎤84,所以⎩⎪⎨⎪⎧ a +6=8,2+2d =4, 解得⎩⎪⎨⎪⎧a =2,d =1.所以A =⎣⎢⎡⎦⎥⎤2 32 1. 所以矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=(λ-2)(λ-1)-6=λ2-3λ-4,令f (λ)=0,解得矩阵A 的特征值为λ1=-1,λ2=4. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l :⎩⎪⎨⎪⎧ x =t +1y =7-2t (t 为参数)与椭圆C :⎩⎪⎨⎪⎧x =a cos θy =3sin θ(θ为参数,a >0)的一条准线的交点位于y 轴上,求实数a 的值.解:由题意,直线l 的普通方程为2x +y =9, 椭圆C 的普通方程为y 29+x 2a 2=1(0<a <3),椭圆C 的准线方程为y =±99-a 2, 故99-a 2=9,解得a =22(负值舍去). D .[选修4-5:不等式选讲]求函数y =3sin x +22+2cos 2x 的最大值. 解:y =3sin x +22+2cos 2x =3sin x +4cos 2 x , 由柯西不等式得y 2=(3sin x +4cos 2x )2≤(32+42)(sin 2x +cos 2x )=25,当且仅当4sin x =3|cos x |,即sin x =35,|cos x |=45时等号成立,所以y max =5.所以函数y =3sin x +22+2cos 2x 的最大值为5. 3.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,△ABC 的顶点A ,C 在圆O 上,B 在圆外,线段AB 与圆O 交于点M.(1)若BC 是圆O 的切线,且AB =8,BC =4,求线段AM 的长度; (2)若线段BC 与圆O 交于另一点N ,且AB =2AC ,求证:BN =2MN . 解:(1)设AM =t ,则BM =8-t (0<t <8), 由切割线定理可得BC 2=BM ·BA .∴16=8(8-t ),解得t =6,即线段AM 的长度为6. (2)证明:由题意,∠A =∠MNB ,∠B =∠B , ∴△BMN ∽△BCA ,∴BN BA =MNCA, ∵AB =2AC ,∴BN =2MN . B .[选修4-2:矩阵与变换]已知变换T 把平面上的点(3,-4),(5,0)分别变换成(2,-1),(-1,2),试求变换T 对应的矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,由题意得,⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤3 5-4 0=⎣⎢⎡⎦⎥⎤ 2 -1-1 2, ∴⎩⎪⎨⎪⎧3a -4b =2,5a =-1,3c -4d =-1,5c =2,解得⎩⎪⎨⎪⎧a =-15,b =-1320,c =25,d =1120,即M =⎣⎢⎡⎦⎥⎤-15 -132025 1120.C .[选修4-4:坐标系与参数方程]在极坐标系中,求直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截得的弦长.解:法一:在ρ=4sin θ中,令θ=π4,得ρ=4sin π4=22,即所求弦长为2 2.法二:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系.直线θ=π4(ρ∈R)的直角坐标方程为y =x ,①曲线ρ=4sin θ的直角坐标方程为x 2+y 2-4y =0,②由①②得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,故直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截弦长的端点坐标分别为(0,0),(2,2),所以直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截得的弦长为22+22=2 2.D .[选修4-5:不等式选讲]已知a ≠b ,求证:a 4+6a 2b 2+b 4>4ab (a 2+b 2). 证明:a 4+6a 2b 2+b 4-4ab (a 2+b 2) =a 4+6a 2b 2+b 4-4a 3b -4b 3a =a 4-4a 3b +6a 2b 2-4b 3a +b 4 =(a -b )4,∵a ≠b ,∴a 4+6a 2b 2+b 4-4ab (a 2+b 2)>0, ∴a 4+6a 2b 2+b 4>4ab (a 2+b 2).4.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,弦CA ,BD 的延长线相交于点E ,EF 垂直BA 的延长线于点F ,连结FD .求证:∠DEA =∠DFA .证明:连结AD ,∵AB 是圆O 的直径,∴∠ADB =90°, ∴∠ADE =90°, 又EF ⊥FB , ∴∠AFE =90°, ∴A ,F ,E ,D 四点共圆, ∴∠DEA =∠DFA .B .[选修4-2:矩阵与变换] 已知矩阵M =⎣⎢⎡⎦⎥⎤1 a 3 b 的一个特征值λ=-1及对应的特征向量e =⎣⎢⎡⎦⎥⎤1-1,求矩阵M 的逆矩阵.解:由题知,⎣⎢⎡⎦⎥⎤1a 3b ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤1-a 3-b =-1·⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1 1,即⎩⎪⎨⎪⎧1-a =-1,3-b =1,解得⎩⎪⎨⎪⎧a =2,b =2,M =⎣⎢⎡⎦⎥⎤1 23 2.∴det(M )=⎪⎪⎪⎪⎪⎪1 23 2=1×2-2×3=-4, ∴M-1=⎣⎢⎡⎦⎥⎤-12 1234 -14.C .[选修4-4:坐标系与参数方程]已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t 2y =t (t 为参数),曲线C 的极坐标方程为ρ=3cos θ,试判断直线l 与曲线C 的位置关系.解:由题意知,直线l 的普通方程为2x -y -2=0,由ρ2=x 2+y 2,且⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得曲线C 的直角坐标方程为⎝⎛⎭⎫x -322+y 2=94,它表示圆. 由圆心⎝⎛⎭⎫32,0到直线l 的距离d =15=55<32,得直线l 与曲线C 相交. D .[选修4-5:不等式选讲]设x ,y ,z 均为正实数,且xyz =1,求证:1x 3y +1y 3z +1z 3x ≥xy +yz +zx .证明:∵x ,y ,z 均为正实数,且xyz =1, ∴1x 3y +1y 3z +1z 3x =z x 2+x y 2+y z2, ∴由柯西不等式可得⎝⎛⎭⎫z x 2+x y 2+y z 2(xy +yz +zx )≥⎝⎛⎭⎫xyz x+xyz y +xyz z 2=⎝⎛⎭⎫xyz x+xyz y +xyz z 2=(xy +yz +zx )2. ∴1x 3y +1y 3z +1z 3x≥xy +yz +zx . B 组1.本题包括A 、B 、C 、D 四个小题,请任选二个作答A .[选修4-1:几何证明选讲]如图,已知△ABC 内接于⊙O ,连结AO 并延长交⊙O 于点D ,∠ACB =∠ADC .求证:AD ·BC =2AC ·CD .证明:∵∠ACB =∠ADC ,AD 是⊙O 的直径, ∴AD 垂直平分BC ,设垂足为E ,∵∠ACB =∠EDC ,∠ACD =∠CED , ∴△ACD ∽△CED , ∴AD CD =AC CE, ∴AD ·12BC =AC ·CD ,∴AD ·BC =2AC ·CD . B .[选修4-2:矩阵与变换]在平面直角坐标系xOy 中,设点A (-1,2)在矩阵M =⎣⎢⎡⎦⎥⎤-1 0 01对应的变换作用下得到点A ′,将点B (3,4)绕点A ′逆时针旋转90°得到点B ′,求点B ′的坐标.解:设B ′(x ,y ),依题意,由⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤12,得A ′(1,2).则A ′B ――→=(2,2),A ′B ′――→=(x -1,y -2).记旋转矩阵N =⎣⎢⎡⎦⎥⎤0 -11 0,则⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤x -1y -2,即⎣⎢⎡⎦⎥⎤-2 2=⎣⎢⎡⎦⎥⎤x -1y -2, 得⎩⎪⎨⎪⎧x =-1,y =4. 所以点B ′的坐标为(-1,4). C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离 d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45. 当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值455.D .[选修4-5:不等式选讲]已知a ,b ,c ∈R,4a 2+b 2+2c 2=4,求2a +b +c 的最大值.解:由柯西不等式,得[(2a )2+b 2+(2c )2]·⎣⎡⎦⎤12+12+⎝⎛⎭⎫122≥(2a +b +c )2.因为4a 2+b 2+2c 2=4,所以(2a +b +c )2≤10. 所以-10≤2a +b +c ≤10,所以2a +b +c 的最大值为10,当且仅当a =105,b =2105,c =105时等号成立. 2.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E ,过E 作BA 的延长线的垂线,垂足为F .求证:AB 2=BE ·BD -AE ·AC .证明:如图,连结AD ,因为AB 为圆O 的直径,所以AD ⊥BD .又EF ⊥AB ,则A ,D ,E ,F 四点共圆, 所以BD ·BE =BA ·BF .连结BC ,则∠AFE =∠ACB ,∠BAC =∠EAF , 得△ABC ∽△AEF , 所以AB AE =ACAF ,即AB ·AF =AE ·AC ,所以BE ·BD -AE ·AC =BA ·BF -AB ·AF =AB ·(BF -AF )=AB 2. B .[选修4-2:矩阵与变换]已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4).(1)求矩阵M ;(2)求矩阵M 的另一个特征值.解:(1)设M =⎣⎢⎡⎦⎥⎤ab cd ,由题意,M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =8⎣⎢⎡⎦⎥⎤11, M ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-a +2b -c +2d =⎣⎢⎡⎦⎥⎤-24,∴⎩⎪⎨⎪⎧ a +b =8,c +d =8,-a +2b =-2,-c +2d =4,解得⎩⎪⎨⎪⎧a =6,b =2,c =4,d =4,即M =⎣⎢⎡⎦⎥⎤6244.(2)令特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-6 -2-4 λ-4=(λ-6)·(λ-4)-8=0, 解得λ1=8,λ2=2.矩阵M 的另一个特征值为2. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2sin α,y =1-cos 2α(α为参数).求直线l 与曲线C 的交点P 的直角坐标.解:由题意得,直线l 的直角坐标方程为y =3x ,① 曲线C 的普通方程为y =12x 2(x ∈[-2,2]),②联立①②解方程组得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎨⎧x =23,y =6(舍去). 故P 点的直角坐标为(0,0). D .[选修4-5:不等式选讲]已知a ,b ,c 为正实数,求证:b 2a +c 2b +a 2c ≥a +b +c . 证明:法一:(基本不等式)∵a +b 2a ≥2b ,b +c 2b ≥2c ,c +a 2c ≥2a ,∴a +b 2a +b +c 2b +c +a 2c ≥2a +2b +2c , ∴b 2a +c 2b +a 2c ≥a +b +c . 法二:(柯西不等式)由柯西不等式得(a +b +c )⎝⎛⎭⎫b 2a +c 2b +a 2c ≥(b +c +a )2,∴b 2a +c 2b +a 2c ≥a +b +c . 3.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,已知AB 为圆O 的一条弦,点P 为弧AB 的中点,过点P 任作两条弦PC ,PD 分别交AB 于点E ,F .求证:PE ·PC =PF ·PD.证明:连结PA ,PB ,CD ,BC . 因为点P 为弧AB 的中点, 所以∠PAB =∠PBA . 又因为∠PAB =∠PCB ,所以∠PCB =∠PBA . 又∠DCB =∠DPB ,所以∠PFE =∠PBA +∠DPB =∠PCB +∠DCB =∠PCD , 所以E ,F ,D ,C 四点共圆. 所以PE ·PC =PF ·PD . B .[选修4-2:矩阵与变换]已知曲线C :x 2+2xy +2y 2=1,矩阵A =⎣⎢⎡⎦⎥⎤1 21 0所对应的变换T 把曲线C 变换成曲线C 1,求曲线C 1的方程.解:设曲线C 上的任意一点P (x ,y ),点P 在矩阵A =⎣⎢⎡⎦⎥⎤1 21 0所对应的变换T 作用下得到点Q (x ′,y ′).则⎣⎢⎡⎦⎥⎤1 21 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎪⎨⎪⎧x +2y =x ′,x =y ′,所以⎩⎪⎨⎪⎧x =y ′,y =x ′-y ′2,代入x 2+2xy +2y 2=1,得y ′2+2y ′·x ′-y ′2+2⎝⎛⎭⎫x ′-y ′22=1,即x ′2+y ′2=2,所以曲线C 1的方程为x 2+y 2=2. C .[选修4-4:坐标系与参数方程]在极坐标系中,已知点A ⎝⎛⎭⎫2,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ<2π)上.当线段AB 最短时,求点B 的极坐标.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系, 则点A ⎝⎛⎭⎫2,π2的直角坐标为(0,2),直线l 的直角坐标方程为x +y =0. AB 最短时,点B 为直线x -y +2=0与直线l 的交点,解⎩⎪⎨⎪⎧ x -y +2=0,x +y =0,得⎩⎪⎨⎪⎧x =-1,y =1.所以点B 的直角坐标为(-1,1). 所以点B 的极坐标为⎝⎛⎭⎫2,3π4. D .[选修4-5:不等式选讲]求函数f (x )=5x +8-2x 的最大值.解:易知函数f (x )的定义域为[0,4],且f (x )≥0.由柯西不等式得[52+(2)2][(x )2+(4-x )2]≥(5·x +2·4-x )2,即27×4≥(5·x +2·4-x )2,所以5x +8-2x ≤6 3. 当且仅当2×x =54-x ,即x =10027时取等号. 所以函数f (x )=5x +8-2x 的最大值为6 3.4.本题包括A 、B 、C 、D 四个小题,请任选二个作答A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .证明:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2 -20 1,设曲线C :(x -y )2+y 2=1在矩阵A 对应的变换下得到曲线C ′,求C ′的方程.解:设P (x 0,y 0)为曲线C 上任意一点,点P 在矩阵A 对应的变换下得到点Q (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2 -20 1⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =2x 0-2y 0,y =y 0, 解得⎩⎪⎨⎪⎧x 0=x 2+y ,y 0=y ,又(x 0-y 0)2+y 20=1,∴⎝⎛⎭⎫x 2+y -y 2+y 2=1,即x 24+y 2=1, ∴曲线C ′的方程为x 24+y 2=1. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t (t 为参数),以原点O为极点,x 轴的正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.设P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的直角坐标.解:由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3.设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3), 则PC =⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,PC 取得最小值,此时点P 的直角坐标为(3,0).D .[选修4-5:不等式选讲]已知a ,b ,c ,d 是正实数,且abcd =1,求证:a 5+b 5+c 5+d 5≥a +b +c +d . 证明:因为a ,b ,c ,d 是正实数,且abcd =1,所以a 5+b +c +d ≥44a 5bcd =4a .①同理b 5+c +d +a ≥4b ,②c 5+d +a +b ≥4c ,③d 5+a +b +c ≥4d ,④将①②③④式相加并整理,得a 5+b 5+c 5+d 5≥a +b +c +d .当且仅当“a =b =c =d =1”时等号成立.。
3个附加题综合仿真练(四)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C 为圆O 外一点,且AB =AC ,BC 交圆O 于点D ,过D 作圆O 的切线交AC 于点E .求证:DE ⊥AC . 解:如图,连结OD .因为AB =AC ,所以∠B =∠C . 由圆O 知OB =OD , 所以∠B =∠BDO .从而∠BDO =∠C ,所以OD ∥AC . 又DE 为圆O 的切线,所以DE ⊥OD , 所以DE ⊥AC .B .[选修4-2:矩阵与变换] 已知矩阵A =⎣⎢⎡⎦⎥⎤2 x y2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦⎥⎤12 ,其中x ,y ∈R.(1)求x ,y 的值;(2)若B =⎣⎢⎡⎦⎥⎤1 -10 2,求(AB )-1.解:(1)AX =⎣⎢⎡⎦⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 = ⎣⎢⎡⎦⎥⎤x -22-y . 因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎪⎨⎪⎧x -2=1,2-y =2,解得x =3,y =0. (2)由(1)知A =⎣⎢⎡⎦⎥⎤230 2 ,又B =⎣⎢⎡⎦⎥⎤1 -102 , 所以AB =⎣⎢⎡⎦⎥⎤2302⎣⎢⎡⎦⎥⎤1 -10 2=⎣⎢⎡⎦⎥⎤2 404 .设(AB )-1= ⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤2 40 4⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤100 1,即⎣⎢⎡⎦⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎡⎦⎥⎤1 001.所以⎩⎪⎨⎪⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14,即 (AB )-1= ⎣⎢⎡⎦⎥⎤12 -12 0 14 .C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x .将直线l的参数方程⎩⎨⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t , 即t 2+82t =0,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2. D .[选修4-5:不等式选讲] 设函数f (x )=|2x +1|-|x -2|. (1)求不等式f (x )>2的解集;(2)若∀x ∈R ,f (x )≥t 2-112t 恒成立,求实数t 的取值范围.解:(1)不等式f (x )>2可化为⎩⎪⎨⎪⎧x >2,2x +1-x +2>2或⎩⎪⎨⎪⎧-12≤x ≤2,2x +1+x -2>2或⎩⎪⎨⎪⎧x <-12,-2x -1+x -2>2,解得x <-5或x >1,所以所求不等式的解集为{x |x <-5或x >1}.(2)由f (x )=|2x +1|-|x -2|=⎩⎪⎨⎪⎧x +3,x >2,3x -1,-12≤x ≤2,-x -3,x <-12,可得f (x )≥-52,若∀x ∈R ,f (x )≥t 2-112t 恒成立,则t 2-112t ≤-52,即2t 2-11t +5≤0,解得12≤t ≤5.故实数t 的取值范围为⎣⎡⎦⎤12,5.2.如图,在直三棱柱ABC -A 1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,AA 1=3.D 是线段BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的余弦值.解:因为在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,所以分别以AB ,AC ,AA 1所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,4,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3), 因为D 是BC 的中点,所以D (1,2,0), (1)因为A 1C 1――→=(0,4,0),A 1D ―→=(1,2,-3), 设平面A 1C 1D 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1――→=0,n 1·A 1D ―→=0,即⎩⎪⎨⎪⎧4y 1=0,x 1+2y 1-3z 1=0,取⎩⎪⎨⎪⎧x 1=3,y 1=0,z 1=1,所以平面A 1C 1D 的法向量n 1=(3,0,1),而DB 1―→=(1,-2,3),设直线DB 1与平面A 1C 1D 所成角为θ,所以sin θ=|cos 〈n 1,DB 1―→〉|=|n 1·DB 1―→||n 1|·|DB 1―→|=|3+3|10×14=33535, 所以直线DB 1与平面A 1C 1D 所成角的正弦值为33535.(2) A 1B 1――→=(2,0,0),DB 1―→=(1,-2,3), 设平面B 1A 1D 的法向量n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·A 1B 1――→=0,n 2·DB 1―→=0,即⎩⎪⎨⎪⎧2x 2=0,x 2-2y 2+3z 2=0,取⎩⎪⎨⎪⎧x 2=0,y 2=3,z 2=2,所以平面B 1A 1D 的法向量n 2=(0,3,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=210×13=13065,故结合图象知二面角B 1-A 1D -C 1的余弦值13065. 3.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6. 所以f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立.②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有 f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立; b .若k +1=6t +1,则k =6t ,此时有 f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+(k +1)-12+(k +1)-13,结论成立; c .若k +1=6t +2,则k =6t +1,此时有 f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+(k +1)-23,结论成立; d .若k +1=6t +3,则k =6t +2,此时有 f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+(k +1)-12+k +13,结论成立; e .若k +1=6t +4,则k =6t +3,此时有 f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+(k +1)-13,结论成立; f .若k +1=6t +5,则k =6t +4,此时有 f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+(k +1)-12+(k +1)-23,结论成立. 综上所述,结论对满足n ≥6的自然数n 均成立.。
6个解答题专项强化练(三) 解析几何1.已知圆M :x 2+y 2-2x +a =0.(1)若a =-8,过点P (4,5)作圆M 的切线,求该切线方程;(2)若AB 为圆M 的任意一条直径,且OA ―→·OB ―→=-6(其中O 为坐标原点),求圆M 的半径.解:(1)若a =-8,则圆M 的标准方程为(x -1)2+y 2=9,圆心M (1,0),半径为3. 若切线斜率不存在,圆心M 到直线x =4的距离为3,所以直线x =4为圆M 的一条切线;若切线斜率存在,设切线方程为y -5=k (x -4),即kx -y -4k +5=0,则圆心到直线的距离为|k -4k +5|k 2+1=3,解得k =815,即切线方程为8x -15y +43=0. 所以切线方程为x =4或8x -15y +43=0.(2)圆M 的方程可化为(x -1)2+y 2=1-a ,圆心M (1,0),则OM =1,半径r =1-a (a <1). 因为AB 为圆M 的任意一条直径,所以MA ―→=-MB ―→,且|MA ―→|=|MB ―→|=r ,则OA ―→·OB ―→=(OM ―→+MA ―→)·(OM ―→+MB ―→)=(OM ―→-MB ―→)·(OM ―→+MB ―→)=OM ―→2-MB ―→2=1-r 2,又因为OA ―→·OB ―→=-6,解得r =7,所以圆M 的半径为7. 2.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-1,0),且经过点⎝⎛⎭⎫1,32. (1)求椭圆的标准方程;(2)已知椭圆的弦AB 过点F ,且与x 轴不垂直.若D 为x 轴上的一点,DA =DB ,求ABDF 的值.解:(1)法一:由题意,得⎩⎪⎨⎪⎧c =1,1a 2+94b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆的标准方程为x 24+y 23=1.法二:由题意,知2a =(1+1)2+⎝⎛⎭⎫322+(1-1)2+⎝⎛⎭⎫322=4,所以a =2.又c =1,a2=b 2+c 2,所以b =3,所以椭圆的标准方程为x 24+y 23=1.(2)法一:设直线AB 的方程为y =k (x +1).①当k =0时,AB =2a =4,FD =FO =1,所以ABDF =4;②当k ≠0时,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),把直线AB 的方程代入椭圆方程,整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,所以x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以x 0=-4k 23+4k 2,所以y 0=k (x 0+1)=3k3+4k 2, 所以AB 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝⎛⎭⎫x +4k 23+4k 2.因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝⎛⎭⎫-k23+4k 2,0,所以DF =-k 23+4k 2+1=3+3k 23+4k 2.又因为AB =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=12+12k 23+4k 2,所以ABDF=4. 综上,得ABDF 的值为4.法二:①若直线AB 与x 轴重合,则ABDF =4;②若直线AB 不与x 轴重合,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),由⎩⎨⎧x 214+y 213=1,x 224+y223=1,两式相减得x 21-x 224+y 21-y 223=0,所以(x 1-x 2)·x 04+(y 1-y 2)·y 03=0,所以直线AB 的斜率为y 1-y 2x 1-x 2=-3x 04y 0,所以直线AB 的垂直平分线方程为y -y 0=4y 03x 0(x -x 0).因为DA =DB ,所以点D 为AB 的垂直平分线与x 轴的交点,所以D ⎝⎛⎭⎫x 04,0,所以DF =x 04+1. 因为椭圆的左准线的方程为x =-4,离心率为12,由AF x 1+4=12,得AF =12(x 1+4),同理BF =12(x 2+4).所以AB =AF +BF =12(x 1+x 2)+4=x 0+4,所以ABDF =4. 综上,得ABDF 的值为4.3.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM ―→·AB ―→=-32b 2.(1)求椭圆的离心率;(2)若a =2,四边形ABCD 内接于椭圆,AB ∥DC .记直线AD ,BC 的斜率分别为k 1,k 2,求证:k 1k 2为定值.解:(1)由题意,A (a,0),B (0,b ),由M 为线段AB 的中点得M ⎝⎛⎭⎫a 2,b 2. 所以OM ―→=⎝⎛⎭⎫a 2,b 2,AB ―→=(-a ,b ). 因为OM ―→·AB ―→=-32b 2,所以⎝⎛⎭⎫a 2,b 2·(-a ,b )=-a 22+b 22=-32b 2, 整理得a 2=4b 2,即a =2b .因为a 2=b 2+c 2,所以3a 2=4c 2,即3a =2c . 所以椭圆的离心率e =c a =32.(2)证明:法一:由a =2得b =1, 故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.因为AB ∥DC ,故可设DC 的方程为y =-12x +m ,D (x 1,y 1),C (x 2,y 2).联立方程⎩⎨⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2m 2-2=0,所以x 1+x 2=2m ,从而x 1=2m -x 2. 直线AD 的斜率k 1=y 1x 1-2=-12x 1+m x 1-2,直线BC 的斜率k 2=y 2-1x 2=-12x 2+m -1x 2,所以k 1k 2=-12x 1+m x 1-2·-12x 2+m -1x 2=14x 1x 2-12(m -1)x 1-12mx 2+m (m -1)(x 1-2)x 2=14x 1x 2-12m (x 1+x 2)+12x 1+m (m -1)x 1x 2-2x 2=14x 1x 2-12m ·2m +12(2m -x 2)+m (m -1)x 1x 2-2x 2=14x 1x 2-12x 2x 1x 2-2x 2=14, 即k 1k 2为定值14.法二:由a =2得b =1,故椭圆方程为x 24+y 2=1.从而A (2,0),B (0,1),直线AB 的斜率为-12.设C (x 0,y 0),则x 204+y 20=1. 因为AB ∥CD ,故CD 的方程为y =-12(x -x 0)+y 0.联立方程⎩⎨⎧y =-12(x -x 0)+y 0,x24+y 2=1,消去y ,得x 2-(x 0+2y 0)x +2x 0y 0=0,解得x =x 0或x =2y 0.所以点D 的坐标为⎝⎛⎭⎫2y 0,12x 0. 所以k 1k 2=12x02y 0-2·y 0-1x 0=14,即k 1k 2为定值14.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1)求椭圆C 的标准方程;(2)已知直线l 交椭圆C 于A ,B 两点.①若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足PA ―→=λAF ―→,PB ―→=μBF ―→.求证:λ+μ为定值;②若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围. 解:(1)由题设知c =1,-a 2c =-2,解得a 2=2,b 2=1,∴椭圆C 的标准方程为x 22+y 2=1.(2)①证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ). 设A (x 1,y 1),B (x 2,y 2),把直线l 的方程代入椭圆的方程得x 2+2k 2(x +1)2=2, 整理得(1+2k 2)x 2+4k 2x +2k 2-2=0, ∴x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.由PA ―→=λAF ―→,PB ―→=μBF ―→知,λ=-x 11+x 1,μ=-x 21+x 2,∴λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k 2=--4-1=-4(定值).②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22, 当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1k x ,A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,∴x 21=22k 2+1,y 21=2k 22k 2+1, 同理x 22=2k 22+k 2,y 22=22+k 2, 故△AOB 的面积S =OA ·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈(1,+∞), 故S =t 2(2t -1)(t +1)=12+1t -1t2. 再令u =1t ∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22.综上所述,S ∈⎣⎡⎦⎤23,22.5.如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1)若QF =2FP ,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.解:(1)因为a 2=4,b 2=3,所以c =a 2-b 2=1,所以F 的坐标为(1,0), 设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为x =my +1, 代入椭圆方程,消去x ,得(4+3m 2)y 2+6my -9=0, 则y 1=-3m +61+m 24+3m 2,y 2=-3m -61+m 24+3m 2.若QF =2FP ,则-y 2=2y 1,即y 2+2y 1=0, 所以-3m -61+m 24+3m 2+2×-3m +61+m 24+3m 2=0,解得m =255,故直线l 的方程为5x -2y -5=0. (2)由(1)知,y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2, 所以my 1y 2=-9m 4+3m 2=32(y 1+y 2),所以k 1k 2=y 1x 1+2·x 2-2y 2=y 1(my 2-1)y 2(my 1+3)=32(y 1+y 2)-y 132(y 1+y 2)+3y 2=13, 故存在常数λ=13,使得k 1=13k 2.6.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,其离心率e =12,左准线方程为x =-8.(1)求椭圆的方程;(2)过F 1的直线交椭圆于A ,B 两点,I 1,I 2分别为△F 1AF 2,△F 1BF 2的内心. ①求四边形F 1I 1F 2I 2与△AF 2B 的面积比;②是否存在定点C ,使CA ―→·CB ―→为常数?若存在,求出点C 的坐标;若不存在,说明理由.解:(1)由题意⎩⎨⎧c a =12,a2c =8,解得a =4,c =2,故b =23,所以椭圆的方程为x 216+y 212=1.(2)①设△F 1AF 2的内切圆半径为r , 则S △F 1I 1F 2=12·F 1F 2·r =12·2c ·r =2r ,S △F 1AF 2=12·(AF 1+AF 2+F 1F 2)·r =12·(2a +2c )·r =6r ,∴S △F 1I 1F 2∶S △F 1AF 2=1∶3, 同理S △F 1I 2F 2∶S △F 1BF 2=1∶3, ∴S 四边形F 1I 1F 2I 2∶S △AF 2B =1∶3.②假设存在定点C (s ,t ),使得CA ―→·CB ―→为常数.若直线AB 存在斜率,设AB 的方程为y =k (x +2),A (x 1,y 1),B (x 2,y 2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 216+y212=1,消去y ,得(3+4k 2)x 2+16k 2x +16k 2-48=0, 由此得x 1+x 2=-16k 23+4k 2,x 1x 2=16k 2-483+4k 2,∴CA ―→·CB ―→=(x 1-s ,y 1-t )·(x 2-s ,y 2-t)=(x 1-s )(x 2-s )+(y 1-t )(y 2-t )=(x 1-s )(x 2-s )+[k (x 1+2)-t ][k (x 2+2)-t ]=(1+k 2)x 1x 2+(2k 2-tk -s )(x 1+x 2)+s 2+t 2+4k 2-4tk =(1+k 2)(16k 2-48)3+4k 2+(2k 2-tk -s )(-16k 2)3+4k 2+s 2+t 2+4k 2-4tk =-12tk -12s -333+4k 2+s 2+t 2+4s -5.∵与k 无关,∴⎩⎪⎨⎪⎧-12t =0,-12s -33=0,即⎩⎪⎨⎪⎧s =-114,t =0,此时CA ―→·CB ―→=-13516;若直线AB 不存在斜率,则A 与B 的坐标为(-2,±3),CA ―→·CB ―→=(s +2,t -3)·(s +2,t +3)=(s +2)2+t 2-9,将⎩⎪⎨⎪⎧s =-114,t =0代入,此时CA ―→·CB ―→=-13516也成立.综上所述,存在定点C ⎝⎛⎭⎫-114,0,使得CA ―→·CB ―→为常数.。
3个附加题综合仿真练(三)1、本题包括A 、B 、C 、D 四个小题,请任选二个作答 A 、[选修4-1:几何证明选讲]如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C 作圆O的割线CED (E 在C ,D 之间)、求证:∠CBE =∠BDE 、 证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即CB CE =CD CB , 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE 、 B 、[选修4-2:矩阵与变换]设a ,b ∈R 、若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x +y -91=0、求实数a ,b 的值、解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ),由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤ 3 b (7-a )-1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧ 7b -91=0,27+b (7-a )-1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13,∴实数a ,b 的值分别为2,13、法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′),则⎣⎢⎡⎦⎥⎤3 0-1b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,∴⎩⎪⎨⎪⎧x ′=3x ,y ′=-x +by , 由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0, ∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7,解得a =2,b =13、∴实数a ,b 的值分别为2,13、 C 、[选修4-4:坐标系与参数方程]在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝⎛⎭⎫θ+π6=a (a ∈R)和ρ=4sin θ、若直线l 与圆C 有且只有一个公共点,求a 的值、解:由ρcos ⎝⎛⎭⎫θ+π6=a ,得32ρcos θ-12ρsin θ=a , 故化为直角坐标方程为3x -y -2a =0, 由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =|-2-2a |2=2,解得a =1或a =-3、 D 、[选修4-5:不等式选讲]已知a ,b ∈R,a >b >e(其中e 是自然对数的底数),求证:b a >a b 、 证明:∵b a >0,a b >0,∴要证b a >a b , 只要证a ln b >b ln a, 只要证ln b b >ln a a ,构造函数f (x )=ln xx ,x ∈(e,+∞)、则f ′(x )=1-ln xx 2,x ∈(e,+∞),f ′(x )<0在区间(e,+∞)上恒成立,所以函数f (x )在x ∈(e,+∞)上是单调递减的, 所以当a >b >e 时,有f (b )>f (a ), 即ln b b >ln aa ,故b a >a b 得证、2、从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和、(1)求X 是奇数的概率;(2)求X 的概率分布及数学期望、 解:(1)记“X 是奇数”为事件A , 能组成的三位数的个数是4×4×3=48、X 是奇数的个数是C 12C 23A 33-C 12C 12A 22=28,所以P (A )=2848=712、故X 是奇数的概率为712、(2)X 的可能取值为3,4,5,6,7,8,9、当X =3时,组成的三位数是由0,1,2三个数字组成, 所以P (X =3)=448=112;当X =4时,组成的三位数是由0,1,3三个数字组成, 所以P (X =4)=448=112;当X =5时,组成的三位数是由0,1,4或0,2,3组成, 所以P (X =5)=848=16;当X =6时,组成的三位数是由0,2,4或1,2,3组成, 所以P (X =6)=1048=524;当X =7时,组成的三位数是由0,3,4或1,2,4组成, 所以P (X =7)=1048=524;当X =8时,组成的三位数是由1,3,4三个数字组成, 所以P (X =8)=648=18;当X =9时,组成的三位数是由2,3,4三个数字组成, 所以P (X =9)=648=18、所以X 的概率分布为:故E (X )=3×112+4×112+5×16+6×524+7×524+8×18+9×18=254、 3、设P (n ,m )=∑k =0n(-1)k C knm m +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *、 (1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值、 解:(1)当m =1时,P (n,1)=∑k =0n(-1)kC k n11+k =1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1、 (2)证明:P (n ,m )=∑k =0n(-1)k C k nmm +k =1+∑k =1n -1(-1)k (C k n -1+C k -1n -1)m m +k +(-1)n m m +n =1+∑k =1n -1 (-1)kC k n -1m m +k +∑k =1n (-1)k C k -1n -1m m +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =0n (-1)k C k nmm +k=P(n-1,m)-mn P(n,m)即P(n,m)=nm+nP(n-1,m),由累乘,易求得P(n,m)=n!m!(n+m)!P(0,m)=1C n n+m,又Q(n,m)=C n n+m,所以P(n,m)·Q(n,m)=1、。
3个附加题专项强化练(一) 选修4系列(理科)A 组1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,已知圆O 的直径AB =4,C 为AO 的中点,弦DE 过点C 且满足CE =2CD ,求△OCE 的面积.解:设CD =x ,则CE =2x . 因为CA =1,CB =3,由相交弦定理,得CA ·CB =CD ·CE , 所以1×3=2x 2,解得x =62. 取DE 的中点H ,连结OH , 则OH ⊥DE .因为EH =32CD =364,所以OH 2=OE 2-EH 2=22-⎝⎛⎭⎫3642=58,所以OH =104.又因为CE =2x =6,所以△OCE 的面积S =12OH ·CE =12×104×6=154.B .[选修4-2:矩阵与变换]已知a ,b 是实数,如果矩阵A =⎣⎢⎡⎦⎥⎤3 a b -2所对应的变换T 把点(2,3)变成点(3,4).(1)求a ,b 的值;(2)若矩阵A 的逆矩阵为B ,求B 2.解:(1)由题意,得⎣⎢⎡⎦⎥⎤3 a b -2⎣⎢⎡⎦⎥⎤23=⎣⎢⎡⎦⎥⎤34,即⎩⎪⎨⎪⎧ 6+3a =3,2b -6=4.解得⎩⎪⎨⎪⎧a =-1,b =5.(2)由(1),得A =⎣⎢⎡⎦⎥⎤3 -15 -2.由矩阵的逆矩阵公式得B =⎣⎢⎢⎡⎦⎥⎥⎤-2-11-1-5-1 3-1=⎣⎢⎡⎦⎥⎤2 -15 -3.所以B 2=⎣⎢⎡⎦⎥⎤2 -15 -3⎣⎢⎡⎦⎥⎤2 -15 -3=⎣⎢⎡⎦⎥⎤-11-54.C .[选修4-4:坐标系与参数方程]已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ2=x 2+y 2,且⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得圆O 1的直角坐标方程为x 2+y 2=4,由ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 得ρ2-2ρ(cos θ+sin θ)=2, x 2+y 2-2(x +y )=2,故圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0.(2)联立方程⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-2x -2y -2=0,两式相减,得经过两圆交点的直线方程为x +y -1=0,该直线的极坐标方程为ρcos θ+ρsin θ-1=0. D .[选修4-5:不等式选讲] 解不等式:|x -2|+x |x +2|>2.解:当x ≤-2时,不等式化为(2-x )+x (-x -2)>2,即-x 2-3x >0,解得-3<x ≤-2; 当-2<x <2时,不等式化为(2-x )+x (x +2)>2, 即x 2+x >0,解得-2<x <-1或0<x <2;当x ≥2时,不等式化为(x -2)+x (x +2)>2,即x 2+3x -4>0,解得x ≥2. 所以原不等式的解集为{x |-3<x <-1或x >0}. 2.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,圆O 是△ABC 的外接圆,点D 是劣弧BC 的中点,连结AD 并延长,与以C 为切点的切线交于点P ,求证:PC PA =BDAC. 证明:连结CD ,因为CP 为圆O 的切线, 所以∠PCD =∠PAC ,又∠P 是公共角, 所以△PCD ∽△PAC , 所以PC PA =CD AC ,因为点D 是劣弧BC 的中点, 所以CD =BD ,即PC PA =BDAC . B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤a 32 d ,若A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤84,求矩阵A 的特征值. 解:因为A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a 32 d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ a +62+2d =⎣⎢⎡⎦⎥⎤84, 所以⎩⎪⎨⎪⎧ a +6=8,2+2d =4, 解得⎩⎪⎨⎪⎧a =2,d =1.所以A =⎣⎢⎡⎦⎥⎤2 32 1. 所以矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=(λ-2)(λ-1)-6=λ2-3λ-4,令f (λ)=0,解得矩阵A 的特征值为λ1=-1,λ2=4. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l :⎩⎪⎨⎪⎧ x =t +1y =7-2t (t 为参数)与椭圆C :⎩⎪⎨⎪⎧x =a cos θy =3sin θ(θ为参数,a >0)的一条准线的交点位于y 轴上,求实数a 的值.解:由题意,直线l 的普通方程为2x +y =9, 椭圆C 的普通方程为y 29+x 2a 2=1(0<a <3),椭圆C 的准线方程为y =±99-a 2, 故99-a 2=9,解得a =22(负值舍去). D .[选修4-5:不等式选讲]求函数y =3sin x +22+2cos 2x 的最大值. 解:y =3sin x +22+2cos 2x =3sin x +4cos 2 x , 由柯西不等式得y 2=(3sin x +4cos 2x )2≤(32+42)(sin 2x +cos 2x )=25,当且仅当4sin x =3|cos x |,即sin x =35,|cos x |=45时等号成立,所以y max =5.所以函数y =3sin x +22+2cos 2x 的最大值为5. 3.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,△ABC 的顶点A ,C 在圆O 上,B 在圆外,线段AB 与圆O 交于点M .(1)若BC 是圆O 的切线,且AB =8,BC =4,求线段AM 的长度; (2)若线段BC 与圆O 交于另一点N ,且AB =2AC ,求证:BN =2MN . 解:(1)设AM =t ,则BM =8-t (0<t <8), 由切割线定理可得BC 2=BM ·BA .∴16=8(8-t ),解得t =6,即线段AM 的长度为6. (2)证明:由题意,∠A =∠MNB ,∠B =∠B , ∴△BMN ∽△BCA ,∴BN BA =MNCA, ∵AB =2AC ,∴BN =2MN . B .[选修4-2:矩阵与变换]已知变换T 把平面上的点(3,-4),(5,0)分别变换成(2,-1),(-1,2),试求变换T 对应的矩阵M .解:设M =⎣⎢⎡⎦⎥⎤ab c d ,由题意得,⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤3 5-4 0=⎣⎢⎡⎦⎥⎤ 2 -1-1 2, ∴⎩⎪⎨⎪⎧3a -4b =2,5a =-1,3c -4d =-1,5c =2,解得⎩⎪⎨⎪⎧a =-15,b =-1320,c =25,d =1120,即M =⎣⎢⎡⎦⎥⎤-15 -1320 25 1120.C .[选修4-4:坐标系与参数方程]在极坐标系中,求直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截得的弦长.解:法一:在ρ=4sin θ中,令θ=π4,得ρ=4sin π4=22,即所求弦长为2 2.法二:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系.直线θ=π4(ρ∈R)的直角坐标方程为y =x ,①曲线ρ=4sin θ的直角坐标方程为x 2+y 2-4y =0,②由①②得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,故直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截弦长的端点坐标分别为(0,0),(2,2),所以直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截得的弦长为22+22=2 2.D .[选修4-5:不等式选讲]已知a ≠b ,求证:a 4+6a 2b 2+b 4>4ab (a 2+b 2). 证明:a 4+6a 2b 2+b 4-4ab (a 2+b 2) =a 4+6a 2b 2+b 4-4a 3b -4b 3a =a 4-4a 3b +6a 2b 2-4b 3a +b 4 =(a -b )4,∵a ≠b ,∴a 4+6a 2b 2+b 4-4ab (a 2+b 2)>0, ∴a 4+6a 2b 2+b 4>4ab (a 2+b 2).4.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,弦CA ,BD 的延长线相交于点E ,EF 垂直BA 的延长线于点F ,连结FD .求证:∠DEA =∠DFA .证明:连结AD ,∵AB 是圆O 的直径,∴∠ADB =90°, ∴∠ADE =90°, 又EF ⊥FB , ∴∠AFE =90°, ∴A ,F ,E ,D 四点共圆, ∴∠DEA =∠DFA .B .[选修4-2:矩阵与变换] 已知矩阵M =⎣⎢⎡⎦⎥⎤1 a 3 b 的一个特征值λ=-1及对应的特征向量e =⎣⎢⎡⎦⎥⎤1-1,求矩阵M 的逆矩阵.解:由题知,⎣⎢⎡⎦⎥⎤1a 3b ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤1-a 3-b =-1·⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1 1,即⎩⎪⎨⎪⎧1-a =-1,3-b =1,解得⎩⎪⎨⎪⎧a =2,b =2,M =⎣⎢⎡⎦⎥⎤1 23 2.∴det(M )=⎪⎪⎪⎪⎪⎪1 23 2=1×2-2×3=-4, ∴M-1=⎣⎢⎡⎦⎥⎤-12 1234 -14.C .[选修4-4:坐标系与参数方程]已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t 2y =t (t 为参数),曲线C 的极坐标方程为ρ=3cos θ,试判断直线l 与曲线C 的位置关系.解:由题意知,直线l 的普通方程为2x -y -2=0,由ρ2=x 2+y 2,且⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得曲线C 的直角坐标方程为⎝⎛⎭⎫x -322+y 2=94,它表示圆. 由圆心⎝⎛⎭⎫32,0到直线l 的距离d =15=55<32,得直线l 与曲线C 相交. D .[选修4-5:不等式选讲] 设x ,y ,z 均为正实数,且xyz =1,求证:1x 3y +1y 3z +1z 3x≥xy +yz +zx . 证明:∵x ,y ,z 均为正实数,且xyz =1, ∴1x 3y +1y 3z +1z 3x =z x 2+x y 2+y z2, ∴由柯西不等式可得⎝⎛⎭⎫z x 2+x y 2+y z 2(xy +yz +zx )≥⎝⎛⎭⎫xyz x+xyz y +xyz z 2=⎝⎛⎭⎫xyz x+xyz y +xyz z 2=(xy +yz +zx )2.∴1x 3y +1y 3z +1z 3x≥xy +yz +zx . B 组1.本题包括A 、B 、C 、D 四个小题,请任选二个作答A .[选修4-1:几何证明选讲]如图,已知△ABC 内接于⊙O ,连结AO 并延长交⊙O 于点D ,∠ACB =∠ADC .求证:AD ·BC =2AC ·CD .证明:∵∠ACB =∠ADC ,AD 是⊙O 的直径, ∴AD 垂直平分BC ,设垂足为E ,∵∠ACB =∠EDC ,∠ACD =∠CED , ∴△ACD ∽△CED , ∴AD CD =AC CE, ∴AD ·12BC =AC ·CD ,∴AD ·BC =2AC ·CD . B .[选修4-2:矩阵与变换]在平面直角坐标系xOy 中,设点A (-1,2)在矩阵M =⎣⎢⎡⎦⎥⎤-1 0 01对应的变换作用下得到点A ′,将点B (3,4)绕点A ′逆时针旋转90°得到点B ′,求点B ′的坐标.解:设B ′(x ,y ),依题意,由⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤12,得A ′(1,2).则A ′B ――→=(2,2),A ′B ′――→=(x -1,y -2).记旋转矩阵N =⎣⎢⎡⎦⎥⎤0 -11 0,则⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤x -1y -2,即⎣⎢⎡⎦⎥⎤-2 2=⎣⎢⎡⎦⎥⎤x -1y -2, 得⎩⎪⎨⎪⎧x =-1,y =4. 所以点B ′的坐标为(-1,4). C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离 d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45.当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值455.D .[选修4-5:不等式选讲]已知a ,b ,c ∈R,4a 2+b 2+2c 2=4,求2a +b +c 的最大值. 解:由柯西不等式,得[(2a )2+b 2+(2c )2]·⎣⎡⎦⎤12+12+⎝⎛⎭⎫122≥(2a +b +c )2. 因为4a 2+b 2+2c 2=4,所以(2a +b +c )2≤10. 所以-10≤2a +b +c ≤10,所以2a +b +c 的最大值为10,当且仅当a =105,b =2105,c =105时等号成立. 2.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E ,过E 作BA 的延长线的垂线,垂足为F .求证:AB 2=BE ·BD -AE ·AC .证明:如图,连结AD ,因为AB 为圆O 的直径,所以AD ⊥BD .又EF ⊥AB ,则A ,D ,E ,F 四点共圆, 所以BD ·BE =BA ·BF .连结BC ,则∠AFE =∠ACB ,∠BAC =∠EAF , 得△ABC ∽△AEF , 所以AB AE =AC AF , 即AB ·AF =AE ·AC ,所以BE ·BD -AE ·AC =BA ·BF -AB ·AF =AB ·(BF -AF )=AB 2. B .[选修4-2:矩阵与变换]已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4).(1)求矩阵M ;(2)求矩阵M 的另一个特征值.解:(1)设M =⎣⎢⎡⎦⎥⎤ab cd ,由题意,M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =8⎣⎢⎡⎦⎥⎤11,M ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-a +2b -c +2d =⎣⎢⎡⎦⎥⎤-24,∴⎩⎪⎨⎪⎧ a +b =8,c +d =8,-a +2b =-2,-c +2d =4,解得⎩⎪⎨⎪⎧a =6,b =2,c =4,d =4,即M =⎣⎢⎡⎦⎥⎤6244.(2)令特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-6 -2-4 λ-4=(λ-6)·(λ-4)-8=0, 解得λ1=8,λ2=2.矩阵M 的另一个特征值为2. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2sin α,y =1-cos 2α(α为参数).求直线l 与曲线C 的交点P 的直角坐标.解:由题意得,直线l 的直角坐标方程为y =3x ,① 曲线C 的普通方程为y =12x 2(x ∈[-2,2]),②联立①②解方程组得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎨⎧x =23,y =6(舍去). 故P 点的直角坐标为(0,0). D .[选修4-5:不等式选讲]已知a ,b ,c 为正实数,求证:b 2a +c 2b +a 2c ≥a +b +c . 证明:法一:(基本不等式) ∵a +b 2a ≥2b ,b +c 2b ≥2c ,c +a 2c ≥2a ,∴a +b 2a +b +c 2b +c +a 2c ≥2a +2b +2c , ∴b 2a +c 2b +a 2c ≥a +b +c . 法二:(柯西不等式)由柯西不等式得(a +b +c )⎝⎛⎭⎫b 2a +c 2b +a 2c ≥(b +c +a )2,∴b 2a +c 2b +a 2c ≥a +b +c . 3.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,已知AB 为圆O 的一条弦,点P 为弧AB 的中点,过点P 任作两条弦PC ,PD 分别交AB 于点E ,F .求证:PE ·PC =PF ·PD.证明:连结PA ,PB ,CD ,BC . 因为点P 为弧AB 的中点, 所以∠PAB =∠PBA . 又因为∠PAB =∠PCB ,所以∠PCB =∠PBA . 又∠DCB =∠DPB ,所以∠PFE =∠PBA +∠DPB =∠PCB +∠DCB =∠PCD , 所以E ,F ,D ,C 四点共圆. 所以PE ·PC =PF ·PD . B .[选修4-2:矩阵与变换]已知曲线C :x 2+2xy +2y 2=1,矩阵A =⎣⎢⎡⎦⎥⎤1 210所对应的变换T 把曲线C 变换成曲线C 1,求曲线C 1的方程.解:设曲线C 上的任意一点P (x ,y ),点P 在矩阵A =⎣⎢⎡⎦⎥⎤1 21 0所对应的变换T 作用下得到点Q (x ′,y ′).则⎣⎢⎡⎦⎥⎤1 21 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎪⎨⎪⎧x +2y =x ′,x =y ′,所以⎩⎪⎨⎪⎧x =y ′,y =x ′-y ′2,代入x 2+2xy +2y 2=1,得y ′2+2y ′·x ′-y ′2+2⎝⎛⎭⎫x ′-y ′22=1,即x ′2+y ′2=2,所以曲线C 1的方程为x 2+y 2=2. C .[选修4-4:坐标系与参数方程]在极坐标系中,已知点A ⎝⎛⎭⎫2,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ<2π)上.当线段AB 最短时,求点B 的极坐标.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系, 则点A ⎝⎛⎭⎫2,π2的直角坐标为(0,2),直线l 的直角坐标方程为x +y =0. AB 最短时,点B 为直线x -y +2=0与直线l 的交点,解⎩⎪⎨⎪⎧ x -y +2=0,x +y =0,得⎩⎪⎨⎪⎧x =-1,y =1.所以点B 的直角坐标为(-1,1). 所以点B 的极坐标为⎝⎛⎭⎫2,3π4. D .[选修4-5:不等式选讲]求函数f (x )=5x +8-2x 的最大值.解:易知函数f (x )的定义域为[0,4],且f (x )≥0.由柯西不等式得[52+(2)2][(x )2+(4-x )2]≥(5·x +2·4-x )2, 即27×4≥(5·x +2·4-x )2,所以5x +8-2x ≤6 3. 当且仅当2×x =54-x ,即x =10027时取等号. 所以函数f (x )=5x +8-2x 的最大值为6 3.4.本题包括A 、B 、C 、D 四个小题,请任选二个作答A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .证明:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2 -20 1,设曲线C :(x -y )2+y 2=1在矩阵A 对应的变换下得到曲线C ′,求C ′的方程.解:设P (x 0,y 0)为曲线C 上任意一点,点P 在矩阵A 对应的变换下得到点Q (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2 -20 1⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧ x =2x 0-2y 0,y =y 0,解得⎩⎪⎨⎪⎧x 0=x 2+y ,y 0=y ,又(x 0-y 0)2+y 20=1,∴⎝⎛⎭⎫x 2+y -y 2+y 2=1,即x 24+y 2=1, ∴曲线C ′的方程为x 24+y 2=1. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.设P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的直角坐标.解:由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3.设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3), 则PC =⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,PC 取得最小值,此时点P 的直角坐标为(3,0).D .[选修4-5:不等式选讲]已知a ,b ,c ,d 是正实数,且abcd =1,求证:a 5+b 5+c 5+d 5≥a +b +c +d . 证明:因为a ,b ,c ,d 是正实数,且abcd =1,所以a 5+b +c +d ≥44a 5bcd =4a .①同理b 5+c +d +a ≥4b ,②c 5+d +a +b ≥4c ,③d 5+a +b +c ≥4d ,④将①②③④式相加并整理,得a 5+b 5+c 5+d 5≥a +b +c +d .当且仅当“a =b =c =d =1”时等号成立.。
2018年高考数学江苏专版二轮专题复习附加题高分练1.矩阵与变换1.(2017²常州期末)已知矩阵A =⎣⎡⎦⎤2 13 2,列向量X =⎣⎡⎦⎤x y ,B =⎣⎡⎦⎤47,若AX =B ,直接写出A -1,并求出X . 解 由A =⎣⎡⎦⎤2 13 2,得到A -1=⎣⎡⎦⎤ 2 -1-3 2.由AX =B ,得到X =A -1B =⎣⎡⎦⎤ 2 -1-3 2⎣⎡⎦⎤47=⎣⎡⎦⎤12.也可由AX =B 得到⎣⎡⎦⎤2 13 2⎣⎡⎦⎤x y =⎣⎡⎦⎤47,即⎩⎪⎨⎪⎧2x +y =4,3x +2y =7,解得⎩⎪⎨⎪⎧x =1,y =2,所以X =⎣⎡⎦⎤12.2.(2017²江苏淮阴中学调研)已知矩阵A =⎣⎡⎦⎤3 3c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎡⎦⎤11,属于特征值1的一个特征向量α2=⎣⎡⎦⎤ 3-2.求矩阵A ,并写出A 的逆矩阵.解 由矩阵A 属于特征值6的一个特征向量α1=⎣⎡⎦⎤11可得,⎣⎡⎦⎤33cd ⎣⎡⎦⎤11=6⎣⎡⎦⎤11,即c +d =6;由矩阵A 属于特征值1的一个特征向量α2=⎣⎡⎦⎤ 3-2,可得⎣⎡⎦⎤3 3c d ⎣⎡⎦⎤ 3-2=⎣⎡⎦⎤3-2,即3c -2d =-2,解得⎩⎪⎨⎪⎧c =2,d =4.即A =⎣⎡⎦⎤3 32 4,A 的逆矩阵是⎣⎢⎡⎦⎥⎤23 -12-13 123.(2017²江苏建湖中学月考)曲线x 2+4xy +2y 2=1在二阶矩阵M =⎣⎡⎦⎤1 a b 1的作用下变换为曲线x 2-2y 2=1. (1)求实数a ,b 的值; (2)求M 的逆矩阵M -1.解 (1)设P(x ,y)为曲线x 2-2y 2=1上任意一点,P ′(x ′,y ′)为曲线x 2+4xy +2y 2=1上与P 对应的点,则⎣⎡⎦⎤1 a b 1⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤x y ,即⎩⎪⎨⎪⎧x =x ′+ay ′,y =bx ′+y ′,代入x 2-2y 2=1得(x ′+ay ′)2-2(bx ′+y ′)2=1得(1-2b 2)x ′2+(2a -4b)x ′y ′+(a 2-2)y ′2=1,及方程x 2+4xy +2y 2=1,从而⎩⎪⎨⎪⎧1-2b 2=1,2a -4b =4,a 2-2=2,解得a =2,b =0. (2)因为M =⎪⎪⎪⎪1 20 1=1≠0,故M-1=⎣⎢⎡⎦⎥⎤11 -210111=⎣⎡⎦⎤1 -20 1. 4.已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P(x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P(x ,y),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x.又点P(x ′,y ′)在曲线C :y 2=12x 上,∴⎝ ⎛⎭⎪⎫-12x 2=12y ,即x 2=2y. 2.坐标系与参数方程1.(2017²南通一模)在极坐标系中,求直线θ=π4(ρ∈R )被曲线ρ=4sin θ所截得的弦长.解 方法一 在ρ=4sin θ中,令θ=π4,得ρ=4sin π4=22,即弦长为2 2.方法二 以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线θ=π4(ρ∈R )的直角坐标方程为y =x ,①曲线ρ=4sin θ的直角坐标方程为x 2+y 2-4y =0.②由①②得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,所以直线θ=π4(ρ∈R )被曲线ρ=4sin θ所截得的弦长为(2-0)2+(2-0)2=2 2.2.(2017²江苏六市联考)平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-32+22l ,y =22l (l 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解 直线的普通方程为2x -2y +3=0,曲线的普通方程为y 2=8x.解方程组⎩⎪⎨⎪⎧2x -2y +3=0,y 2=8x ,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.取A ⎝ ⎛⎭⎪⎫12,2,B ⎝ ⎛⎭⎪⎫92,6,得AB =4 2.3.(2017²江苏滨海中学质检)已知直线的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=22,圆M 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =-2+2sin θ,(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值. 解 (1)极点为直角坐标原点O ,ρsin ⎝ ⎛⎭⎪⎫θ+π4=ρ⎝⎛⎭⎪⎫22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,其直角坐标方程为x +y -1=0.(2)将圆的参数方程化为普通方程为x 2+(y +2)2=4,圆心为M(0,-2), ∴点M 到直线的距离为d =|0-2-1|2=32=322,∴圆上的点到直线距离的最小值为32-42.4.(2017²常州期末)在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.已知圆ρ=4sin ⎝ ⎛⎭⎪⎫θ+π6被射线θ=θ0⎝ ⎛⎭⎪⎫ρ≥0,θ0为常数,且θ0∈⎝⎛⎭⎪⎫0,π2所截得的弦长为23,求θ0的值.解 圆ρ=4sin ⎝ ⎛⎭⎪⎫θ+π6的直角坐标方程为(x -1)2+(y -3)2=4,射线θ=θ0的直角坐标方程可以设为y =kx(x ≥0,k >0).圆心(1,3)到直线y =kx 的距离d =|k -3|1+k 2. 根据题意,得24-(k -3)21+k 2=23,解得k =33. 即tan θ0=33,又θ0∈⎝⎛⎭⎪⎫0,π2,所以θ0=π6.3.曲线与方程、抛物线1.(2017²江苏南通天星湖中学质检)已知点A(1,2)在抛物线F :y 2=2px 上.(1)若△ABC 的三个顶点都在抛物线F 上,记三边AB ,BC ,CA 所在直线的斜率分别为k 1,k 2,k 3, 求1k 1-1k 2+1k 3的值;(2)若四边形ABCD 的四个顶点都在抛物线F 上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为k 1,k 2,k 3,k 4,求1k 1-1k 2+1k 3-1k 4的值.解 (1)由点A(1,2)在抛物线F 上,得p =2,∴抛物线F :y 2=4x ,设B ⎝ ⎛⎭⎪⎫y 214,y 1,C ⎝ ⎛⎭⎪⎫y 224,y 2,∴1k 1-1k 2+1k 3=y 214-1y 1-2-y 224-y 214y 2-y 1+1-y 2242-y 2=y 1+24-y 2+y 14+2+y 24=1. (2)另设D ⎝ ⎛⎭⎪⎫y 234,y 3,则1k 1-1k 2+1k 3-1k 4=y 1+24-y 2+y 14+y 3+y 24-2+y 34=0.2.(2017²江苏赣榆中学月考)抛物线关于x 轴对称,它的顶点在坐标原点,点P(1,2),A(x 1,y 1),B(x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解 (1)由已知条件,可设抛物线的方程为y 2=2px. ∵点P(1,2)在抛物线上, ∴22=2p ³1,得p =2,故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1).∵PA 与PB 的斜率存在且倾斜角互补, ∴k PA =-k PB ,由A(x 1,y 1),B(x 2,y 2)在抛物线上,得 y 21=4x 1,① y 22=4x 2,② ∴y 1-214y 21-1=-y 2-214y 22-1, ∴y 1+2=-(y 2+2), ∴y 1+y 2=-4,由①-②得直线AB 的斜率k AB =y 2-y 1x 2-x 1=4y 1+y 2=-44=-1(x 1≠x 2).3.(2017²江苏常州中学质检)已知点A(-1,0),F(1,0),动点P 满足AP →²AF →=2||FP →. (1)求动点P 的轨迹C 的方程;(2)在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M ,N.问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由. 解 (1)设P(x ,y),则AP →=(x +1,y),FP →=(x -1,y),AF →=(2,0), 由AP →²AF →=2|FP →|,得2(x +1)=2(x -1)2+y 2,化简得y 2=4x. 故动点P 的轨迹C 的方程为y 2=4x.(2)直线l 方程为y =2(x +1),设Q(x 0,y 0),M(x 1,y 1),N(x 2,y 2).设过点M 的切线方程为x -x 1=m(y -y 1),代入y 2=4x ,得y 2-4my +4my 1-y 21=0, 由Δ=16m 2-16my 1+4y 21=0,得m =y 12,所以过点M 的切线方程为y 1y =2(x +x 1),同理过点N 的切线方程为y 2y =2(x +x 2).所以直线MN 的方程为y 0y =2(x 0+x), 又MN ∥l ,所以2y 0=2,得y 0=1,而y 0=2(x 0+1),故点Q 的坐标为⎝ ⎛⎭⎪⎫-12,1. 4.(2017²江苏宝应中学质检)如图,已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于A(x 1,y 1)(y 1>0),B(x 2,y 2)两点,T 为抛物线的准线与x 轴的交点.(1)若TA →²TB →=1,求直线l 的斜率; (2)求∠ATF 的最大值.解 (1)因为抛物线y 2=4x 焦点为F(1,0),T(-1,0).当l ⊥x 轴时,A(1,2),B(1,-2),此时TA →²TB →=0,与TA →²TB →=1矛盾, 所以设直线l 的方程为y =k(x -1),代入y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 2=2k 2+4k2,x 1x 2=1,①所以y 21y 22=16x 1x 2=16,所以y 1y 2=-4,② 因为TA →²TB →=1,所以(x 1+1)(x 2+1)+y 1y 2=1, 将①②代入并整理得,k 2=4,所以k =±2.(2)因为y 1>0,所以tan ∠ATF =y 1x 1+1=y 1y 214+1=1y 14+1y 1≤1,当且仅当y 14=1y 1,即y 1=2时,取等号,所以∠ATF ≤π4,所以∠ATF 的最大值为π4.4.空间向量与立体几何1.(2017²苏锡常镇调研)如图,已知正四棱锥P -ABCD 中,PA =AB =2,点M ,N 分别在PA ,BD 上,且PM PA =BN BD =13.(1)求异面直线MN 与PC 所成角的大小; (2)求二面角N -PC -B 的余弦值.解 (1)设AC ,BD 交于点O ,在正四棱锥P -ABCD 中,OP ⊥平面ABCD ,又PA =AB =2,所以OP = 2.以O 为坐标原点,DA →,AB →,OP →方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -xyz ,如图.则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,0,2),AP →=(-1,1,2).故OM →=OA →+AM →=OA →+23AP →=⎝ ⎛⎭⎪⎫13,-13,223,ON →=13OB →=⎝ ⎛⎭⎪⎫13,13,0,所以MN →=⎝ ⎛⎭⎪⎫0,23,-223,PC →=(-1,1,-2),所以cos 〈MN →,PC →〉=MN →²PC →|MN →||PC →|=32,所以异面直线MN 与PC 所成角的大小为π6.(2)由(1)知PC →=(-1,1,-2),CB →=(2,0,0),NC →=⎝ ⎛⎭⎪⎫-43,23,0.设m =(x ,y ,z)是平面PCB 的法向量,则m ²PC →=0,m ²CB →=0,可得⎩⎨⎧-x +y -2z =0,x =0,令y =2,则z =1,即m =(0,2,1).设n =(x 1,y 1,z 1)是平面PCN 的法向量,则n ²PC →=0,n ²CN →=0,可得⎩⎨⎧-x 1+y 1-2z 1=0,-2x 1+y 1=0,令x 1=2,则y 1=4,z 1=2,即n =(2,4,2),所以cos 〈m ,n 〉=m²n |m||n|=523³22=53333,则二面角N -PC -B 的余弦值为53333.2.(2017²常州期末)如图,以正四棱锥V -ABCD 的底面中心O 为坐标原点建立空间直角坐标系O -xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点.正四棱锥的底面边长为2a ,高为h ,且有cos 〈BE →,DE →〉=-1549.(1)求ha的值;(2)求二面角B -VC -D 的余弦值.解 (1)根据条件,可得B(a ,a,0),C(-a ,a,0),D(-a ,-a,0),V(0,0,h),E ⎝ ⎛⎭⎪⎫-a 2,a 2,h 2,所以BE →=⎝ ⎛⎭⎪⎫-32a ,-a 2,h 2,DE →=⎝ ⎛⎭⎪⎫a 2,32a ,h 2,故cos 〈BE →,DE →〉=h 2-6a 2h 2+10a2.又cos 〈BE →,DE →〉=-1549,则h 2-6a 2h 2+10a 2=-1549, 解得h a =32.(2)由h a =32,得BE →=⎝ ⎛⎭⎪⎫-32a ,-a 2,34a ,DE →=⎝ ⎛⎭⎪⎫a 2,32a ,34a ,且容易得到,CB →=(2a,0,0),DC →=(0,2a,0). 设平面BVC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1²BE →=0,n 1²CB →=0.即⎩⎪⎨⎪⎧-32ax 1-a 2y 1+34az 1=0,2ax 1=0,则⎩⎪⎨⎪⎧x 1=0,2y 1=3z 1,取y 1=3,z 1=2,则n 1=(0,3,2).同理可得平面DVC 的一个法向量为n 2=(-3,0,2). cos 〈n 1,n 2〉=n 1²n 2|n 1||n 2|=0³(-3)+3³0+2³213³13=413,结合图形,可以知道二面角B -VC -D 的余弦值为-413.3.(2017²南京学情调研)如图,在底面为正方形的四棱锥P -ABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,E 是线段PC 的中点.(1)求异面直线AP 与BE 所成角的大小;(2)若点F 在线段PB 上,且使得二面角F -DE -B 的正弦值为33,求PFPB的值.解 (1)在四棱锥P -ABCD 中,底面ABCD 为正方形,侧棱PD ⊥底面ABCD ,所以DA ,DC ,DP 两两垂直,故以{DA →,DC →,DP →}为正交基底,建立空间直角坐标系D -xyz.因为PD =DC ,所以DA =DC =DP , 不妨设DA =DC =DP =2,则D(0,0,0),A(2,0,0),C(0,2,0),P(0,0,2),B(2,2,0). 因为E 是PC 的中点,所以E(0,1,1), 所以AP →=(-2,0,2),BE →=(-2,-1,1), 所以cos 〈AP →,BE →〉=AP →²BE →|AP →||BE →|=32,从而〈AP →,BE →〉=π6.因此异面直线AP 与BE 所成角的大小为π6.(2)由(1)可知,DE →=(0,1,1),DB →=(2,2,0),PB →=(2,2,-2). 设PF →=λPB →,则PF →=(2λ,2λ,-2λ), 从而DF →=DP →+PF →=(2λ,2λ,2-2λ). 设m =(x 1,y 1,z 1)为平面DEF 的法向量, 则⎩⎪⎨⎪⎧m ²DF →=0,m ²DE →=0,即⎩⎪⎨⎪⎧λx 1+λy 1+(1-λ)z 1=0,y 1+z 1=0,取z 1=λ,则y 1=-λ,x 1=2λ-1.故m =(2λ-1,-λ,λ)为平面DEF 的一个法向量, 设n =(x 2,y 2,z 2)为平面DEB 的法向量.则⎩⎪⎨⎪⎧n ²DB →=0,n ²DE →=0,即⎩⎪⎨⎪⎧2x 2+2y 2=0,y 2+z 2=0,取x 2=1,则y 2=-1,z 2=1.所以n =(1,-1,1)为平面BDE 的一个法向量. 因为二面角F -DE -B 的余弦值的绝对值为63, 即|cos 〈m ,n 〉|=|m²n ||m||n|=|4λ-1|3²(2λ-1)2+2λ2=63, 化简得4λ2=1.因为点F 在线段PB 上,所以0≤λ≤1, 所以λ=12,即PF PB =12.4.(2017²苏北四市一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值;(2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为45,求λ的值.解 (1)因为PA ⊥平面ABCD ,且AB ,AD ⊂平面ABCD ,所以PA ⊥AB ,PA ⊥AD. 又因为∠BAD =90°,所以PA ,AB ,AD 两两互相垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则由AD =2AB =2BC =4,PA =4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4). 又因为M 为PC 的中点,所以M(1,1,2). 所以BM →=(-1,1,2),AP →=(0,0,4), 所以cos 〈AP →,BM →〉=AP →²BM →|AP →||BM →|=0³(-1)+0³1+4³24³6=63,所以异面直线AP ,BM 所成角的余弦值为63. (2)因为AN =λ,所以N(0,λ,0)(0≤λ≤4),则MN →=(-1,λ-1,-2),BC →=(0,2,0),PB →=(2,0,-4).设平面PBC 的法向量为m =(x ,y ,z), 则⎩⎪⎨⎪⎧m ²BC →=0,m ²PB →=0,即⎩⎪⎨⎪⎧2y =0,2x -4z =0.令x =2,解得y =0,z =1,所以m =(2,0,1)是平面PBC 的一个法向量.因为直线MN 与平面PBC 所成角的正弦值为45,所以|cos 〈MN →,m 〉|=|MN →²m ||MN →||m |=|-2-2|5+(λ-1)2²5=45,解得λ=1∈[0,4],所以λ的值为1.5.离散型随机变量的概率分布1.(2017²南京、盐城一模)某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X ,求X 的概率分布与数学期望E(X). 解 (1)这两个班“在星期一不同时上综合实践课”的概率为P =1-33³3=23.(2)由题意得X ~B ⎝ ⎛⎭⎪⎫5,13,P(X =k)=C k 5⎝ ⎛⎭⎪⎫13k²⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5.所以X 的概率分布为所以X 的数学期望为E(X)=5³13=53.2.一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望. 解 (1)该网民恰好购买2种商品的概率为P(AB C )+P(A B C)+P(A BC)=34³23³12+34³13³12+14³23³12=1124;该网民恰好购买3种商品的概率为P(ABC)=34³23³12=14,所以P =1124+14=1724.故该网民至少购买2种商品的概率为1724.(2)随机变量η的可能取值为0,1,2,3,由(1)知,P(η=2)=1124,P(η=3)=14,而P(η=0)=P(A B C )=14³13³12=124,所以P(η=1)=1-P(η=0)-P(η=2)-P(η=3)=14.随机变量η的概率分布为所以随机变量η的数学期望E(η)=0³124+1³14+2³1124+3³14=2312.3.(2017²南京学情调研)甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X 的概率分布与数学期望.解 (1)设甲第i 次投中获胜的事件为A 1(i =1,2,3),则A 1,A 2,A 3彼此互斥. 甲获胜的事件为A 1+A 2+A 3.P(A 1)=25,P(A 2)=35³13³25=225,P(A 3)=⎝ ⎛⎭⎪⎫352³⎝ ⎛⎭⎪⎫132³25=2125.所以P(A 1+A 2+A 3)=P(A 1)+P(A 2)+P(A 3)=25+225+2125=62125.(2)X 的所有可能取值为1,2,3. 则P(X =1)=25+35³23=45,P(X =2)=225+35³13³35³23=425,P(X =3)=⎝ ⎛⎭⎪⎫352³⎝ ⎛⎭⎪⎫132³1=125.即X 的概率分布为所以数学期望E(X)=1³45+2³425+3³125=3125.4.为了提高学生学习数学的兴趣,某校决定在每周的同一时间开设《数学史》、《生活中的数学》、《数学与哲学》、《数学建模》四门校本选修课程,甲、乙、丙三位同学每人均在四门校本课程中随机选一门进行学习,假设三人选择课程时互不影响,且每人选择每一课程都是等可能的.(1)求甲、乙、丙三人选择的课程互不相同的概率;(2)设X 为甲、乙、丙三人中选修《数学史》的人数,求X 的概率分布和数学期望E(X). 解 (1)甲、乙、丙三人从四门课程中各任选一门,共有43=64种不同的选法,记“甲、乙、丙三人选择的课程互不相同”为事件M ,事件M 共包含A 34=24个基本事件,则P(M)=2464=38,所以甲、乙、丙三人选择的课程互不相同的概率为38.(2)方法一 X 可能的取值为0,1,2,3. P(X =0)=3343=2764,P(X =1)=C 13³3243=2764,P(X =2)=C 23³343=964,P(X =3)=C 3343=164.所以X 的概率分布为所以E(X)=0³2764+1³2764+2³964+3³164=34.方法二 甲、乙、丙三人从四门课程中任选一门,可以看成三次独立重复试验,X 为甲、乙、丙三人中选修《数学史》的人数,则X ~B ⎝ ⎛⎭⎪⎫3,14,所以P(X =k)=C k 3⎝ ⎛⎭⎪⎫14k ⎝ ⎛⎭⎪⎫343-k,k =0,1,2,3,所以X 的概率分布为所以X 的数学期望E(X)=3³14=34.6.计数原理、二项式定理和数学归纳法1.已知等式(1+x)2n -1=(1+x)n -1(1+x)n.(1)求(1+x)2n -1的展开式中含x n的项的系数,并化简:C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1. (1)解 (1+x)2n -1的展开式中含x n 的项的系数为C n2n -1,由(1+x)n -1(1+x)n=(C 0n -1+C 1n -1x +…+C n -1n -1xn -1)(C 0n +C 1n x +…+C n n x n )可知,(1+x)n -1(1+x)n的展开式中含x n的项的系数为C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1. (2)证明 当k ∈N *时,kC kn =k²n !k !(n -k )!=n !(k -1)!(n -k )!=n²(n -1)!(k -1)!(n -k )!=nC k -1n -1,所以(C 1n)2+2(C 2n)2+…+n(C n n)2=∑k =1n[k(C k n )2]=k =1n (kC k n C kn )=k =1n (nC k -1n -1C kn )=n k =1n (C k -1n -1C kn )=n k =1n (C n -k n -1C kn ).由(1)知C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1,即k =1n (C n -k n -1C k n )=C n2n -1,所以(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1.2.(2017²江苏泰州中学调研)在平面直角坐标系xOy 中,点P(x 0,y 0)在曲线y =x 2(x >0)上.已知点A(0,-1),P n (x n0,y n0),n ∈N *.记直线AP n 的斜率为k n . (1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数. (1)解 因为k 1=2,所以y 0+1x 0=x 20+1x 0=2,解得x 0=1,y 0=1,所以P 1的坐标为(1,1).(2)证明 方法一 设k 1=2p(p ∈N *),即y 0+1x 0=x 20+1x 0=2p.所以x 20-2px 0+1=0,所以x 0=p±p 2-1. 因为y 0=x 2,所以k n =y n0+1x n 0=x 2n0+1x n 0=x n 0+1x n 0,所以当x 0=p +p 2-1时,k n =(p +p 2-1)n+⎝ ⎛⎭⎪⎫1p +p 2-1n =(p +p 2-1)n +(p -p 2-1)n. 同理,当x 0=p -p 2-1时,k n =(p +p 2-1)n +(p -p 2-1)n.①当n =2m(m ∈N *)时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.②当n =2m +1(m ∈N )时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.综上,k n 为偶数.方法二 因为⎝ ⎛⎭⎪⎫x 0+1x 0⎝ ⎛⎭⎪⎫x n +10+1x n +10=x n +20+1x n +20+x n0+1x n 0,所以k n +2=k 1k n +1-k n .k 2=x 20+1x 20=⎝ ⎛⎭⎪⎫x 0+1x 02-2=k 21-2.设命题p(n):k n ,k n +1均为偶数.以下用数学归纳法证明“命题p(n)是真命题”.①因为k 1是偶数,所以k 2=k 21-2也是偶数.当n =1时,p(n)是真命题;②假设当n =m(m ∈N *)时,p(n)是真命题,即k m ,k m +1均为偶数,则k m +2=k 1k m +1-k m 也是偶数,即当n =m +1时,p(n)也是真命题.由①②可知,对n ∈N *,p(n)均是真命题,从而k n 是偶数.3.(2017²江苏扬州中学模拟)在数列{a n }中,a n =cos π3³2(n ∈N *)(1)试将a n +1表示为a n 的函数关系式; (2)若数列{b n }满足b n =1-2n²n!(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论. 解 (1)a n =cos π3³2n -2=cos 2π3³2n -1=2⎝⎛⎭⎪⎫cosπ3³2n -12-1, ∴a n =2a 2n +1-1, ∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0, ∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1,当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2, 当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3, 猜想:当n ≥3时,a n <b n ,下面用数学归纳法证明. ①当n =3时,由上知,a 3<b 3,结论成立. ②假设当n =k ,k ≥3,n ∈N *时,a k <b k 成立, 即a k <1-2k²k!,则当n =k +1时,a k +1=a k +12<2-2k²k!2=1-1k²k!, b k +1=1-2(k +1)²(k +1)!,要证a k +1<b k +1,即证明⎝ ⎛⎭⎪⎫1-1k²k!2<⎝ ⎛⎭⎪⎫1-2(k +1)²(k +1)!2,即证明1-1k²k!<1-4(k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2,即证明1k²k!-4(k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2>0,即证明(k -1)2k (k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2>0,显然成立.∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1>b 1;当n =2时,a 2=b 2, 当n ≥3,n ∈N *时,a n <b n .4.已知f n (x)=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k)n +…+(-1)n C n n (x -n)n,其中x ∈R ,n ∈N *,k ∈N ,k ≤n.(1)试求f 1(x),f 2(x),f 3(x)的值;(2)试猜测f n (x)关于n 的表达式,并证明你的结论. 解 (1)f 1(x)=C 01x -C 11(x -1)=1,f 2(x)=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x -1)2+(x -2)2=2,f 3(x)=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2)猜测f n (x)=n !,n ∈N *. 以下用数学归纳法证明.①当n =1时,f 1(x)=1,等式成立. ②假设当n =m 时,等式成立,即 f m (x)=k =0m (-1)k C k m (x -k)m=m !.当n =m +1时,则f m +1(x)=k =0m +1(-1)k C k m +1²(x-k)m +1.因为C k m +1=C k m +C k -1m ,kC k m +1=(m +1)²C k -1m ,其中k =1,2,…,m , 且C 0m +1=C 0m ,C m +1m +1=C mm ,所以f m +1(x)=k =0m +1(-1)k C k m +1(x -k)m +1=x k =0m +1(-1)k C k m +1(x -k)m -k =0m +1(-1)k kC km +1(x -k)m=x k =0m (-1)k C k m(x -k)m+x ∑k =1m +1²(-1)k Ck -1m(x -k)m-(m +1)∑k =1m +1²(-1)k C k -1m (x -k)m=x²m!+(-x +m +1)k =0m (-1)k C km ²[(x-1)-k]m=x²m!+(-x +m +1)²m!=(m+1)²m!=(m+1)!.即n=m+1时,等式也成立.由①②可知,对n∈N*,均有f n(x)=n!.。
3个附加题专项强化练(三) 二项式定理、数学归纳法(理科)1.已知函数f 0(x )=x (sin x +cos x ),设f n (x )为f n -1(x )的导数,n ∈N *. (1)求f 1(x ),f 2(x )的表达式;(2)写出f n (x )的表达式,并用数学归纳法证明. 解:(1)因为f n (x )为f n -1(x )的导数, 所以f 1(x )=f 0′(x )=(sin x +cos x )+x (cos x -sin x ) =(x +1)cos x +(x -1)(-sin x ), 同理,f 2(x )=-(x +2)sin x -(x -2)cos x .(2)由(1)得f 3(x )=f 2′(x )=-(x +3)cos x +(x -3)sin x , 把f 1(x ),f 2(x ),f 3(x )分别改写为f 1(x )=(x +1)sin ⎝⎛⎭⎫x +π2+(x -1)cos ⎝⎛⎭⎫x +π2, f 2(x )=(x +2)sin ⎝⎛⎭⎫x +2π2+(x -2)cos ⎝⎛⎭⎫x +2π2, f 3(x )=(x +3)sin ⎝⎛⎭⎫x +3π2+(x -3)cos ⎝⎛⎭⎫x +3π2, 猜测f n (x )=(x +n )sin ⎝⎛⎭⎫x +n π2+(x -n )cos ⎝⎛⎭⎫x +n π2.(*) 下面用数学归纳法证明上述等式. (ⅰ)当n =1时,由(1)知,等式(*)成立. (ⅱ)假设当n =k (k ∈N *,k ≥1)时,等式(*)成立, 即f k (x )=(x +k )sin ⎝⎛⎭⎫x +k π2+(x -k )cos ⎝⎛⎭⎫x +k π2. 则当n =k +1时, f k +1(x )=f k ′(x )=sin ⎝⎛⎭⎫x +k π2+(x +k )cos ⎝⎛⎭⎫x +k π2+cos ⎝⎛⎭⎫x +k π2+(x -k )⎣⎡⎦⎤-sin ⎝⎛⎭⎫x +k π2 =(x +k +1)cos ⎝⎛⎭⎫x +k π2+[x -(k +1)]·⎣⎡⎦⎤-sin ⎝⎛⎭⎫x +k π2 =[x +(k +1)]sin ⎝⎛⎭⎫x +k +12π+[x -(k +1)]·cos ⎝⎛⎭⎫x +k +12π,即当n =k +1时,等式(*)成立.综上所述,当n ∈N *时,f n (x )=(x +n )·sin ⎝⎛⎭⎫x +n π2+(x -n )cos ⎝⎛⎭⎫x +n π2成立. 2.设1,2,3,…,n 的一个排列是a 1,a 2,…,a n ,若a i =i 称i 为不动点(1≤i ≤n ). (1)求1,2,3,4,5的排列中恰有两个不动点的排列个数;(2)记1,2,3,…,n 的排列中恰有k 个不动点的排列个数为P n (k ),①求∑k =0n P n (k );②∑k =1nkP n (k ).解:(1)1,2,3,4,5的排列中恰有两个数不动,即为有两个a i =i ,另三个a i ≠i ,而三个数没有不动点的排列有2个, 故1,2,3,4,5的排列中恰有两个不动点的排列个数为2C 25=20.(2)①在1,2,3,…,n 的排列中分成这样n +1类,有0个不动点,1个不动点,2个不动点,…,n 个不动点,故∑k =0nP n (k )=n !.②由题设可知P n (k )=C k n P n -k (0)及组合恒等式k C k n =n C k -1n -1得∑k =1nkP n (k )=∑k =1nk C k n P n -k (0)=∑k =1nn C k -1n -1P n -k (0)=n ∑k =1n C k -1n -1P n -k (0)=n ∑k =0n -1C k n -1P (n -1)-k (0)=n !.3.已知(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n (n ∈N *),令T n =∑i =12nia i .(1)求a 0和T n 关于n 的表达式;(2)试比较2T nn 与(n -1)a 0+2n 2的大小,并证明你的结论.解:(1)在(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n 中,令x =-1,可得a 0=3n .对(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n ,两边同时求导得,n (2x +2)(x 2+2x +4)n -1=a 1+2a 2(x +1)+3a 3(x +1)2+…+2na 2n (x +1)2n -1,令x =0,则∑i =12nia i =2n ×4n -1,所以T n =2n ×4n -1.(2)要比较2T nn与(n -1)a 0+2n 2的大小,即比较4n 与(n -1)3n +2n 2的大小. 当n =1时,4n =4>(n -1)3n +2n 2=2; 当n =2或3或4时,4n <(n -1)3n +2n 2; 当n =5时,4n >(n -1)3n +2n 2. 猜想:当n ≥5时,4n >(n -1)3n +2n 2. 下面用数学归纳法证明.①由上述过程可知,当n =5时,结论成立.②假设当n =k (k ≥5,k ∈N *)时结论成立,即4k >(k -1)3k +2k 2,两边同乘以4,得4k +1>4[(k -1)3k +2k 2]=k ·3k +1+2(k +1)2+[(k -4)3k +6k 2-4k -2],而(k -4)3k +6k 2-4k -2=(k -4)3k +6(k 2-k -2)+2k +10=(k -4)3k +6(k -2)(k +1)+2k +10>0,所以4k +1>[(k +1)-1]3k +1+2(k +1)2,即n =k +1时结论也成立.由①②可知,当n ≥5时,4n >(n -1)3n +2n 2成立.综上所述,当n =1时,2T n n >(n -1)a 0+2n 2;当n =2或3或4时,2T nn <(n -1)a 0+2n 2;当n ≥5时,2T nn >(n -1)a 0+2n 2.4.在集合A ={1,2,3,4,…,2n }中,任取m (m ≤2n ,m ,n ∈N *)个元素构成集合A m .若A m 的所有元素之和为偶数,则称A m 为A 的偶子集,其个数记为f (m );若A m 的所有元素之和为奇数,则称A m 为A 的奇子集,其个数记为g (m ).令F (m )=f (m )-g (m ).(1)当n =2时,求F (1),F (2),F (3)的值; (2)求F (m ).解:(1)当n =2时,集合A ={1,2,3,4},当m =1时,偶子集有{2},{4},奇子集有{1},{3}, f (1)=2,g (1)=2,F (1)=0;当m =2时,偶子集有{2,4},{1,3},奇子集有{1,2},{1,4},{2,3},{3,4}, f (2)=2,g (2)=4,F (2)=-2;当m =3时,偶子集有{1,2,3},{1,3,4},奇子集有{1,2,4},{2,3,4},f (3)=2,g (3)=2,F (3)=0.(2)当m 为奇数时,偶子集的个数f (m )=C 0n C m n +C 2n C m -2n +C 4n C m -4n +…+C m -1nC 1n , 奇子集的个数g (m )=C 1n C m -1n +C 3n C m -3n +…+C m n C 0n ,所以f (m )=g (m ),F (m )=f (m )-g (m )=0. 当m 为偶数时,偶子集的个数f (m )=C 0n C m n +C 2n C m -2n +C 4n C m -4n +…+C m n C 0n ,奇子集的个数g (m )=C 1n C m -1n +C 3n C m -3n +…+C m -1nC 1n , 所以F (m )=f (m )-g (m )=C 0n C m n -C 1n C m -1n +C 2n C m -2n -C 3n C m -3n +…-C m -1n C 1n +C m n C 0n .一方面,(1+x )n (1-x )n =(C 0n +C 1n x +C 2n x 2+…+C n n x n )·[C 0n -C 1n x +C 2n x 2-…+(-1)n C n nx n ],所以(1+x )n (1-x )n 中x m 的系数为C 0n C m n -C 1n C m -1n +C 2n C m -2n -C 3n C m -3n +…-C m -1nC 1n +C m n C 0n ;另一方面,(1+x )n (1-x )n =(1-x 2)n ,(1-x 2)n 中x m 的系数为(-1)m 2C m2n ,故F (m )=(-1)m 2C m 2n .综上,F (m )=⎩⎪⎨⎪⎧(-1)m 2C m 2n ,m 为偶数,0,m 为奇数.5.设可导函数y =f (x )经过n (n ∈N)次求导后所得结果为y =f (n )(x ).如函数g (x )=x 3经过1次求导后所得结果为g (1)(x )=3x 2,经过2次求导后所得结果为g (2)(x )=6x ,….(1)若f (x )=ln(2x +1),求f (2)(x );(2)已知f (x )=p (x )·q (x ),其中p (x ),q (x )为R 上的可导函数. 求证:f (n )(x )=∑i =0nC i n p (n -i )(x )·q (i )(x ).解:(1)依题意,f (1)(x )=12x +1×2=2(2x +1)-1, f (2)(x )=-2(2x +1)-2×2=-4(2x +1)-2.(2)证明:①当n =1时,f (1)(x )=p (1)(x )·q (x )+p (x )·q (1)(x )=∑i =01C i n p (n -i )(x )·q (i )(x );②假设n =k 时,f (k )(x )=∑i =0kC i k p (k -i )(x )·q (i )(x )成立, 则n =k +1时,f(k +1)(x )=(f (k )(x ))′=∑i =0kC i k [p (k-i +1)(x )·q (i )(x )+p (k -i )(x )·q (i+1)(x )]=C 0k p (k +1)(x )·q (x )+C 1k p (k )(x )·q (1)(x )+C 2k p(k-1)(x )·q (2)(x )+…+C k k p (1)(x )·q (k )(x )+C 0kp (k )(x )·q (1)(x )+C 1k p(k-1)(x )·q (2)(x )+…+C k -1k p (1)(x )·q (k )(x )+C k k p (x )·q (k +1)(x )=C 0k p(k+1)(x )·q (x )+(C 0k +C 1k )p (k )(x )·q (1)(x )+()C 1k +C 2k p (k -1)(x )·q (2)(x )+…+(C k -1k +C k k )·p (1)(x )·q (k )(x )+C kk p (x )·q (k +1)(x )=C 0k +1p (k+1)(x )·q (x )+C 1k +1p (k )(x )·q (1)(x )+C 2k +1p (k-1)(x )·q (2)(x )+…+C k k +1p (1)(x )·q (k )(x )+C k +1k +1p (x )·q (k +1)(x )=∑i =0k +1C i k +1p (k+1-i )(x )·q (i )(x ),所以,结论对n =k +1也成立. 由①②得,f (n )(x )=∑i =0nC i n p (n -i )(x )·q (i )(x ).6.设整数n ≥9,在集合{1,2,3,…,n }中任取三个不同元素a ,b ,c (a >b >c ),记f (n )为满足a +b +c 能被3整除的取法种数.(1)直接写出f (9)的值; (2)求f (n )表达式.解:(1)f (9)=12.(2)①当n =3k (k ≥3,k ∈N *)时,记k =n3,集合为{1,2,3,…,3k -1,3k }.将其分成三个集合:A ={1,4,…,3k -2},B ={2,5,…,3k -1},C ={3,6,…,3k }. 要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从A 中取一个,从B 中取一个(此数与A 中取的那个数之和能被3整除).故有3C 3k +C 1k C 1k C 1k=k (k -1)(k -2)2+k 3=n 3-3n 2+6n18种取法;②当n =3k +1(k ≥3,k ∈N *)时,记k =n -13,集合为{1,2,3…,3k,3k +1}. 将其分成三个集合:A ={1,4,…,3k -2,3k +1},B ={2,5,…,3k -1},C ={3,6,…,3k }.要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有2C 3k +C 3k +1+C 1k C 1k C 1k +1=k (k -1)(k -2)3+(k +1)k (k -1)6+k 2(k +1)=k (k -1)22+k 2(k +1)=n 3-3n 2+6n -418种取法;③当n =3k +2(k ≥3,k ∈N *)时,记k =n -23,集合为{1,2,3,…,3k +1,3k +2}. 将其分成三个集合:A ={1,4,…,3k -2,3k +1},B ={2,5,…,3k -1,3k +2},C ={3,6,…,3k }.要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有C 3k +2C 3k +1+C 1k C 1k +1C 1k +1=k (k -1)(k -2)6+(k +1)k (k -1)3+k (k +1)2=k 2(k -1)2+k (k +1)2=n 3-3n 2+6n -818种取法.综上所述,f (n )=⎩⎪⎨⎪⎧n 3-3n 2+6n18,n =3k (k ≥3,k ∈N *),n 3-3n 2+6n -418,n =3k +1(k ≥3,k ∈N *),n 3-3n 2+6n -818,n =3k +2(k ≥3,k ∈N *).。
3个附加题专项强化练(二) 随机变量、空间向量、抛物线(理科)1.如图,在直三棱柱ABC -A1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)设AD ―→=λAB ―→,异面直线AC 1与CD 所成角的余弦值为91050,求λ的值;(2)若点D 是AB 的中点,求二面角D -CB 1-B 的余弦值.解:(1)由AC =3,BC =4,AB =5,得∠ACB =90°,故直线CA ,CB ,CC 1两两垂直.以CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),设D (x ,y ,z ),则由AD ―→=λAB ―→,得CD ―→=(3-3λ,4λ,0),而AC ―→1=(-3,0,4),根据题意知91050=⎪⎪⎪⎪⎪⎪⎪⎪-9+9λ525λ2-18λ+9,解得λ=15或λ=-13.(2)由(1)知CD ―→=⎝⎛⎭⎫32,2,0,CB ―→1=(0,4,4), 设平面CDB 1的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ n 1·CD ―→=0,n 1·CB ―→1=0,即⎩⎪⎨⎪⎧32x 1+2y 1=0,4y 1+4z 1=0,取x 1=4,则y 1=-3,z 1=3,故n 1=(4,-3,3)为平面CDB 1的一个法向量,而平面CBB 1的一个法向量为n 2=(1,0,0),并且〈n 1,n 2〉与二面角D -CB 1-B 相等,所以二面角D -CB 1-B 的余弦值为cos 〈n 1,n 2〉=434=23417.故二面角D -CB 1-B 的余弦值为23417.2.甲、乙、丙分别从A ,B ,C ,D 四道题中独立地选做两道题,其中甲必选B 题. (1)求甲选做D 题,且乙、丙都不选做D 题的概率;(2)设随机变量X 表示D 题被甲、乙、丙选做的次数,求X 的概率分布和数学期望E (X ). 解:(1)设“甲选做D 题,且乙、丙都不选做D 题”为事件E .甲选做D 题的概率为C 11C 13=13,乙,丙不选做D 题的概率都是C 23C 24=12.则P (E )=13×12×12=112.故甲选做D 题,且乙、丙都不选做D 题的概率为112.(2)X 的所有可能取值为0,1,2,3. P (X =0)=⎝⎛⎭⎫1-13×12×12=16, P (X =1)=13×⎝⎛⎭⎫122+⎝⎛⎭⎫1-13×C 12×⎝⎛⎭⎫1-12×⎝⎛⎭⎫12=512, P (X =2)=13×C 12×⎝⎛⎭⎫1-12×⎝⎛⎭⎫12+⎝⎛⎭⎫1-13×C 22×⎝⎛⎭⎫1-122=13, P (X =3)=13×C 22×⎝⎛⎭⎫1-122=112. 所以X 的概率分布为故X 的数学期望E (X )=0×16+1×512+2×13+3×112=43.3.如图,以正四棱锥V -ABCD 的底面中心O 为坐标原点建立空间直角坐标系O -xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥的底面边长为2a ,高为h ,且有cos 〈BE ―→,DE ―→〉=-1549.(1)求ha的值;(2)求二面角B -VC -D 的余弦值.解:(1)由题意,可得B (a ,a,0),C (-a ,a,0),D (-a ,-a,0),V (0,0,h ),E ⎝⎛⎭⎫-a 2,a 2,h 2, ∴BE ―→=⎝⎛⎭⎫-3a 2,-a 2,h 2,DE ―→=⎝⎛⎭⎫a 2,3a 2,h2. 故cos 〈BE ―→,DE ―→〉=h 2-6a 2 h 2+10a 2,又cos 〈BE ―→,DE ―→〉=-1549,∴h 2-6a 2h 2+10a 2=-1549,解得h a =32. (2)由h a =32,得BE ―→=⎝⎛⎭⎫-3a 2,-a 2,3a 4,DE ―→=⎝⎛⎭⎫a 2,3a 2,3a 4.且CB ―→=(2a,0,0),DC ―→=(0,2a,0).设平面BVC 的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·BE ―→=0,n 1·CB ―→=0,即⎩⎪⎨⎪⎧-3a 2x 1-a 2y 1+3a 4z 1=0,2ax 1=0, 取y 1=3,得n 1=(0,3,2),设平面VCD 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ n 2·DE ―→=0,n 2·DC ―→=0,即⎩⎪⎨⎪⎧a 2x 2+3a 2y 2+3a 4z 2=0,2ay 2=0,取x 2=-3,得n 2=(-3,0,2),∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=413. 由图象知二面角B -VC -D 的平面角为钝角. ∴二面角B -VC -D 的余弦值为-413.4.在平面直角坐标系xOy 中,已知两点M (1,-3),N (5,1),若点C 的坐标满足OC ―→=tOM ―→+(1-t )ON ―→(t ∈R),且点C 的轨迹与抛物线y 2=4x 交于A ,B 两点.(1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P (m,0),使得过点P 任作一条抛物线的弦,并以该弦为直径的圆都过原点.若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.解:(1)证明:由OC ―→=tOM ―→+(1-t )ON ―→(t ∈R),可知点C 的轨迹是M ,N 两点所在的直线,所以点C 的轨迹方程为y +3=1-(-3)5-1(x -1),即y =x -4.联立⎩⎪⎨⎪⎧y =x -4,y 2=4x ,化简得x 2-12x +16=0,设C 的轨迹方程与抛物线y 2=4x 的交点坐标为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12,x 1x 2=16,y 1y 2=(x 1-4)(x 2-4)=x 1x 2-4(x 1+x 2)+16=-16, 因为OA ―→·OB ―→=x 1x 2+y 1y 2=16-16=0, 所以OA ⊥OB .(2)假设存在这样的P 点,并设AB 是过抛物线的弦,且A (x 1,y 1),B (x 2,y 2),其方程为x =ny +m ,代入y 2=4x 得y 2-4ny -4m =0, 此时y 1+y 2=4n ,y 1y 2=-4m ,所以k OA k OB =y 1x 1·y 2x 2=y 1y 214·y 2y 224=16y 1y 2=-4m =-1,所以m =4(定值),故存在这样的点P (4,0)满足题意. 设AB 的中点为T (x ,y ),则y =12(y 1+y 2)=2n ,x =12(x 1+x 2)=12(ny 1+4+ny 2+4)=n 2(y 1+y 2)+4=2n 2+4,消去n得y 2=2x -8.5.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲、乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时.设甲、乙两人停车时间(小时)与取车概率如下表所示. 停车时间取车概率停车人员(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的概率分布和数学期望E (ξ). 解:(1)由题意得12+3x =1,解得x =16,由16+13+y =1,解得y =12. 记甲、乙两人所付车费相同的事件为A , 则P (A )=12×16+16×13+16×12=29,故甲、乙两人所付车费相同的概率为29.(2)设甲、乙两人所付停车费之和为随机变量ξ,ξ的所有取值为0,1,2,3,4,5. P (ξ=0)=12×16=112,P (ξ=1)=12×13+16×16=736,P (ξ=2)=16×16+16×13+12×12=13,P (ξ=3)=16×16+16×13+16×12=16, P (ξ=4)=16×12+16×13=536,P (ξ=5)=16×12=112.所以ξ的概率分布为:∴ξ的数学期望E (ξ)=0×112+1×736+2×13+3×16+4×536+5×112=73. 6.在平面直角坐标系xOy 中,已知抛物线x 2=2py (p >0)上的点M (m,1)到焦点F 的距离为2.(1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E 处的切线与x 轴相交于点P ,直线PF 与抛物线相交于A ,B 两点,求△EAB 面积的最小值.解:(1)抛物线x 2=2py (p >0)的准线方程为y =-p2,因为M (m,1)到焦点F 的距离为2,由抛物线定义,知MF =1+p2=2,即p =2,所以抛物线的方程为x 2=4y .(2)因为y =14x 2,所以y ′=12x .设点E ⎝⎛⎭⎫t ,t 24,t ≠0,则抛物线在点E 处的切线方程为y -t 24=12t (x -t ). 令y =0,则x =t2,即点P ⎝⎛⎭⎫t 2,0. 因为P ⎝⎛⎭⎫t 2,0,F (0,1),所以直线PF 的方程为y =-2t ⎝⎛⎭⎫x -t 2,即2x +ty -t =0. 则点E ⎝⎛⎭⎫t ,t24到直线PF 的距离为d =⎪⎪⎪⎪2t +t 34-t 4+t2=|t |4+t24.联立方程⎩⎪⎨⎪⎧y =x 24,2x +ty -t =0,消去x ,得t 2y 2-(2t 2+16)y +t 2=0.设A (x 1,y 1),B (x 2,y 2),因为Δ=(2t 2+16)2-4t 4=64(t 2+4)>0,y 1+y 2=2t 2+16t 2,所以AB =y 1+1+y 2+1=y 1+y 2+2=2t 2+16t 2+2=4(t 2+4)t 2.所以△EAB 的面积为S =12×4(t 2+4)t 2×|t |4+t 24=12×(t 2+4)32|t |. 不妨设g (x )=(x 2+4)32x (x >0),则g ′(x )=(x 2+4)12x2(2x 2-4). 因为x ∈(0,2)时,g ′(x )<0,所以g (x )在(0,2)上单调递减; x ∈(2,+∞)上,g ′(x )>0,所以g (x )在(2,+∞)上单调递增. 所以当x =2时,g (x )min =(2+4)322=6 3.所以△EAB 的面积S min =12×63=3 3.所以△EAB 的面积的最小值为3 3.。
3个附加题综合仿真练(三)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C 作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE . 证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即CB CE =CD CB, 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE .B .[选修4-2:矩阵与变换]设a ,b ∈R.若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x +y -91=0.求实数a ,b 的值.解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ), 由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤3 b 7-a -1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧7b -91=0,27+b 7-a -1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13,∴实数a ,b 的值分别为2,13.法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′), 则⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,∴⎩⎪⎨⎪⎧x ′=3x ,y ′=-x +by ,由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0,∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7, 解得a =2,b =13.∴实数a ,b 的值分别为2,13. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝⎛⎭⎪⎫θ+π6=a (a ∈R)和ρ=4sin θ.若直线l 与圆C 有且只有一个公共点,求a 的值.解:由ρcos ⎝ ⎛⎭⎪⎫θ+π6=a ,得32ρcos θ-12ρsin θ=a ,故化为直角坐标方程为3x -y -2a =0,由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =|-2-2a |2=2,解得a =1或a =-3. D .[选修4-5:不等式选讲]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a>a b. 证明:∵b a>0,a b>0,∴要证b a>a b, 只要证a ln b >b ln a, 只要证ln b b >ln a a,构造函数f (x )=ln x x,x ∈(e ,+∞).则f ′(x )=1-ln x x2,x ∈(e ,+∞),f ′(x )<0在区间(e ,+∞)上恒成立, 所以函数f (x )在x ∈(e ,+∞)上是单调递减的, 所以当a >b >e 时,有f (b )>f (a ), 即ln b b >ln a a,故b a >a b得证.2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和.(1)求X 是奇数的概率; (2)求X 的概率分布及数学期望.解:(1)记“X 是奇数”为事件A , 能组成的三位数的个数是4×4×3=48.X 是奇数的个数是C 12C 23A 33-C 12C 12A 22=28,所以P (A )=2848=712.故X 是奇数的概率为712.(2)X 的可能取值为3,4,5,6,7,8,9.当X =3时,组成的三位数是由0,1,2三个数字组成, 所以P (X =3)=448=112;当X =4时,组成的三位数是由0,1,3三个数字组成, 所以P (X =4)=448=112;当X =5时,组成的三位数是由0,1,4或0,2,3组成, 所以P (X =5)=848=16;当X =6时,组成的三位数是由0,2,4或1,2,3组成, 所以P (X =6)=1048=524;当X =7时,组成的三位数是由0,3,4或1,2,4组成, 所以P (X =7)=1048=524;当X =8时,组成的三位数是由1,3,4三个数字组成, 所以P (X =8)=648=18;当X =9时,组成的三位数是由2,3,4三个数字组成, 所以P (X =9)=648=18.所以X 的概率分布为:故E (X )=3×12+4×12+5×6+6×24+7×24+8×8+9×8=4.3.设P (n ,m )= k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.解:(1)当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k =1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明:P (n ,m )=∑k =0n(-1)k C knmm +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)mm +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1mm +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ) 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !n +m !P (0,m )=1C n n +m,又Q (n ,m )=C nn +m , 所以P (n ,m )·Q (n ,m )=1.。
3个附加题综合仿真练(三)
1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]
如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C
作圆O 的割线CED (E 在C ,D 之间).
求证:∠CBE =∠BDE . 证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即
CB CE =CD
CB
, 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE .
B .[选修4-2:矩阵与变换]
设a ,b ∈R.若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦
⎥⎤
3 0-1 b 对应的变换作用下,得到的直
线为l ′:9x +y -91=0.求实数a ,b 的值.
解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ),
由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦
⎥⎤ 3 b (7-a )-1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),
由题意可知:M ′,N ′在直线9x +y -91=0上,
∴⎩⎪⎨⎪⎧ 7b -91=0,27+b (7-a )-1-91=0,解得⎩⎪⎨⎪⎧
a =2,
b =13,
∴实数a ,b 的值分别为2,13.
法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′),
则⎣⎢⎡⎦⎥⎤3 0-1
b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦
⎥⎤x ′y ′,
∴⎩
⎪⎨⎪⎧
x ′=3x ,y ′=-x +by , 由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0, ∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7, 解得a =2,b =13.
∴实数a ,b 的值分别为2,13. C .[选修4-4:坐标系与参数方程]
在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝⎛⎭⎫θ+π
6=a (a ∈R)和ρ=4sin θ.若直线l 与圆C 有且只有一个公共点,求a 的值.
解:由ρcos ⎝⎛⎭⎫θ+π6=a ,得32ρcos θ-1
2ρsin θ=a , 故化为直角坐标方程为3x -y -2a =0, 由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,
若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =
|-2-2a |
2=2,
解得a =1或a =-3. D .[选修4-5:不等式选讲]
已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a >a b . 证明:∵b a >0,a b >0,∴要证b a >a b , 只要证a ln b >b ln a, 只要证ln b b >ln a a ,
构造函数f(x)=ln x
x,x∈(e,+∞).
则f′(x)=1-ln x
x2,x∈(e,+∞),f′(x)<0在区间(e,+∞)上恒成立,
所以函数f(x)在x∈(e,+∞)上是单调递减的,所以当a>b>e时,有f(b)>f(a),
即ln b
b>
ln a
a,故b
a>a b得证.
2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X为所组成三位数的各位数字之和.
(1)求X是奇数的概率;
(2)求X的概率分布及数学期望.
解:(1)记“X是奇数”为事件A,
能组成的三位数的个数是4×4×3=48.
X是奇数的个数是C12C23A33-C12C12A22=28,
所以P(A)=28
48=
7
12.
故X是奇数的概率为7
12.
(2)X的可能取值为3,4,5,6,7,8,9.
当X=3时,组成的三位数是由0,1,2三个数字组成,
所以P(X=3)=4
48=
1
12;
当X=4时,组成的三位数是由0,1,3三个数字组成,
所以P(X=4)=4
48=
1
12;
当X=5时,组成的三位数是由0,1,4或0,2,3组成,
所以P(X=5)=8
48=
1
6;
当X=6时,组成的三位数是由0,2,4或1,2,3组成,
所以P(X=6)=10
48=
5
24;
当X=7时,组成的三位数是由0,3,4或1,2,4组成,
所以P (X =7)=
1048=524
; 当X =8时,组成的三位数是由1,3,4三个数字组成, 所以P (X =8)=
648=18
; 当X =9时,组成的三位数是由2,3,4三个数字组成, 所以P (X =9)=
648=18
. 所以X 的概率分布为:
故E (X )=3×
112+4×112+5×16+6×524+7×524+8×18+9×18=254
. 3.设P (n ,m )=∑k =0n
(-1)k C k n
m m +k ,Q (n ,m )=C n n +m ,其中m ,n ∈N *
. (1)当m =1时,求P (n,1)·Q (n,1)的值;
(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值. 解:(1)当m =1时,P (n,1)=∑k =0n
(-1)
k
C k n
11+k =1
n +1∑k =
0n (-1)k C k +1n +1=
1n +1
, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1. (2)证明:P (n ,m )=∑k =0
n
(-1)k C k n
m
m +k =1+∑k =1
n -1
(-1)k (C k n -1+C k -1n -1)m m +k +(-1)n m m +n =1+∑k =1
n -1
(-1)
k
C k n -1
m
m +k +∑k =
1n (-1)k C k -1n -1
m m +k
=P (n -1,m )+∑k =1
n
(-1)k C k -1n -1
m
m +k
=P (n -1,m )-m n ∑k =0
n (-1)k C k n
m
m +k
=P (n -1,m )-m
n P (n ,m )
即P (n ,m )=
n
m +n
P (n -1,m ), 由累乘,易求得P (n ,m )=n !m !
(n +m )!P (0,m )=1
C n n +m ,
又Q (n ,m )=C n n +m ,
所以P (n ,m )·Q (n ,m )=1.。