新人教版初一数学下册第二学期期末考试复习试卷六
- 格式:doc
- 大小:196.50 KB
- 文档页数:9
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
B ′C ′D ′O ′A ′ODC BA(第8题图)人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内) 题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是 A .某市5万名初中毕业生的中考数学成绩 B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= .11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是 °.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小. 15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者 试验次数n 正面朝上的次数m正面朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图. 在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''.OA C P P′B (第16题图)(第16题图)18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b+的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费FECBA(第22题图)金额/元 5 50(1)请将表格补充完整; (2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
人教版七年级第二学期期末考试数学试卷及答案一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.绝对值等于2的数是()A.﹣2B.C.2D.±22.下列说法错误的是()A.1的算术平方根是1B.任意一个数都有两个平方根C.0的平方根是0D.﹣2是﹣8的立方根3.如图,直线a、b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠3+∠4=180°C.∠1=∠4D.∠2=30°,∠4=25°4.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)5.数学中有许多形状优美、寓意美好的曲线,曲线C就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C在第一、二象限中的任意一点到原点的距离大于1;③曲线C所围成的“心形”区域的面积小于3.其中正确结论的序号是()A.①B.②C.①②D.①②③6.两位同学在解方程组时,甲同学由正确地解出,乙同学因把c写错了解得,则a+b+c 的值为()A.3B.0C.1D.77.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x=5D.﹣3x≥08.为了估计某地区梅花鹿的数量,先捕捉20只梅花鹿做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉100只梅花鹿,发现其中5只有标记.估计这个地区的梅花鹿的数量约有()只.A.200B.300C.400D.5009.将一个直角三角板和一把直尺按如图所示摆放,若∠1=35°,则∠2的度数为()A.35°B.45°C.50°D.55°10.如图,将线段AB平移到线段CD的位置,则a+b的值为()A.4B.0C.3D.﹣511.已知关于x,y的方程组给出下列结论:①当a=1时,方程组的解也是x+y=2a+1的解;②无论a取何值,x,y的值不可能是互为相反数;③x,y都为自然数的解有4对;④若2x+y=8,则a=2.正确的有几个()A.1B.2C.3D.412.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是()A.37B.27C.23D.20二、填空题(本大题共4个小题,每小题3分,共12分)13.已知=2,=20,=0.2,则=.14.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=50°,则∠2﹣∠1=.15.已知点P在第四象限,且到x轴的距离为2,到y轴距离是4,则点P的坐标为.16.对于三个实数a,b,c,用max{a,b,c}表示这三个数中最大的数.例如:max{﹣1,2,6}=6,max{0,4,4}=4,若max{﹣x﹣1,2,2x﹣2}=2,则x的取值范围是.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22,23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.解方程组:.18如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.19解不等式组:,并在数轴上表示出不等式组的解集.20某中学为了提高学生的综合素质,成立了以下社团:A(机器人),B(围棋),C(羽毛球),D(电影配音),每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成两幅不完整的统计图(如图).根据上述信息,解答下列问题:(1)这次一共调查了多少人?(2)求“A”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.21阅读佳佳与明明的对话,解决下列问题:(1)“多边形内角和为2020°”,为什么不可能?(2)明明求的是几边形的内角和?(3)错当成内角的那个外角为多少度?22为创建省文明卫生城市,某街道将一公园进行绿化改造.计划种植甲、乙两种花木,甲种花木每棵进价800元,乙种花木每棵进价3000元,共需107万元;每种植一棵甲种花木需人工费30元,每种植一棵乙种花木需人工费80元,共需人工费32000元.(1)求计划种植甲、乙两种花木各多少棵?(2)如果承包植树的老板安排28人同时种植这两种花木,每人每天能种植甲种花木20棵或乙种花木5棵,应分别安排多少人种植甲种花木和乙种花木,才能确保同时完成各自的任务?23如图平面直角坐标系中,A(﹣3,3),B(0,2),C(﹣2,0).(1)把三角形ABC向下平移3个单位长度,再向右平移2个单位,得到三角形A′B′C′,在坐标系中画出平移后的图形并写出A′、B′、C′的坐标.(2)求三角形ABC的面积.24.△ABC中,∠C=70°,点D、E分别是△ABC边AC、BC上的两个定点,点P是平面内一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.初探:(1)如图1,若点P在线段AB上运动,①当∠α=60°时,则∠1+∠2=°;②∠α、∠1、∠2之间的关系为:.再探:(2)若点P运动到边AB的延长线上,如图2,则∠α、∠1、∠2之间有何关系?并说明理由.拓展:(3)请你试着给出一个点P的其他位置,在图3中补全图形,写出此时∠α、∠1、∠2之间的关系,并说明理由.25. 2015年6月5日是第44个“世界环境日”.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案与试题解析一.选择题(共12小题)1.绝对值等于2的数是()A.﹣2B.C.2D.±2【分析】根据绝对值的意义求解.【解答】解:∵|2|=2,|﹣2|=2,∴绝对值等于2的数为±2.故选:D.2.下列说法错误的是()A.1的算术平方根是1B.任意一个数都有两个平方根C.0的平方根是0D.﹣2是﹣8的立方根【分析】根据立方根、平方根、算术平方根的性质逐一判断即可.【解答】解:A,1的算术平方根是1,故此说法不符合题意;B,0的平方根只有0,故此说法,符合题意;C,0的平方根是0,故此说法不符合题意;D,﹣2是﹣8的立方根,故此说法不符合题意;故选:B.3.如图,直线a、b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠3+∠4=180°C.∠1=∠4D.∠2=30°,∠4=25°【分析】根据同位角相等,两直线平行即可判断.【解答】解:A.∠1=∠2,不能判断a∥b,故不合题意;B.∠3+∠4=180°,不能判断a∥b,故不合题意;C.∵∠1=∠4,∴a∥b(同位角相等两直线平行),故符合题意;D.∠2=30°,∠4=25°,不能判断a∥b,故不合题意;故选:C.4.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)【分析】直接利用已知点坐标建立平面直角坐标系来确定位置即可得出答案.【解答】解:如图所示:则“兵”位于(﹣3,2).故选:B.5.数学中有许多形状优美、寓意美好的曲线,曲线C就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C在第一、二象限中的任意一点到原点的距离大于1;③曲线C所围成的“心形”区域的面积小于3.其中正确结论的序号是()A.①B.②C.①②D.①②③【分析】观察图形可得答案.【解答】解:①观察图形可得经过的整点有6个,故正确;②曲线C在第一、二象限中的任意一点到原点的距离大于或等于1,故正确;③曲线C所围成的“心形”区域的面积大于3,故错误.故选:C.6.两位同学在解方程组时,甲同学由正确地解出,乙同学因把c写错了解得,则a+b+c 的值为()A.3B.0C.1D.7【分析】把甲的结果代入方程组两方程中,乙的结果代入第一个方程中,分别求出a,b,c的值,即可求出所求.【解答】解:把代入方程组得:由,把代入ax+by=2得:﹣2a+2b=2,即﹣a+b=1,联立得:,解得:,由3c+2=﹣4,得到c=﹣2,则a+b+c=4+5﹣2=7.故选:D.7.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x=5D.﹣3x≥0【分析】根据一元一次不等式的定义判断即可.【解答】解:A、5+4>8中不含有未知数,不是一元一次不等式,故本选项不符合题意.B、2x﹣1是代数式,不是一元一次不等式,故此选项不符合题意;C、2x=5是一元一次方程,不是一元一次不等式,故此选项不符合题意;D、﹣3x≥0是一元一次不等式,故此选项符合题意;故选:D.8.为了估计某地区梅花鹿的数量,先捕捉20只梅花鹿做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉100只梅花鹿,发现其中5只有标记.估计这个地区的梅花鹿的数量约有()只.A.200B.300C.400D.500【分析】设这个地区的梅花鹿的数量约有x只,根据做标记的梅花鹿熟练所占比例等于捕捉100只梅花鹿中有标记的只数所占比例列出方程,解之即可.【解答】解:设这个地区的梅花鹿的数量约有x只,根据题意,得:=,解得x=400,经检验:x=400是分式方程的解,所以这个地区的梅花鹿的数量约400只,故选:C.9.将一个直角三角板和一把直尺按如图所示摆放,若∠1=35°,则∠2的度数为()A.35°B.45°C.50°D.55°【分析】由平行线的性质及三角形内角和作答.【解答】解:如图,∵∠1=∠4(两直线平行,内错角相等),∠2=∠3(对顶角相等),∴∠1+∠2=∠3+∠4=90°,∴∠2=90°﹣∠1=55°.故选:D.10.如图,将线段AB平移到线段CD的位置,则a+b的值为()A.4B.0C.3D.﹣5【分析】利用坐标平移的变化规律解决问题即可.【解答】解:由题意,线段AB向左平移3个单位,再向上平移4个单位得到线段CD,∴a=5﹣3=2,b=﹣2+4=2,∴a+b=4,故选:A.11.已知关于x,y的方程组给出下列结论:①当a=1时,方程组的解也是x+y=2a+1的解;②无论a取何值,x,y的值不可能是互为相反数;③x,y都为自然数的解有4对;④若2x+y=8,则a=2.正确的有几个()A.1B.2C.3D.4【分析】①根据消元法解二元一次方程组,然后将解代入方程x+y=2a+1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x、y,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x+y=3的自然数解即可得结论;④根据整体代入的方法即可求解.【解答】解:①将a=1代入原方程组,得解得将x=3,y=0,a=1代入方程x+y=2a+1的左右两边,左边=3,右边=3,当a=1时,方程组的解也是x+y=2a+1的解;②解原方程组,得若x,y是互为相反数,则x+y=0,即2a+1+2﹣2a=0,方程无解.无论a取何值,x,y的值不可能是互为相反数;③∵x+y=2a+1+2﹣2a=3∴x、y为自然数的解有,,,.④∵2x+y=8,∴2(2a+1)+2﹣2a=8,解得a=2.故选:D.12.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是()A.37B.27C.23D.20【分析】根据题意得出关于a和b的二元一次方程,然后用b表示出a,继而用b表示出a+b,然后可以利用函数的思想得出a+b取得最值的条件,即能得出答案.【解答】解:由题意得,5a+19b=213,∴a=,∴a+b=+b=,∵a+b是关于b的一次函数且a+b随b的增大而减小,∴当b最小时,a+b取最大值,又∵a,b是正整数,∴当b=2时,a+b的最大值=37.故选:A.二.填空题(共4小题)13.已知=2,=20,=0.2,则=200.【分析】根据题意得出,当被开三次方数的小数点向左或向右移动3位,立方根的小数点则向左或向右移动1位,求解即可.【解答】解:∵=2,=20,=0.2,∴=200,故答案为:200.14.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=50°,则∠2﹣∠1=20°.【分析】由折叠的性质可得∠DEF=∠GEF,由DE∥BC可得∠DEF=∠GEF=∠EFG=50°,∠1可求,由AE ∥BG可得∠1+∠2=180°,∠2可求,用∠2﹣∠1,结论可得.【解答】解:由题意可得:∠DEF=∠GEF.∵DE∥BC,∴∠DEF=∠EFG=50°.∴∠DEF=∠GEF=∠EFG=50°.∴∠1=180°﹣∠GFD=180°﹣100=80°.∵AE∥BG,∴∠1+∠2=180°.∴∠2=100°.∴∠2﹣∠1=100°﹣80°=20°.故答案为:20°.15.已知点P在第四象限,且到x轴的距离为2,到y轴距离是4,则点P的坐标为(4,﹣2).【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,点到x轴的距离是纵坐标的绝对值,点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:由到x轴的距离是2,到y轴的距离是4,得:|x|=4,|y|=2.由点P位于第四象限,得:P点坐标为(4,﹣2),故答案为:(4,﹣2).16.对于三个实数a,b,c,用max{a,b,c}表示这三个数中最大的数.例如:max{﹣1,2,6}=6,max{0,4,4}=4,若max{﹣x﹣1,2,2x﹣2}=2,则x的取值范围是﹣3≤x≤2.【分析】根据题意,可以得到关于x的不等式,然后即可求得x的取值范围.【解答】解:∵max{﹣x﹣1,2,2x﹣2}=2,∴,解得﹣3≤x≤2,故答案为:﹣3≤x≤2.三.解答题17.解方程组:.【分析】用加减消元法,消去y,解得x,把x的值代入②,解得y即可.【解答】解:,②×4得:4y+4x=4③,③﹣①得:4x+2=4﹣3x,∴,代入②得:,所以原方程组的解为:.18如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】三角形内角和定理.【专题】三角形;推理能力.【答案】(1)见上图;(2)35°.【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】(1)如图所示;(2)在△ABC中,∠BAC=180°﹣∠B﹣∠ACB=180°﹣40°﹣110°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.19解不等式组:,并在数轴上表示出不等式组的解集.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题;一元一次不等式(组)及应用;运算能力.【答案】见试题解答内容【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由①解得x<4,由②解得x≥3,所以不等式组的解集为3≤x<4.解集在数轴上表示如下图:.20某中学为了提高学生的综合素质,成立了以下社团:A(机器人),B(围棋),C(羽毛球),D(电影配音),每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成两幅不完整的统计图(如图).根据上述信息,解答下列问题:(1)这次一共调查了多少人?(2)求“A”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.【考点】扇形统计图;条形统计图.【专题】数据的收集与整理;统计的应用;数据分析观念;模型思想;应用意识.【答案】见试题解答内容【分析】(1)“B类”的频数为30,占调查人数的30%,可求出调查人数;(2)“A类”占总数的10%,因此所在的圆心角度数就是360°的10%;(3)求出“A类”“D类”人数,即可补全条形统计图.【解答】解:(1)30÷30%=100(人),答:本次一共调查100人;(2)360°×10%=36°,答:“A”在扇形统计图中所占圆心角的度数为36°;(3)“A类”人数:100×10%=10(人),“D类”人数:100﹣10﹣30﹣40=20(人),补全条形统计图如图所示.21阅读佳佳与明明的对话,解决下列问题:(1)“多边形内角和为2020°”,为什么不可能?(2)明明求的是几边形的内角和?(3)错当成内角的那个外角为多少度?【考点】多边形内角与外角.【专题】多边形与平行四边形;运算能力.【答案】见试题解答内容【分析】(1)n边形的内角和是(n﹣2)•180°,因而内角和一定是180度的倍数,依此即可作出判断;(2)设应加的内角为x,多加的外角为y,依题意可列方程:(n﹣2)180°=2020°﹣y+x,解方程即可求解;(3)代入计算求解.【解答】解:(1)设多边形的边数为n,180°(n﹣2)=2020°,解得,∵n为正整数,∴“多边形的内角和为2020°”不可能.(2)设应加的内角为x,多加的外角为y,依题意可列方程:(n﹣2)180°=2020°﹣y+x,∵﹣180°<x﹣y<180,∴2020°﹣180°<180°(n﹣2)<2020°+180°,解得,又∵n为正整数,∴n=13,n=14.故明明求的是十三边形或十四边形的内角和.(3)十三边形的内角和=180°×(13﹣2)=1980°,∴y﹣x=2020°﹣1980°=40°,又x+y=180°,解得:x=70°,y=110°;十四边形的内角和=180°×(14﹣2)=2160°,∴y﹣x=2020°﹣2160°=﹣140°,又x+y=180°,解得:x=160°,y=20°;所以那个外角为110°或20°.22为创建省文明卫生城市,某街道将一公园进行绿化改造.计划种植甲、乙两种花木,甲种花木每棵进价800元,乙种花木每棵进价3000元,共需107万元;每种植一棵甲种花木需人工费30元,每种植一棵乙种花木需人工费80元,共需人工费32000元.(1)求计划种植甲、乙两种花木各多少棵?(2)如果承包植树的老板安排28人同时种植这两种花木,每人每天能种植甲种花木20棵或乙种花木5棵,应分别安排多少人种植甲种花木和乙种花木,才能确保同时完成各自的任务?【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】见试题解答内容【分析】(1)设甲种花木x棵、乙种花木y棵.此问中的等量关系:①甲种花木每棵进价800元,乙种花木每棵进价3000元,共需107万元;②每种植一棵甲种花木需人工费30元,每种植一棵乙种花木需人工费80元,共需人工费32000元;列出方程组计算即可求解.(2)设安排a人种植甲种花木,则安排(28﹣a)人种植乙种花木,根据时间的等量关系列出方程求解即可.【解答】解:(1)设甲种花木x棵、乙种花木y棵,依题意有,解得.故甲种花木400棵、乙种花木250棵;(2)设安排a人种植甲种花木,则安排(28﹣a)人种植乙种花木,依题意有=,解得a=8,经检验,a=8是原方程的解,则28﹣a=28﹣8=20.故安排8人种植甲种花木,则安排20人种植乙种花木,才能确保同时完成各自的任务.23如图平面直角坐标系中,A(﹣3,3),B(0,2),C(﹣2,0).(1)把三角形ABC向下平移3个单位长度,再向右平移2个单位,得到三角形A′B′C′,在坐标系中画出平移后的图形并写出A′、B′、C′的坐标.(2)求三角形ABC的面积.【考点】作图﹣平移变换.【专题】平移、旋转与对称;几何直观.【答案】(1)见解答,A′(﹣1,0)、B′(2,﹣1)、C′(0,﹣3);(2)4.【分析】(1)将三个顶点分别向下平移3个单位长度,再向右平移2个单位,得到其对应点,再首尾顺次连接即可;(2)利用割补法求解即可.【解答】解:(1)如图所示,△A′B′C′即为所求.由图知A′(﹣1,0)、B′(2,﹣1)、C′(0,﹣3);(2)△ABC的面积为3×3﹣×1×3﹣×1×3﹣×2×2=4.24.△ABC中,∠C=70°,点D、E分别是△ABC边AC、BC上的两个定点,点P是平面内一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.初探:(1)如图1,若点P在线段AB上运动,①当∠α=60°时,则∠1+∠2=°;②∠α、∠1、∠2之间的关系为:.再探:(2)若点P运动到边AB的延长线上,如图2,则∠α、∠1、∠2之间有何关系?并说明理由.拓展:(3)请你试着给出一个点P的其他位置,在图3中补全图形,写出此时∠α、∠1、∠2之间的关系,并说明理由.【考点】三角形内角和定理.【专题】三角形;推理能力;应用意识.【答案】(1)①130.②∠1+∠2=70°+∠α.(2)∠1=70°+∠2+∠α.(3)∠1+∠2=430°﹣∠α.【分析】(1)①如图1中,连接PC.证明∠1+∠2=∠ACB+∠DPE即可.②利用①中结论解决问题.(2)利用三角形的外角的性质解决问题即可.(3)利用三角形的外角的性质解决问题即可.【解答】解:(1)①如图1中,连接PC.∵∠1=∠DCP+∠DPC,∠2=∠ECP+∠CPE,∴∠1+∠2=∠DCP+∠DPC+∠ECP+∠EPC=∠ACB+∠DPE=∠ACB+∠α,∵∠ACB=70°,∠α=60°,∴∠1+∠2=60°+70°=130°.②由①可知,∠1+∠2=∠ACB+∠α=70°+∠α,故答案为130,70°+∠α.(2)结论:∠1=70°+∠2+∠α.理由:如图2中,∵∠1=∠C+∠CFD,∠CFD=∠2+∠α,∴∠1=70°+∠2+∠α.(3)结论:∠1+∠2=430°﹣∠α.理由:如图3中,∵∠1=∠DCP+∠DPC,∠2=∠ECP+∠CPE,∴∠1+∠2=∠DCP+∠DPC+∠ECP+∠EPC=∠ACB+360°﹣∠DPE=70°+360°﹣∠α,∴∠1+∠2=430°﹣∠α.25. 2015年6月5日是第44个“世界环境日”.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?【考点】二元一次方程组的应用;一元一次不等式组的应用.【答案】见试题解答内容【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可;(3)分别求出各种购车方案总费用,再根据总费用作出判断.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得.答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.。
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。
门票设个人票和团队票两大类。
个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。
1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。
3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。
人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。
人教版七年级第二学期期末数学试卷及答案注意事项:1.本次考试试卷共6页,试卷总分120分,考试时间90分钟.2.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.答题前,务必在答题卡规定的地方填写自己的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号和本人姓名、准考证号是否一致.3.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.得分评卷人一、精心选一选,慧眼识金(本大题共16个小题;每小题3分,共48分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短2.如果a>b,那么下列结论中一定成立的是A.2-a>2-b B.2+a>2+b C.ab>b2D.a2>b23.下列运算正确的是A.(a2)3=a5B.a8÷a4=a2C.(a+b)2=a2+b2D.(a-b)(a+b)=a2-b24.把0.00258写成a×10n(1≤a<10,n为整数)的形式,则a+n为A.2.58B.﹣0.58C.5.58D.﹣0.425.方程2x+y=5与下列方程构成的方程组的解为{x=3y=−1的是A.x-y=4B.x+y=4C.3x-y=8D.x+2y=-1 6.下列各式能用公式法因式分解的是A.-x2+y2B.-x2-y2C.4x2+4xy-y2D.x2+xy+y2A .211 B .0 C .211 D .212 8.如图,点E 在BC 的延长线上,下列条件能判定AB ∥CD 的是A .∠1=∠2B .∠3=∠4C .∠DAB +∠B =180°D .∠D =∠5 9.不等式3-x ≤2x 的解集在数轴上表示正确的是A .B .C .D .10.下列条件能说明△ABC 是直角三角形的是A .∠A =∠B =2∠CB .∠A =∠B +∠C C .∠A :∠B :∠C =2:3:4D .∠A =40°,∠B =55° 11.若3x =4,3y =6,则3x +y 的值是A .24B .10C .3D .212.如图,点D 在△ABC 内,且∠BDC =120°,∠1+∠2=55°,则∠A 的度数为A .50°B .60°C .65°D .75° 13.如果(a +b )2=16,(a -b )2=4,且a 、b 是长方形的长和宽,则这个长方形的面积是A .3B .4C .5D .614.如图,△ABC 的面积是1,AD 是△ABC 的中线,AF =12FD ,CE =12EF ,则△DEF 的面积为A .21 B .43C .278D .92 15.若关于x 的不等式组{x <2无解,则a 的取值范围是A.a≤-3B.a<-3C.a>3D.a≥316.如图,将一张三角形纸片ABC折叠,使点A落在△ABC所在平面的A′处,折痕为DE,若∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是A.γ=180°-α-βB.γ=α+2βC.γ=2α+βD.γ=α+β卷Ⅱ(非选择题,共72分)得分评卷人二、细心填一填,一锤定音(每小题3分,共12分)17.多项式4x3y2-2x2y+8x2y3的公因式是.18.已知三角形的两边长分别为2和7,则第三边x的取值范围是.19.如图,AB∥CD,∠B=78°,∠E=27°,则∠D的度数为.20.对于有理数m,我们规定[m]表示不大于m的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[32x]=-5,则x可取的整数值是.得分评卷人21.(本题9分)21.解不等式组:{−1 ①4x+5≥x−7 ②.请结合题意填空,完成本题的解答(1)解不等式①,得;(2)解不等式②,得;(4)原不等式组的解集为.得分评卷人22.(本题9分)一次课堂练习,小红做了如下四道因式分解题:①x2-y2=(x-y)(x+y).②a3-a=a(a2-1).③x2y-xy2=xy(x-y).④2m2+4mn+2n2=(2m+2n)2.(1)小红做错的或不完整的题目是(填序号);(2)把(1)题中题目的正确答案写在下面.得分评卷人23.(本题9分)如图,在直角△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.得分评卷人24.(本题10分)整式的乘法与因式分解是有理数运算的自然延伸,也是代数知识的基本內容,请利用相关知识解决下面的问题:(1)化简计算:(n+2)(4n-8)+17;(2)在(1)题结果的基础上,增加一个单项式,使新得到的多项式能运用完全平方公式进行因式分解,请写出所有这样的单项式,并进行因式分解;25.(本题11分)好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在△ABC 中,∠BAC=48°,点I是两角∠ABC、∠ACB的平分线的交点.(1)填空:∠BIC=.(2)若点D是两条外角平分线的交点,填空:∠BDC=.(3)若点E是内角∠ABC、外角∠ACG的平分线的交点,填空:∠BEC=.(4)在问题(3)的条件下,当∠ACB等于度时,CE∥AB?请说明理由.26.(本题12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为255人,1辆甲种客车与2辆乙种客车的总载客量为150人.(1)请问1辆甲种客车与1辆乙种客车的载客量分別为多少人?(2)某学校组织460名师生集体外出活动,拟租用甲、乙两种客车共8辆,一次将全部师生送到指定地点,至少需要租甲种客车几辆?参考答案一:DBDDA ADBBB ACADDC二:17.2x2y18.5<x<9 19.51° 20.﹣17,﹣16,﹣15(全部写对得3分,错一个不得分)21.解:(1)解不等式①,得x≤1;……………3分(2)解不等式②,得x≥﹣4;……………6分(3)把不等式①和②的解集在数轴上表示出来:………………8分(4)原不等式组的解集为﹣4≤x≤1.………………9分22.解:(1)②、④;…………3分(2)a3﹣a=a(a2﹣1)……………5分=a(a+1)(a﹣1);………6分2m2+4mn+2n2=2(m2+2mn+n2)………7分=2(m+n)2.…………9分解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.…………3分(答案合理即可)∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;…………5分(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.………7分又∵∠F=25°,∴∠F=∠CEB=25°,………………8分∴DF∥BE.…………………………9分解:(1)(n+2)(4n-8)+17=4(n+2)(n-2)+17……………1分=4(n2-4)+17…………….2分=4n2-16+17………………3分(2)新增单项式为:4n 或﹣4n 或4n 4……………..7分4n 2+4n +1=(2n +1)2…………….8分4n 2-4n +1=(2n -1)2…………….9分4n 4+4n 2+1=(2n 2+1)2………….10分25.114°…………..2分 66°………….4分24° ……….6分 84°………8分∵CE ∥AB ,∴∠ECA =∠A =48°,……………9分∴∠ECG =∠ECA =∠ABC =48°,…………10分∴∠ACB =180°﹣48°﹣48°=84°…………11分(以84°为条件证平行也可以)26.解:(1)设1辆甲种客车的载客量为x 人,1辆乙种客车的载客量为y 人,依题意有,…………………4分解得:.…………………6分答:1辆甲种客车的载客量为60人,1辆乙种客车的载客量为45人;(2)设租用甲种客车a 辆,依题意有:60a +45(8−a)≥460…………9分解得: a ≥203…………………11分 因为a 取整数, a =7. 所以至少需要租甲种客车7辆. …………………12分 (最后一步只要答出至少租甲种客车7辆就得分.)。
七年级第二学期月考试卷班级 座号 姓名一、填空题(每题3分,共30分)1、点P(1,2)关于y 轴对称的点的坐标是 .2、写出不等式05<-x 的一个整数解: 。
3、内角和与外角和之比是1∶5的多边形是______边形4、若一个一元二次方程的解为21x y =⎧⎨=-⎩,则这个方程可以是________________(要求写出一个)。
5、如图,已知AB ∥CD ,CE 、AE 分别平分∠ACD 、∠CAB ,则∠1+∠2= .6、用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是 . (只需写出一种即可)7、有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直。
请把你认为是真命题的命题的序号填在横线上___________________8、已知∣x-3∣+(y -6) =0,以x ,y 为两边长的等腰三角形的周长是 。
9、用___________统计图,反映某学生从6岁到12岁每年一次检查的视力情况. 用___________统计图,反映某班40名同学穿鞋的码数.用___________统计图,反映某市五个区的战地面积与全市总面积的对比情况.10、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
二、选择题(每题3分,共30分)11、两架编队飞行(即平行飞行)的两架飞机A 、B 在坐标系中的坐标分别为A (-1,2)、B 图 1 图 2 图 3第 10 题图第5题2A.(l ,5);B.(-4,5); C .(1,0); D.(-5,612、下列每组数分别是三根小木棒的长度,其中能摆成三角形的是( ) A .cm cm cm 5,4,3 B. cm cm cm 15,8,7 C .cm cm cm 20,12,3 D. cm cm cm 11,5,5 13、设a 是实数,则|a|-a 的值( )A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数14、一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙) ( ) A 、75° B 、105° C 、120° D 、125° 15、图2是甲、乙、丙三人玩跷跷板的示意图(支点在中点处), 则甲的体重的取值范围在数轴上表示正确的是( )A B16、若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则 点P 的坐标是( )A 、(-4,3)B 、(4,-3)C 、(-3,4)D 、(3,-4)17、如图,是象棋盘的一部分,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )上.A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)18、我们知道,五星红旗上有五颗五角星,每一颗五角星有五个相等的锐角(如图),每个锐角等于( ) (A )30o (B )36o (C )45o(D )60o甲乙40kg 丙50kg甲图2 321E DBA 第19题图19、如图,AB ∥CD ,则图中∠1、∠2、∠3关系一定成立的是( ) A .∠1+∠2+∠3=180°B .∠1+∠2+∠3=360°C .∠1+∠3=2∠2D .∠1+∠3=∠220、在“五·一”黄金周期间,某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内时,不享受优惠;(2)一次性购物在100元(含100元)以上, 300元(不含300元)以内时,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠.王茜在本超市两次购物分别付款80元、252元.如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款( )(A) 332元 (B)316元或332元 (C) 288元 (D) 288元或316三、解答题(第21、22各10分,第23、24各5分,第25、26、27各10分,共60分)21(1)解方程组⎩⎨⎧=+=-)2(523)1(82y x y x2x -6≤5x +6,(2)解不等式组: 并将它的解集在数轴上表示出来. 3x <2x -1 ,22、如图,AD为△ABC的中线,BE为△ABD的中线。
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?23、如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,C在A的南偏东25°方向。
若轮船行驶到C处,那么从C处看A,B两处的视角∠ACB是多少度?24、班委会决定,由小敏、小聪两人负责选购圆珠笔、钢笔共22支,送给结对的山区学校的同学,他们去了商场,看到圆珠笔每支5元,钢笔每支6元。
(1)若他们购买圆珠笔、钢笔刚好用去120元,问圆珠笔、钢笔各买了多少支?(2)若购圆珠笔可9折优惠,钢笔可8折优惠,在所需费用不超过100元的前提下,请你写出一种选购方案。
25、某公司有员工50人,为了提高经济效益,决定引进一条新的生产线并从现有员工中抽调一部分员工到新的生产线上工作,经调查发现:分工后,留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍,设抽调x人到新生产线上工作.⑴填空:若分工前员工每月的人均产值为a元,则分工后,留在原生产线上工作的员工每月人均产值是元,每月的总产值是元;到新生产线上工作的员工每月人均产值是元,每月的总产值是元;⑵分工后,若留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值;而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半。
问:抽调的人数应该在什么范围?26、阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.下图中扇形是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表格中是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解析下列问题:Array(1)求该校八年级的人数占全校总人数的百分率.(2) 求表格中A,B 的值.(3) 该校学生平均每人读多少本课外书?27、探索与发现△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线。
(1)如图,若∠B=︒20,∠C=︒58,求∠EAD 的度数。
(2)如图,当∠B 和∠C (∠C>∠B )为锐角时,由第1小题的计算过程,猜想∠EAD 、∠B 和∠C 之间的关系是 (不必说明理由)。
(3)如图,当∠B 为锐角,而∠ACB 分别为直角和钝角时,第(2)小题的结论还成立吗?(只写成立或不成立,不必说明理由):AE DCABE DCAE(D )C AC新人教版七年级第二学期数学期末综合试卷(六)答案一、填空题1 2、 (-1,2) 3、1 4、130° 5、略 6、90° 7、正三角形,或正方形,或正六边形中的某一个都可以; 8、22+,22-或2-,2。
(只要符合题意即可)。
9、15 10、13+n二、选择题11、C 12、C 13、B 14、D 15、C 16、C 17、C 18、B 19、D 20、D 三、解答题21、(1) 解法一:设一本笔记本需x 元,则一只钢笔需(6-x )元,依题意,得18)6(4=-+x x ……………………………………………4分解这个方程,得 x=2………………………………………5分4266=-=-∴x …………………………7分…………………… 答:1本笔记本需2元,1支钢笔需4元…………………8分解法二:设一本笔记本需x 元,则一只钢笔需y 元,依题意,得…………1分 ⎩⎨⎧=+=+1846y x y x ………………………………………4分解这个方程,得 ⎩⎨⎧==42y x ………………………7分答:1本笔记本需2元,1支钢笔需4元。
(2)解法一:由⑴得82-=x y ⑶ 解法二:由⑴×2+⑵得 把⑶代入⑵得()58223=-+x x 217=x 51643=-+x x 3=x217=x 把3=x 代入⑴得 3=x 2×3-8=y 把3=x 代入⑶得2-=y ∴2-=y∴方程组的解为⎩⎨⎧-==23y x ∴方程组的解为⎩⎨⎧-==23y x(2)22、(1)解:解不等式①得 x ≥-4解不等式②得 x <-1把不等式 ①和②的解集在数轴上表示如下:∴这个不等式组的解集为-4≤x <-1(2)解:矩形的周长是2(x+10)cm ,面积是10xcm 2根据题意,得⎩⎨⎧><+.10010,80)10(2x x解这个不等式组,得⎩⎨⎧><.10,30x x所以x 的取值范围是10<x <30.23、∠3, ∠3, DG, ∠AGD, 112º 24、解:(1)设买了x 支圆珠笔,则买了(22-x)支钢笔,根据题意,得 5x+6(22-x)=120 解得x=12 ∴22-x=10答:买了12支圆珠笔和10支钢笔。
(2) 设买了x 支圆珠笔,则买了(22-x)支钢笔,根据题意,得 5×0.9x+6×0.8(22-x)≤100 解得x ≥56/3 ∵x 为正整数∴x=19或20或21 如圆珠笔19支,钢笔3支(答案不唯一) 25、解:(1)填空:(1+40%)a ,(50-x )(1+40%)a , 3a ,3ax.(2)由题可得不等式组:50x a a ax a ≥⎧⎨≥⎩(-)(1+40%)50325(其中a >0)解得x 的取值范围为:128x 1437≤≤ 由于x 只能取正整数,所以抽调的人数应在9-14人之间(包括9人和14人) 26、解:(1)∵∠B+∠C+∠BAC=1800又∵∠B=︒20,∠C=︒58 ∴∠BAC=1800-200-580=1020 ∵AE 是∠BAC 的平分线 ∴∠BAE=1/2∠BAC=510∴∠AED=∠B+∠BAE=200+510=710∵AD 是BC 边上的高 ∴∠ADE=900∵∠EAD+∠ADE+∠ADE=1800∴∠EAD=1800-710-900=190 (2) ∠EAD=1/2(∠B+∠C) (3)成立。