Properties of an NAD+-dependent DNA ligase from the hyperthermophile
- 格式:pdf
- 大小:319.81 KB
- 文档页数:5
江苏农业学报(JiangsuJ.ofAgr.Sci.)ꎬ2022ꎬ38(6):1474 ̄1483http://jsnyxb.jaas.ac.cn李晓燕ꎬ李成双ꎬ金业程ꎬ等.茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控[J].江苏农业学报ꎬ2022ꎬ38(6):1474 ̄1483.doi:10.3969/j.issn.1000 ̄4440.2022.06.004茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控李晓燕ꎬ㊀李成双ꎬ㊀金业程ꎬ㊀魏小涵ꎬ㊀李梦瑶(四川农业大学园艺学院ꎬ四川成都611130)收稿日期:2022 ̄04 ̄07基金项目:国家自然科学基金项目(32002027)作者简介:李晓燕(1999-)ꎬ女ꎬ山西长治人ꎬ硕士研究生ꎬ主要从事蔬菜栽培生理与遗传育种研究ꎮ(E ̄mail)Lxy2324804342@163.com通讯作者:李梦瑶ꎬ(E ̄mail)limy@sicau.edu.cn㊀㊀摘要:㊀为明确茎瘤芥瘤状茎形成过程中的糖酸含量变化ꎬ揭示茎瘤芥甘油醛 ̄3 ̄磷酸脱氢酶(GAPDH)的主要生理功能ꎬ并进一步探究BjuGAPC基因的表达模式对糖酸含量的调控机制ꎬ首先对BjuGAPC基因进行克隆ꎬ同时ꎬ利用生物信息学方法对BjuGAPC的理化性质㊁系统进化发育等多方面进行系统分析ꎬ并使用qRT ̄PCR比较分析BjuGAPC基因在茎瘤芥茎不同发育阶段的表达规律ꎮ结果显示:(1)BjuGAPC基因开放阅读框全长1038bpꎬ是一个稳定的亲水性蛋白质ꎬ同时具有多个蛋白质糖基化位点㊁磷酸化位点和特异性蛋白质激酶的结合位点ꎻBjuGAPC与其他物种的GAPDH具有高度相似性ꎬ亲缘关系与同科的芜菁㊁油菜㊁萝卜较近ꎮ(2)qRT ̄PCR分析结果表明ꎬBjuGAPC基因在茎瘤芥茎膨大不同时期的相对表达量差异显著且随着器官膨大相对表达量下调ꎬ与转录组的表达丰度一致ꎮ(3)相关性分析结果显示ꎬ基因表达量与可溶性糖和可滴定酸含量均呈正相关关系ꎬ并与糖酸比呈显著正相关关系ꎮ说明BjuGAPC基因参与甘油醛 ̄3 ̄磷酸脱氢酶中NAD+ ̄GAPDH的合成ꎬBjuGAPC基因对糖酸含量有正调控作用ꎬ可能参与了糖酸的合成过程ꎮ关键词:㊀茎瘤芥ꎻ茎膨大ꎻ糖酸含量ꎻBjuGAPC基因ꎻ理化性质ꎻ表达分析中图分类号:㊀S637.3㊀㊀㊀文献标识码:㊀A㊀㊀㊀文章编号:㊀1000 ̄4440(2022)06 ̄1474 ̄10CharacteristicsofBjuGAPCgenesequenceinBrassicajunceavar.tumidaanditsregulationofsugarandacidcontentinstemdevelopmentLIXiao ̄yanꎬ㊀LICheng ̄shuangꎬ㊀JINYe ̄chengꎬ㊀WEIXiao ̄hanꎬ㊀LIMeng ̄yao(CollegeofHorticultureꎬSichuanAgriculturalUniversityꎬChengdu611130ꎬChina)㊀㊀Abstract:㊀Theaimofthestudywastoclarifythechangesofsugarandacidcontentsduringtheformationoftubercu ̄latesteminBrassicajunceavar.tumidaandrevealthemainphysiologicalfunctionsofglyceraldehyde ̄3 ̄phosphatedehydro ̄genase(GAPDH)ꎬandtofurtherexploretheregulationmechanismofBjuGAPCgeneexpressionmodeonsugarandacidcontent.BjuGAPCgenewasclonedfirstꎬanditsphysicochemicalpropertiesꎬsystemevolutiondevelopmentandotheras ̄pectsweresystematicallyanalyzedbybioinformaticsmethodsatthesametime.qRT ̄PCRmethodwasusedtocompareandanalyzetheexpressionpatternofBjuGAPCgeneindifferentdevelopmentstagesofB.junceavar.tumidastem.TheresultsshowedthatꎬfirstlyꎬtheoveralllengthofopenreadingframeofBjuGAPCgenewas1038bpꎬanditwasastableandhy ̄drophilicproteinwithmultipleglycosylationsitesꎬphosphorylationsitesandspecificproteinkinasebindingsites.BjuGAPChadahighsimilaritywithGAPDHofotherspeciesꎬanditsgeneticrelationshipwascloselyrelatedtocropsofthesamefamilyꎬsuchasBrassicarapaꎬBrassicanapusandRaphanussativus.SecondlyꎬresultsofqRT ̄4741PCRanalysisshowedthatꎬtherelativeexpressionlevelofBjuGAPCgeneatdifferentstagesofB.junceavar.tumidastemswellingwassignificantlydifferentandwasdown ̄regulatedwiththeorganswelledꎬwhichwasconsistentwiththeexpressionabundanceoftranscriptome.Thirdlyꎬcorrelationanalysisrevealedthatꎬgeneexpressionwaspositivelycorrelatedwithsolu ̄blesugarcontentandtitratableacidcontentꎬandwassignificantlypositivelycorrelatedwithsugar ̄acidratio.Thestudyre ̄vealedthatꎬBjuGAPCgeneparticipatedinthesynthesisofNAD+ ̄GAPDHinGAPDHꎬandshowedpositiveregulatoryroleinsugarandacidcontentsꎬwhichmaybeinvolvedinthesynthesisprocessofsugarandacidinBrassicajuncea.Keywords:㊀Brassicajunceavar.tumidaꎻstemswellingꎻsugarandacidcontentꎻBjuGAPCgeneꎻphysicalandchemicalpropertiesꎻexpressionanalysis㊀㊀茎瘤芥(Brassicajunceavar.tumidaTsenetLee)属于十字花科ꎬ是芸薹属芥菜种的变种之一ꎬ也是榨菜生产的主要原料[1]ꎮ茎瘤芥的产品器官为膨大的瘤状茎ꎬ既可鲜食ꎬ又宜加工ꎬ具有极高的营养和经济价值ꎮ茎瘤芥的生长和发育过程受到外部条件㊁内源激素等共同调控[2 ̄3]ꎮ已有研究结果证明ꎬ许多关键基因可以调控果实发育过程中有机酸和糖代谢的合成[4]ꎬ但在茎瘤芥茎膨大过程中有关糖酸含量的调控基因以及关键基因的生物信息分析较少ꎮ因此ꎬ结合茎瘤芥茎膨大过程中糖酸含量的变化ꎬ克隆与之相关的基因并研究其表达模式与调控作用ꎬ能够给茎瘤芥的分子育种和改良茎瘤芥品种提供一定的理论依据ꎮ在植物体内ꎬ糖不仅是能量代谢的物质来源ꎬ同时可调控植物生长发育和环境应答[5]ꎮ果蔬及其制品中糖和有机酸的种类㊁数量以及糖酸比会影响其风味品质ꎮ可溶性糖是淀粉合成的底物ꎬ也直接关系到变态茎的营养状况ꎬ还原糖是蔗糖㊁淀粉等合成过程中光合作用的必需物质ꎮ甘油醛 ̄3 ̄磷酸脱氢酶(GAPDH)是高等植物糖酵解和糖异生反应中的关键酶ꎬ大致可以归为2种类型ꎬ一类是NADP+ ̄GAPDHꎬ参与植物的卡尔文循环[6]ꎬ另一类是NAD+ ̄GAPDHꎬ参与糖酵解和糖异生过程[7]ꎮ过去认为GAPDH基因在所有植物组织中几乎都是高水平表达且表达量相对稳定ꎬ所以常被用作研究其他功能性基因表达的内参基因[8]ꎮ然而ꎬ新的研究结果表明ꎬGAPDH是一种多功能酶[9]ꎬ除了参与植物基础的新陈代谢外ꎬ也参与逆境胁迫下的抵御反应[10 ̄11]ꎮGAPDH还广泛参与植株的生长发育进程ꎬ如拟南芥GAPDH基因缺失突变体表现为根不能正常生长和花粉败育[12 ̄13]ꎬ生理型雄性不育小麦发育过程中种子在不同生长发育阶段GAPDH基因表达量存在显著差异[14]ꎬ拟南芥gapc1 ̄1㊁gapc2 ̄1基因双敲除突变体的种子含油量与敲除前相比下降3%[15]ꎮ当前已有多种植物的GAPDH基因被克隆ꎬ如拟南芥[16]㊁番茄[17]㊁水稻[18]等ꎬ但是在芥菜中还未见相关报道ꎮ本研究基于芥菜的基因组和转录组数据库[19]ꎬ克隆芥菜GAPDH基因ꎬ利用生物信息学方法对其编码的蛋白质氨基酸组成㊁蛋白质结构及系统进化等方面进行全面预测和分析ꎬ并结合茎瘤芥不同膨大时期的糖酸含量变化ꎬ对Bju ̄GAPC基因的表达进行相关性分析ꎬ为阐明该基因的表达在茎瘤芥茎膨大过程中的调控作用奠定基础ꎮ1㊀材料与方法1.1㊀试验材料植物材料为涪杂2号茎瘤芥ꎬ采自四川农业大学(成都校区)第五教学实验楼楼顶大棚ꎮ从瘤茎发育始期(2021年12月)开始取样ꎬ横径间隔2cm取样1次ꎬ每次取3个生物学重复ꎬ共取样4次ꎮ取样完立即放入冰盒带回实验室ꎬ所取样品用清水将杂质除净ꎬ晾干水分ꎬ用液氮速冻后放于-80ħ冰箱中保存ꎮ1.2㊀试验方法1.2.1㊀茎瘤芥总RNA的提取和反转录㊀利用十六烷基三甲基溴化铵(CTAB)试剂盒[生工生物工程(上海)股份有限公司]提取茎瘤芥总RNAꎬ利用TSINGKE公司研发的GoldenstarTMRT6cDNASyn ̄thesisMix反转录试剂盒合成cDNA第一链ꎮ1.2.2㊀BjuGAPC基因的克隆㊀利用Primer6.0软件设计用于克隆BjuGAPC基因编码区全长和检测该基因表达量的引物(表1)ꎮ以芥菜的cDNA为模板进行克隆ꎬ扩增程序为:95ħ预变性3minꎻ95ħ30sꎬ53ħ30sꎬ72ħ10sꎬ35个循环ꎻ72ħ延伸5minꎮ采用1%琼脂糖凝胶电泳检查条带大小ꎬ对大小正确的条带切胶后用DNA凝胶回收试剂盒(OMEGA公司)对PCR产物进行纯化回收ꎬ连接转化DH5α大肠杆菌感受态细胞ꎬ挑选菌落PCR检测ꎬ将筛选到的阳性菌落送至北京5741李晓燕等:茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控擎科生物科技有限公司进行测序验证ꎮ表1㊀BjuGAPC基因引物信息Table1㊀PrimerinformationofBjuGAPCgene引物名称㊀㊀引物序列(5ᶄң3ᶄ)㊀㊀㊀用途BjuGAPC ̄FATGGCTAACGGTAAGATCAAGATCG克隆BjuGAPC ̄RTAAGCCAACAAACCATACGATATGABjuGAPC ̄RT ̄FGCACTCCATCACCGCTACTCAG荧光定量PCRBjuGAPC ̄RT ̄RATCTGCAACTTACGACCAGATCTUB ̄FATGAGAGAGATCCTCCACATC内参基因TUB ̄RTCAAGCCTCATCGTATTCCTC1.2.3㊀BjuGAPC基因在瘤茎膨大不同时期的表达分析㊀以茎瘤芥不同发育阶段的cDNA为模板ꎬ以芥菜TUB基因为内参基因[20]ꎮ反应程序:95ħ预变性3minꎻ95ħ变性5sꎬ53ħ退火30sꎬ70ħ延伸10sꎬ35个循环ꎻ72ħ延伸5minꎮ用2-әәCt方法计算BjuGAPC基因的相对表达量ꎮ1.2.4㊀BjuGAPC基因的生物信息学分析㊀首先使用美国国家生物技术信息中心(NCBI)在线工具ORFfinder查找BjuGAPC基因的开放阅读框ꎮBjuGAPC蛋白的氨基酸组成和理化性质分析用在线分析工具ProtParam来完成ꎮ用在线分析软件Net ̄Phos3 1Server分析磷酸化位点和激酶特异性ꎮ采用糖基化位点在线预测软件YinOYang1.2Server和NetNGlyc1.0Server对BjuGAPC基因编码氨基酸的糖基化位点进行预测分析ꎮ利用ProtScale在线工具对BjuGAPC基因编码的氨基酸序列进行亲水性和疏水性分析ꎮ利用软件PSORTPrediction分析Bju ̄GAPC的亚细胞定位ꎮ用TMHMM在线工具预测BjuGAPC蛋白的跨膜结构域ꎮ用SignalP在线工具预测分析BjuGAPC蛋白中的信号肽ꎮ使用SOPMA和SWISS ̄MODEL在线工具预测蛋白质的二㊁三级结构ꎮBjuGAPC基因编码蛋白质的保守结构域分析通过Pfam在线软件进行ꎮ在NCBI的蛋白质序列数据库中进行BLASTPꎬ并用DNAMAN软件进行氨基酸多重序列比对ꎬ用MEGA7构建系统进化树[21]ꎮ1.2.5㊀糖酸含量的测定及统计分析㊀选择长势良好且一致的试验材料ꎬ测定不同时期的糖酸含量ꎬ均进行3个生物学重复ꎮ可溶性糖㊁葡萄糖㊁蔗糖㊁果糖含量采用试剂盒测定ꎬ蔗糖试剂盒购自北京索莱宝有限公司ꎬ其他试剂盒购自南京建成生物工程研究所ꎮ试验数据采用Excel和SPSS22.0进行统计分析ꎮ2㊀结果与分析2.1㊀BjuGAPC基因全长cDNA的克隆以茎瘤芥涪杂2号cDNA为模板ꎬ设计特异性引物进行PCR扩增ꎬ扩增得到大小正确的条带ꎬ将其命名为BjuGAPC基因(GenBank登录号:OM100056)ꎬ见图1ꎮ通过ORFFinder分析发现ꎬ茎瘤芥GAPDH基因包含1个1038bp的完整开放阅读框ꎬ编码345个氨基酸以及包含1个终止密码子ꎮ图1㊀BjuGAPC基因扩增电泳结果Fig.1㊀ElectrophoreticresultsofBjuGAPCgeneamplification2.2㊀BjuGAPC蛋白的理化性质预测利用ProtParam对BjuGAPC蛋白的理化性质进行分析ꎬ结果显示ꎬ组成BjuGAPC蛋白的氨基酸共有20种ꎬ其中缬氨酸(Val)所占比例最高ꎬ为11 3%ꎬ半胱氨酸(Cys)所占比例最低ꎬ为0 6%(图2)ꎮBjuGAPC蛋白的分子式为C1684H2675N453O506S10ꎬ氨基酸数为345ꎬ脂肪族氨基酸指数为87 51ꎬ相对分子质量为3.768ˑ104ꎻ理论等电点为7 10ꎬ属于碱性蛋白质类ꎻ从不稳定系数为19 97和总平均亲水性为-0 161来看ꎬBjuGAPC蛋白属于稳定㊁亲水性蛋白质ꎮ2.3㊀BjuGAPC蛋白的糖基化位点预测和磷酸化位点预测㊀㊀糖基化位点预测结果表明ꎬBjuGAPC蛋白有7个O ̄GlcNAc糖基化位点(图3A)和2个N ̄糖基化位点(图3B)ꎬ7个O ̄GlcNAc糖基化位点分别在第152位㊁287位丝氨酸(Ser)和第191位㊁215位㊁288位㊁341位㊁344位苏氨酸(Thr)处ꎬ2个N ̄糖基化位点分别在153~155aa(天冬氨酸 ̄丝氯酸 ̄丙氨酸ꎬN ̄A ̄S)和342~344aa(天冬氨酸 ̄组氨酸 ̄苏氨酸ꎬN ̄H ̄T)处ꎮ6741江苏农业学报㊀2022年第38卷第6期磷酸化位点和激酶特异性分析结果(图3C)表明ꎬBjuGAPC蛋白存在33个潜在的磷酸化位点ꎬ包括18个丝氨酸(Ser)㊁11个苏氨酸(Thr)和4个酪氨酸(Tyr)磷酸化位点ꎮ根据上述磷酸化位点所对应的磷酸激酶预测结果ꎬ该蛋白质可能有10个蛋白激酶C(PKC)㊁5个酪蛋白激酶Ⅱ(CKⅡ)㊁4个周期蛋白质依赖性蛋白激酶(cdc2)㊁2个蛋白激酶G(PKG核糖体S6激酶(RSK)和1个酪蛋白激酶Ⅰ(CKⅠ)等7种保守的特异性蛋白激酶的结合位点ꎮ蛋白质氨基酸序列的亲水性和疏水性分析结果(图3D)表明ꎬ该蛋白质的第340位脯氨酸(Pro)分值最低ꎬ亲水性最强ꎻ第164位亮氨酸(Leu)分值最高ꎬ疏水性最强ꎮ从总体上来看ꎬBjuGAPC蛋白的亲水氨基酸数量稍多于疏水氨基酸ꎬ所以BjuGAPC基因编码的蛋白质最终表现为亲水性ꎮAla:丙氨酸ꎻArg:精氨酸ꎻAsn:天冬酰胺ꎻAsp:天冬氨酸ꎻCys:半胱氨酸ꎻGln:谷氨酰胺ꎻGlu:谷氨酸ꎻGly:甘氨酸ꎻHis:组氨酸ꎻIle:异亮氨酸ꎻLeu:亮氨酸ꎻLys:赖氨酸ꎻMet:甲硫氨酸ꎻPhe:苯丙氨酸ꎻPro:脯氨酸ꎻSer:丝氨酸ꎻThr:苏氨酸ꎻTrp:色氨酸ꎻTyr:酪氨酸ꎻVal:缬氨酸ꎮ图2㊀BjuGAPC蛋白的氨基酸序列组成Fig.2㊀AminoacidsequencecompositionofBjuGAPCproteinA:O ̄GlcNAc糖基化位点预测ꎻB:N ̄糖基化位点预测ꎻC:激酶特异性预测ꎻD:亲疏水性预测ꎮ图3㊀BjuGAPC蛋白的糖基化位点㊁磷酸化位点预测和亲疏水性预测Fig.3㊀PredictionofglycosylationsiteꎬphosphorylationsiteꎬhydrophilicityandhydrophobicityofBjuGAPCprotein2.4㊀BjuGAPC蛋白的信号肽㊁跨膜结构域和亚细胞定位预测㊀㊀信号肽分析结果(图4A)表明ꎬBjuGAPC基因编码的蛋白质序列中不存在已知的信号肽ꎮ跨膜结构域预测结果(图4B)表明ꎬ在整个BjuGAPC氨基酸序列中ꎬ没有发现可以与膜结合的区域或者跨膜结构ꎬ因此推测该蛋白质属于非跨膜蛋白质ꎮ结合信号肽预测分析结果可知ꎬ跨膜结构和信号肽的缺失说明BjuGAPC蛋白不是分泌蛋白质ꎬ而是一种由游离核糖体合成再进入细胞质的蛋白质ꎮ因此推测BjuGAPC蛋白可能定位于细胞质ꎮ亚细胞定位分析结果表明ꎬBjuGAPC基因最有7741李晓燕等:茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控可能在微体和细胞质中发挥功能ꎬ有极小可能定位于叶绿体基质和叶绿体类囊体薄膜中ꎬ这与信号肽预测结果一致ꎮ由此分析ꎬBjuGAPC蛋白可能在细胞质中合成ꎬ在糖酸合成过程中有一定的调控作用ꎮA:BjuGAPC蛋白的信号肽预测ꎻB:BjuGAPC蛋白的跨膜结构预测ꎮ图A中C代表剪切位置分值ꎬS代表信号肽分值ꎬY代表综合剪切位置分值ꎮ图4㊀BjuGAPC蛋白的信号肽预测和跨膜结构域预测Fig.4㊀PredictionofsignalpeptideandtransmembranedomainofBjuGAPCprotein2.5㊀BjuGAPC蛋白的二、三级结构预测蛋白质二级结构预测结果表明ꎬBjuGAPC蛋白的二级结构有α ̄螺旋㊁β ̄折叠㊁延伸链和无规则卷曲4种ꎮ其中构成α ̄螺旋(Hh)结构的有111个氨基酸ꎬ占比32 17%ꎻ构成β ̄折叠(Tt)结构的有22个氨基酸ꎬ占比6 38%ꎻ构成延伸链(Ee)结构的有83个氨基酸ꎬ占比24 06%ꎻ构成无规则卷曲(Cc)结构的有129个氨基酸ꎬ占比37 39%ꎮBjuGAPC蛋白三级结构的预测结果(图5)显示ꎬ用于建立其三级结构模型的氨基酸残基位于第5~338位ꎬ覆盖度高达96%ꎬ表明BjuGAPC蛋白能够形成同源四聚体ꎬ并且结合4个NAD+配体ꎮ图5㊀BjuGAPC蛋白的三级结构预测Fig.5㊀PredictionoftertiarystructureofBjuGAPCprotein2.6㊀BjuGAPC的蛋白质结构域分析和氨基酸序列的同源性分析㊀㊀由蛋白质结构域分析结果(图6A)可知ꎬBju ̄GAPC蛋白上有2个高度保守的超家族结构域Gp_dh_N(NAD+结合结构域)和Gp_dh_C(C端甘油醛 ̄3 ̄磷酸脱氢酶亚家族结构域)ꎬ分别位于第6~109位和第161~318位氨基酸残基ꎬ表明BjuGAPC基因属于GAPDH基因家族ꎮ利用BjuGAPC的氨基酸序列在NCBI上进行BLASTPꎬ结果显示BjuGAPC蛋白的氨基酸序列与芜菁(XP_009125005.2)㊁油菜(XP_013742255.1)㊁萝卜(XP_018432846.1)㊁番茄(NP_001266254.2)㊁莴苣(XP_023733724.1)㊁马铃薯(NP_001275344.1)㊁拟南芥(NP_172801.1)的GAPDH基因编码的氨基酸序列具有高度相似性ꎬ其中与同科的芜菁㊁油菜㊁萝卜的序列相似度高达98%以上ꎬ与其他物种的序列相似度均为92%以上ꎮ采用DNAMAN软件将上述7个物种的GAPDH与BjuGAPC的蛋白质氨基酸序列进行多重比对ꎬ结果(图6B)显示:芥菜BjuGAPC的氨基酸序列与其他物种的GAPDH基因编码的氨基酸序列相似度极高ꎮ表明BjuGAPC同源蛋白质具有相似性和保守性ꎬ尤其表现在Gp_dh_N和Gp_dh_C两个保守结构域ꎬ因此猜测它们之间可能有着相同的生物学功能ꎮ2.7㊀BjuGAPC蛋白的系统进化分析为了探究BjuGAPC蛋白质的系统进化关系ꎬ从GenBank数据库中选取了19个物种的GAPDH蛋白氨基酸序列ꎮ在MEGA7中用邻接法(Neighbor ̄joining)对20个蛋白质氨基酸序列进行分析ꎬ设置校验bootstrap=1000ꎬ构建系统进化树(图7)ꎮ8741江苏农业学报㊀2022年第38卷第6期A:BjuGAPC蛋白的结构域预测ꎻB:BjuGAPC与其他植物GAPDH氨基酸序列比对ꎮ图中黑色方框中的区域为Gp_dh_N结构域ꎬ灰色方框中的区域为Gp_dh_C结构域ꎮConsensus:共有序列ꎮ图6㊀BjuGAPC蛋白的结构域预测和同源性分析Fig.6㊀DomainpredictionandhomologyanalysisofBjuGAPCprotein㊀㊀结果表明ꎬBjuGAPC蛋白与同为芸薹属的芜菁(Brassicarapa)的亲缘关系最近ꎬ其次是甘蓝(Bras ̄sicaoleracea)和油菜(Brassicanapus)ꎬ与同为十字花科的高山南芥(Arabisalpina)㊁白芥(Sinapisalba)㊁萝卜(Raphanussativus)的亲缘性也较高ꎬ与罂粟(Papaversomniferum)㊁水青树(Tetracentronsinense)㊁松蒿(Phtheirospermumjaponicum)㊁博落回(Macleayacordata)等其他物种的关系较远ꎮ2.8㊀不同时期瘤状茎糖酸含量变化与BjuGAPC基因表达的关系㊀㊀分别以膨大到横径为2cm㊁4cm㊁6cm㊁8cm(S1㊁S2㊁S3和S4时期)的茎瘤芥瘤茎为材料ꎬ测定不同时期瘤状茎糖酸含量㊁糖酸比ꎮ结果(表2)表明:糖酸的含量变化随着瘤状茎的发育有所不同ꎬ在发育前期茎中可溶性糖大量积累ꎬ还原糖(葡萄糖和果糖)含量较低ꎻ在发育后期ꎬ蔗糖和还原糖在茎9741李晓燕等:茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控中均有积累现象ꎬ而糖酸比整体出现先降低后升高的趋势ꎮ图7㊀基于20个物种GAPDH蛋白的氨基酸序列构建的系统进化树Fig.7㊀PhylogenetictreebasedonaminoacidsequencesofGAPDHproteinsin20species㊀㊀由BjuGAPC基因的转录组数据(图8A)和qRT ̄PCR分析得出的基因相对表达量(图8B)看出:转录组数据和qRT ̄PCR分析结果呈现一致趋势ꎬBju ̄GAPC基因在瘤茎膨大过程中不同时期的相对表达量不同ꎬ且差异达到显著水平ꎻ随着瘤茎的逐步膨大ꎬBjuGAPC基因的相对表达量逐渐减少ꎬ在瘤茎横径膨大到6cm时基因的相对表达量降至最低值ꎬ之后小幅度上升ꎮ相关性分析结果(表3)显示ꎬ可溶性糖含量与糖酸比呈显著正相关关系ꎬ可滴定酸含量与糖酸比呈显著负相关关系ꎬ基因的相对表达量与可溶性糖含量㊁可滴定酸含量和糖酸比均呈显著正相关关系ꎮ结果表明ꎬBjuGAPC基因对不同时期瘤状茎糖酸含量起到一定的正向调控作用ꎬ且在横径为2cm㊁4cm时相对表达量较高ꎬ横径为6cm㊁8cm时相对表达量较低ꎮ由此可见ꎬBjuGAPC基因在瘤茎膨大的不同时期有明显的表达特异性ꎬ推测其在茎瘤芥茎生长发育过程中具有特定的表达模式ꎬ并在一定程度上影响了糖酸比ꎮBjuGAPC蛋白在该过程中也发挥一定的功能ꎬ主要在瘤茎膨大前期起作用ꎮ3㊀讨论与结论为进一步了解GAPDH在茎瘤芥茎膨大过程中的作用ꎬ本试验基于芥菜的基因组数据库ꎬ克隆得到BjuGAPC基因ꎮ预测BjuGAPC蛋白相对分子质量为3.768ˑ104ꎬ是一个具有碱性㊁亲水性的稳定蛋白质ꎮGAPDH是高等植物糖酵解反应中的关键酶ꎬ能0841江苏农业学报㊀2022年第38卷第6期够维持植物的生命活动ꎬ按照生化特性可分为磷酸化GAPDH和非磷酸化GAPDH两大类[22]ꎮ通过分析BjuGAPC蛋白的磷酸化位点ꎬ发现该蛋白质存在33个潜在的磷酸化位点ꎬ推测其可能参与糖酵解途径ꎬ对糖酸合成起到一定的调控作用ꎮ表2㊀不同采样时期茎瘤芥瘤状茎的糖酸含量Table2㊀SugarandacidcontentintuberculatestemofBrassicajunceavar.tumidaindifferentsamplingstages时期可溶性糖含量(mg/g)可滴定酸含量(mg/g)糖酸比蔗糖含量(mg/g)果糖含量(mg/g)葡萄糖含量(mg/g)S120.83ʃ1.13a25.70ʃ0.33a0.8116.61ʃ0.52a0.78ʃ0.07d2.42ʃ0.28bcS214.93ʃ1.10c24.66ʃ0.19b0.616.28ʃ0.09cd1.74ʃ0.30b1.06ʃ0.10dS313.60ʃ0.33bc21.49ʃ0.06c0.636.77ʃ0.04bc3.10ʃ0.09a3.50ʃ0.60aS418.82ʃ0.53b18.81ʃ0.06d1.007.33ʃ0.23d1.36ʃ0.16c2.40ʃ0.42bcS1㊁S2㊁S3和S4时期分别指瘤状茎膨大到2cm㊁4cm㊁6cm㊁8cm的时期ꎮ同列数据后标不同小写字母表示差异显著(P<0.05)ꎮS1㊁S2㊁S3和S4时期分别指瘤状茎膨大到横径为2cm㊁4cm㊁6cm㊁8cm的时期ꎮ不同时期对应的柱上标有不同小写字母表示差异显著(P<0 05)ꎮ图8㊀BjuGAPC基因不同时期的表达丰度(A)与qRT ̄PCR表达分析(B)Fig.8㊀Expressionabundance(A)andqRT ̄PCRexpressionanalysis(B)ofBjuGAPCgeneatdifferentstages表3㊀不同时期茎瘤芥瘤状茎糖酸含量与基因表达量间的相关性Table3㊀CorrelationbetweensugarandacidcontentintuberculatestemofBrassicajunceavar.tumidaandgeneexpressionindifferentperiods类别基因相对表达量可溶性糖含量可滴定酸含量糖酸比基因相对表达量1.000可溶性糖含量0.353∗1.000可滴定酸含量0.214∗0.1421.000糖酸比0.269∗0.753∗-0.538∗1.000∗表示在0.05级别(双尾)相关性显著(P<0.05)ꎮ㊀㊀蔗糖是植物生长发育过程中各种调控机制的信号ꎬ它还影响编码转运蛋白㊁贮藏蛋白和应激反应的基因的表达[23 ̄27]ꎮ在瘤状茎发育期间ꎬ在发育前期茎中蔗糖大量积累ꎬ还原糖含量较低ꎮ在发育后期ꎬ蔗糖和还原糖在茎中均有积累现象ꎮ这说明BjuGAPC基因在前期相对表达量较多ꎬ同时由于叶片中还原糖能较快地转化为蔗糖ꎬ所以能迅速输送到茎中用于其他物质的合成ꎬ而在发育后期ꎬ由于植株机体机能逐渐衰退ꎬBjuGAPC基因相对表达量降低ꎬ瘤状茎中其他物质合成能力减弱ꎬ合成的蔗糖减少ꎬ还原糖含量相对下降ꎮ根据磷酸化的GAPDH在细胞中的不同定位可将其分为GAPC㊁GAPCp和GAPA/B三类[28 ̄29]ꎮ试验中发现BjuGAPC的蛋白质序列中不存在已知的信号肽ꎬ并且没有任何跨膜结构或膜结合区域ꎬ说明该蛋白质不是分泌蛋白ꎬ不经过跨膜转运ꎬ而是在细胞质中直接形成ꎬ亚细胞定位预测结果也证实了这一点ꎮ因此ꎬBjuGAPC蛋白属于GAPCꎬ定位于细胞质中ꎮ从系统进化树可以看出ꎬ分支点越接近ꎬ物种间的亲缘性越相似ꎬ说明编码这些蛋白质的基因间的功能也具有一定的相似性ꎬ同时说明GAPDH基因家族蛋白质遗传进化比较保守ꎮBjuGAPC蛋白之所以能行使生物学功能是因为其特定的空间结构ꎮ通过三级结构预测发现ꎬBju ̄GAPC蛋白能够形成同源四聚体ꎬ并且结合4个NAD+配体ꎮ由蛋白质结构域分析结果可知ꎬBjuGAPC的2个超家族结构域Gp_dh_N和Gp_dh_C中ꎬ前者是辅酶NAD+的结合域ꎬ后者是行使糖运输和代谢的功能域ꎬ1841李晓燕等:茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控推测BjuGAPC基因的表达产物在茎瘤芥细胞质中参与糖酵解过程ꎬ符合上述所推测的BjuGAPC的结构和功能特征ꎮ以前的多种研究结果普遍表明ꎬGAPDH基因在同一组织的不同生理状态下或同一生物体的不同组织中均相对稳定且高水平表达ꎬ因此可以作为内参基因来进行其他功能基因的表达差异分析ꎮ但是ꎬ本研究通过qRT ̄PCR技术检测发现ꎬBjuGAPC基因在茎瘤芥茎膨大不同时期有明显的表达特异性ꎬ不同时期糖酸比测定结果显示ꎬBjuGAPC基因相对表达量随不同时期变化与糖酸比含量呈现出一致趋势ꎬ说明BjuGAPC基因参与了茎瘤芥的生长发育过程ꎬ并且主要在瘤茎膨大前期发挥功能ꎮGAPDH基因可以作为多物种分子生物学研究的内参基因ꎬ但是在本试验的芥菜发育过程中表达差异较大ꎬ这可能是由于物种不同导致的特异性差异所决定的ꎮ在对BjuGAPC蛋白的磷酸化位点分析中ꎬ发现了植物抗逆相关特异性蛋白质激酶的结合位点ꎬ也可以说明GAPDH在功能上与植物的生长发育密切相关ꎮ一些研究者的转基因试验结果也表明ꎬGAPDH缺失或过表达均会在一定程度上影响植物的代谢和生长发育[30]ꎬ并且GAPDH基因的表达水平会随着内外源诱导因子的变化而变化ꎬ推测BjuGAPC蛋白中参与信号转导和激素调控等的O ̄GlcNAc糖基化位点和N ̄糖基化位点与此有关[31 ̄32]ꎮ糖酸含量分析结果表明ꎬBju ̄GAPC蛋白参与了糖代谢过程ꎮ目前ꎬ有关芥菜GAP ̄DH功能和作用机制的相关报道还很少ꎬ本试验对Bju ̄GAPC基因的克隆可以为分析逆境胁迫条件下Bju ̄GAPC基因的表达模式㊁探讨BjuGAPC在茎瘤芥茎膨大过程中的作用奠定基础ꎬ后续还可以进一步构建植物表达载体ꎬ通过转基因等途径深入探究BjuGAPC基因在逆境胁迫和茎瘤芥茎膨大过程中的功能ꎮ此外ꎬ本研究结合不同时期糖酸比变化趋势ꎬ验证了茎瘤芥BjuGAPC基因确实对糖酸含量起到正向调控作用ꎮ参考文献:[1]㊀QIXHꎬZHANGMFꎬYANGJH.MolecularphylogenyofChinesevegetablemustard(Brassicajuncea)basedontheinternaltranscribedspacers(ITS)ofnuclearribosomalDNA[J].GeneticResourcesandCropEvolutionꎬ2007ꎬ54(8):1709 ̄1716.[2]㊀ZHANGLꎬLIZꎬGARRAWAYJꎬetal.Thecaseinkinase2βsub ̄unitCK2B1isrequiredforswollenstemformationviacellcyclecontrolinvegetableBrassicajuncea[J].Plantꎬ2020ꎬ104(3):706 ̄717.[3]㊀XUZꎬWANGQꎬGUOYꎬetal.Stem ̄swellingandphotosynthatepar ̄titioninginstemmustardareregulatedbyphotoperiodandplanthor ̄mones[J].EnvironmentalandExperimentalBotanyꎬ2008ꎬ62(2):160 ̄167.[4]㊀UMERMJꎬBINSLꎬZHAOSJꎬetal.Identificationofkeygenenet ̄workscontrollingorganicacidandsugarmetabolismduringwatermelonfruitdevelopmentbyintegratingmetabolicphenotypesandgeneexpres ̄sionprofiles[J].HorticultureResearchꎬ2020ꎬ7(1):3 ̄7. [5]㊀DOIDYJꎬGRACEEꎬWIPFDꎬetal.Sugartransportersinplantsandintheirinteractionswithfungi[J].TrendsPlantSciꎬ2012ꎬ17(7):13 ̄22.[6]㊀SUZUKIYJꎬISHIYAMAKKꎬSUGAWARAMKꎬetal.Overproduc ̄tionofchloroplastglyceraldehyde ̄3 ̄phosphatedehydrogenaseimprovesphotosynthesisslightlyunderelevated[CO2]conditionsinrice[J].Plant&cellphysiologyꎬ2020ꎬ62(1):156 ̄165.[7]㊀MARTINWꎬBRINKMANNHꎬSAVONNACꎬetal.Evidenceforachimericnatureofnucleargenomes:eubacterialoriginofeukaryoticglyceraldehyde ̄3 ̄phosphatedehydrogenasegenes[J].ProcNatlAcadSciUSAꎬ1993ꎬ90(18):8692 ̄8696.[8]㊀WUYHꎬWUMꎬHEGWꎬetal.Glyceraldehyde ̄3 ̄phosphatedehy ̄drogenase:auniversalinternalcontrolforwesternblotsinprokaryoticandeukaryoticcells[J].AnalBiochemꎬ2012ꎬ423(1):15 ̄22. [9]㊀PENALOZAEꎬGUTIERREZAꎬMARTINEJꎬetal.Differentialgeneexpressioninproteoidrootclustersofwhitelupin(Lupinusalbus)[J].PlantPhysiologyꎬ2002ꎬ116(1):28 ̄36.[10]JEONGMJꎬPARKSCꎬBYUNMO.Improvementofsalttoleranceintransgenicpotatoplantsbyglyceraldehydes ̄3 ̄phosphatedehydrogenasegenetransfer[J].MoleculesandCellsꎬ2001ꎬ12(2):185 ̄189. [11]DAVOUDIMꎬMORAD ̄SARDAREHHꎬPAKNEJADMꎬetal.Thepossibleeffectofsilvernanoparticlesonglyceraldehyde ̄3 ̄phosphatedehydrogenaseactivityandformationofamyloid ̄likeaggregatesinMCF ̄7cellline[J].IUBMBLifeꎬ2020ꎬ72(10):2214 ̄2224. [12]MUNOZBJꎬCASCALESMBꎬIRLESSAꎬetal.Theplastidialglyc ̄eraldehyde ̄3 ̄phosphatedehydrogenaseiscriticalforviablepollende ̄velopmentinArabidopsis[J].PlantPhysiolꎬ2010ꎬ152(5):1830 ̄1841.[13]KOPECKOVAMꎬPAVKOVAIꎬSTULIKJ.Diverselocalizationandproteinbindingabilitiesofglyceraldehyde ̄3 ̄phosphatedehydrogenaseinpathogenicbacteria:thekeytoitsmultifunctionality[J].FrontCellInfectMicrobiolꎬ2020ꎬ10:19.[14]PIATTONICVꎬFERRERODMLꎬVEGETTIAꎬetal.Cytosolicglyceraldehyde ̄3 ̄phosphatedehydrogenaseisphosphorylatedduringseeddevelopment[J].FrontPlantSciꎬ2017ꎬ8:518 ̄522. [15]SEBASTIANPRꎬPAULACꎬALBERTOAIꎬetal.CharacterizationofArabidopsislinesdeficientinGAPC ̄1ꎬacytosolicNAD ̄dependentglyceraldehyde ̄3 ̄phosphatedehydrogenase[J].PlantPhysiolꎬ2008ꎬ148(3):1655 ̄1667.[16]NAKASHIMAKꎬSHINWARIZKꎬSAKUMAYꎬetal.OrganizationandexpressionoftwoArabidopsisDREB2genesencodingDRE ̄bindingproteinsinvolvedindehydrationandhigh ̄salinity ̄responsivegeneex ̄2841江苏农业学报㊀2022年第38卷第6期pression[J].PlantMolBiolꎬ2000ꎬ42(4):657 ̄665.[17]LICWꎬSURCꎬCHENGCPꎬetal.TomatoRAVtranscriptionfac ̄torisapivotalmodulatorinvolvedintheAP2/EREBPmediatedde ̄fensepathway[J].PlantPhysiolꎬ2011ꎬ156(1):213 ̄227. [18]KITOMIYꎬITOHꎬHOBOTꎬetal.TheauxinresponsiveAP2/ERFtranscriptionfactorCROWNROOTLESS5isinvolvedincrownrootini ̄tiationinricethroughtheinductionofOsRR1ꎬatype ̄Aresponsereg ̄ulatorofcytokininsignaling[J].Plantꎬ2011ꎬ67(3):472 ̄484. [19]李㊀彤ꎬ邵慧慧ꎬ韩嘉宁ꎬ等.金鱼草AmPIF4基因克隆及调控花香物质合成释放功能分析[J].西北植物学报ꎬ2021ꎬ41(12):1994 ̄2001.[20]LIMYꎬXIEFJꎬHEQꎬetal.ExpressionanalysisofXTHinstemswellingofstemmustardandselectionofreferencegenes[J].Genes(Basel)ꎬ2020ꎬ11(1):113 ̄116.[21]KUMARSꎬSTECHERGꎬKNYAZCꎬetal.MEGAX:molecularevo ̄lutionarygeneticsanalysisacrosscomputingplatforms[J].MolecularBiologyandEvolutionꎬ2018ꎬ35(6):1547 ̄1549.[22]TAKEDATꎬFUKUIY.PossibleroleofNAD ̄dependentglyceralde ̄hyde ̄3 ̄phosphatedehydrogenaseingrowthpromotionofArabidopsisseedlingsbylowlevelsofselenium[J].BiosciBiotechnolBiochemꎬ2015ꎬ79(10):1579 ̄1586.[23]YOONJꎬCHOLHꎬTUNWꎬetal.Sucrosesignalinginhigherplants[J].PlantSciꎬ2021ꎬ302:110703.[24]严志祥ꎬ杨海燕ꎬ樊苏帆ꎬ等.黑莓果实发育过程中蔗糖磷酸合成酶基因的表达分析[J].南京林业大学学报(自然科学版)ꎬ2022ꎬ46(1):179 ̄186.[25]李东霞ꎬ徐中亮ꎬ符海泉ꎬ等.糖对椰枣组织培养物的影响[J].南方农业学报ꎬ2021ꎬ52(11):3059 ̄3066.[26]田双燕ꎬ张应龙ꎬ何天久ꎬ等.马铃薯间作玉米对马铃薯生长㊁产量及糖类物质的影响[J].南方农业学报ꎬ2021ꎬ52(5):1198 ̄1205. [27]姜楠南ꎬ张启翔ꎬ王㊀媛ꎬ等.赤霉素对大富贵芍药休眠解除及内源激素和糖类代谢的影响[J].南京林业大学学报(自然科学版)ꎬ2020ꎬ44(3):26 ̄32.[28]BACKHAUSENJEꎬVETTERSꎬBAALMANNEꎬetal.NAD ̄de ̄pendentmalatedehydrogenaseandglyceraldehyde ̄3 ̄phosph ̄atedehy ̄drogenaseisoenzymesplayanimportantroleindarkmetabolismofva ̄riousplastidtypes[J].Plantaꎬ1998ꎬ205:359 ̄366.[29]AVILANLꎬMABERLYCSꎬMEKHALFMꎬetal.Regulationofglyc ̄eraldehyde ̄3 ̄phosphatedehydrogenaseintheeustigmatophytePseudo ̄characiopsisovalisisintermediatebetweenachlorophyteandadiatom[J].EurJPhycolꎬ2012ꎬ47(3):207 ̄215.[30]SEBASTIANPRꎬPAULACꎬALBERTOAIꎬetal.CharacterizationofArabidopsislinesdeficientinGAPC ̄1ꎬacytosolicNAD ̄dependentglyceraldehyde ̄3 ̄phosphatedehydrogenase[J].PlantPhysiolꎬ2008ꎬ148(3):1655 ̄1667.[31]HARTGWꎬHOUSLEYMPꎬSLAWSONC.CyclingofO ̄linkedbe ̄ta ̄N ̄acetylglucosamineonnucleocytoplasmicproteins[J].Natureꎬ2007ꎬ446(7139):1017 ̄1022.[32]WoodwardAWꎬBartelB.Auxin:regulationꎬactionꎬandinteraction[J].AnnBotꎬ2005ꎬ95(5):707 ̄735.(责任编辑:张震林)3841李晓燕等:茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控。
明显抑制内毒素诱导的TNF-α分泌,改善血流动力学状态,降低内毒素的致死率。
研究显示,TP 的主要有效成分之一,表没食子儿茶酚胺(EGCG )可通过调控IL-1β抑制白细胞活化,从而发挥抗炎作用[20]。
由此可见,TP 对感染性炎症相关的多种疾病具有一定的治疗作用。
与本研究一致的,Bae 等[21]通过脂多糖诱导建立小鼠ALI 模型后,观察到EGCG 可通过调控ERK1/2信号通路和JNK 蛋白的磷酸化水平降低炎性因子表达,抑中性粒细胞在肺内的聚集,进而减轻脂多糖造成的肺损伤。
因此,TP 的抗炎特性使其在脓毒症相关ALI 中具有良好的潜在转化价值。
有研究认为[22],NLRP3炎症小体参与了多种炎症相关疾病,可能是炎症性疾病发生发展过程中的关键调控因子。
研究显示[23],胞内氧化还原失衡是NLRP3的活化的关键途径之一。
研究显示,失血性休克时,高迁移率蛋白1可通过TLR4模式激活肺内皮细胞NAD(P)H 氧化酶,而激活后的NAD(P)H 氧化酶所生成的ROS 可进一步解离与硫氧还原蛋白互作的蛋白,使之转而与NLRP3蛋白结合,而诱导NLRP3炎症小体活化和IL-1β的分泌[24]。
因此,对细胞内氧化还原平衡的调控可能是抑制NLRP3炎症小体活化、改善相关疾病炎症反应的潜在有效靶点。
由于细胞内氧化应激水平升高所引起的ROS 大量生成是NLRP3活化的关键诱导剂之一。
多项研究证实TP 具有显著的抗氧化作用[25],与本研究一致。
本研究首次发现TP 可抑制CLP 小鼠肺组织内氧化应激相关蛋白NOX4表达并减少ROS 生成;同时,对脓毒症肺损伤小鼠肺组织的免疫荧光染色检测结果显示:氧化应激相关蛋白NOX4与NLRP3蛋白在CLP 小鼠肺组织内表达显著增多且具有明显的共定位,而应用TP 治疗后,上述2种蛋白在小鼠肺组织内的表达下调、共定位减少,提示TP 可能通过抑制NOX4相关氧化应激反应,下调肺组织内ROS 含量,阻碍NLRP3炎症小体的活化,进而减少脓毒症相关肺损伤时肺内炎症因子的释放,最终改善脓毒症相关肺损伤。
探析碳纳米管改性方法1 前言自从1991年碳纳米管被Iijima发现以来,其凭借出众的力学、电学、热学、化学性能、极高的长径比(100—1000)以及纳米尺寸上独特的准一维管状分子结构,表现出运用在未来科技领域里所具有的巨大潜在价值,迅速成为物理、化学、材料科学领域里的研究热点。
碳纳米管是由很多碳原子组合在一起形成的石墨片层卷成的中空管体,根据其石墨片层数的不同,可分为单壁碳纳米管(SWNTs)和多壁碳纳米管(MWNTs)。
由于碳纳米管主要由碳元素组成,与聚合物的成分相似,所以可以使用CNT来增强聚合物纳米复合材料。
随着的生产CNT方法越来越简便,其价格也越来越便宜,这种方法相对于在聚合物中添加含碳填料来改善聚合物性能等传统方法,改性效果更好,市场需求更广,经济前景更乐观。
可以预见,在不久的将来CNT将会成为制备聚合物基复合材料的主要原料。
2 碳纳米管的处理由于其自身固有缺陷,碳纳米管从合成到被应用到复合材料中,需要经过纯化和表面改性两个过程。
2.1 碳纳米管的纯化目前合成碳纳米管的方法很多,但无论是经典的电弧放电法,还是新兴的水热法、火焰法、固相复分解反应制备法、超临界流体技术法制备成的碳纳米管都不可避免的被各种无定形碳颗粒、无定形碳纤维和石墨微粒等杂质附着,混杂在一起,影响其纳米粒子独有的小尺寸效应、界面效应、量子效应。
它们的化学性质也相似,不但给后续制备复合材料带来困难,而且使其性能的发挥受到很大的影响,所以必须进行纯化处理。
主要的方法是依靠碳纳米管和杂质对强氧化剂的敏感程度不一样,通过控制氧化剂的用量和氧化反应的时间来达到纯化的目的。
目前主要的氧化方法有:气相氧化法、液相氧化法、固相氧化法和电化学氧化法。
2.2 碳纳米管的改性经过纯化处理的碳纳米管仍然不能直接用来制备复合材料,由于它的惰性表面、管与管之间固有的范德华力、极大的比表面积和长径比,会使其在复合材料基体和溶液体系中产生非常严重的团聚与缠结,不利于创造良好的界面和在聚合物中的均匀分散及其优异性能的发挥。
线粒体功能的体外评价方法摘要】线粒体一直被认为是细胞能量生产和代谢工厂,正常的线粒体功能是维持器官的正常功能和细胞稳定的重要因素之一,对于需要高能量代谢的骨骼肌和心肌尤为重要。
线粒体相关疾病的形成及其分子生物学诊断需要临床和实验室的检测。
线粒体疾病的基因双重性,多器官系统特征以及广泛的可识别表型是目前临床诊断所面临的挑战。
为了克服这些临床诊断障碍,实验室对线粒体多方面的评价可以提供相对充足的证据,包括血液学,组织化学分析手段,神经影像分析,刺激实验检测,组织和细胞的酶学分析以及DNA检测(Mancuso M., 2009)。
本文就线粒体的功能性评价方法作以下综述,为临床线粒体相关疾病的诊断提供可行的方法学手段。
【关键词】线粒体呼吸链功能评价【中图分类号】R329 【文献标识码】A 【文章编号】2095-1752(2012)01-0130-021.活性氧族(Reactive Oxygen Species)的产生在细胞内,线粒体是超氧离子(O2-)和其他活性氧族的主要来源,病理情况下,通过异常的氧化反应,线粒体产生约85%的超氧离子(Boveris and Chance, 1973; Dr?ge, 2002). 在线粒体复合体间的电子转运过程中,约2-5%的离子逃逸并释放O2,导致了O2-在复合体I到复合体I I I中的产生,由于线粒体活性增强或呼吸链的抑制作用,氧离子会显著的增加导致了氧化损伤,这可能是脑神经退行性病变发病的机理之一。
活性氧族ROS的生理功能与脑神经元的代谢活性息息相关,过多的ROS会导致线粒体功能异常及神经损伤。
例如,在脑缺血和再灌注过程中,细胞间液中过多的ROS会产生氧化应激,氧化平衡被打破,从而导致细胞性的直接或间接的损伤(L e i e t a l.,1998)。
因此,检测ROS的产生和分布可以从一方面评价线粒体的功能。
目前有很多R O S 的标记物,如广泛应用的二氢氯荧光素dichlorodihydrofluorescein (LeBel et al.,1992),及其各种衍生物如二氢溴乙非啶(Het)(Gallop et al., 1984),和二氢罗丹明dihydrorhodamine(Duganet al., 1995)。
- 181 -*基金项目:国家自然科学基金资助项目(81560364,81760405,81760395,82060408);宁夏自然科学基金重点项目(2018AAC02013);宁夏医科大学校级课题重点项目(XZ2018014)①宁夏医科大学 宁夏 银川 750004②宁夏医科大学总医院通信作者:陈德胜白藜芦醇药用价值的研究进展*刘子歌① 宋国瑞① 张晨① 李燕① 陈德胜②【摘要】 白藜芦醇(Resveratrol)是一种具有多种生物活性的多酚化合物,主要存在于浆果和红葡萄中,主要来源于葡萄、花生、大豆和浆果中。
白藜芦醇在机体中的生物学特性取决于各类酶的调节,其作为抗肿瘤药、抗糖尿病药、抗肿瘤药、抗氧化剂、抗炎药、神经保护剂等的有效成分,在医药行业和化妆品工业中得到广泛应用,所以未来白藜芦醇的应用前景广阔。
本文综述了国内外白藜芦醇药用价值最新的研究进展,为白藜芦醇的进一步开发与实际利用提供了理论依据。
【关键词】 白藜芦醇 生物学活性 药理作用 Recent Advances in Medicinal Value of Resveratrol/LIU Zige, SONG Guorui, ZHANG Chen, LI Yan, CHEN Desheng. //Medical Innovation of China, 2021, 18(15): 181-184 [Abstract] Resveratrol is a polyphenol compound with different biological activities, mainly in berries and red grapes, it is abundant in grapes, peanuts, soybeans and berries. The biological properties of resveratrol depend on the regulation of various enzymes. Due to its wide application in the pharmaceutical industry and cosmetics industry, such as anti-tumour drugs, anti-diabetic drugs, anti-tumour drugs, antioxidants, anti-inflammatory drugs, neuroprotective agents etc, the future application of resveratrol broad prospects. This article summarized the latest research progress on the medicinal value of resveratrol at home and abroad, and provided a theoretical basis for its further development and practical use. [Key words] Resveratrol Biological activity Pharmacological action First-author ’s address: Ningxia Medical University, Yinchuan 750004, China doi:10.3969/j.issn.1674-4985.2021.15.044 白藜芦醇是一种从植物中提取的天然的非黄酮类多酚化合物,属于二苯乙烯类化合物。
Advances in Clinical Medicine 临床医学进展, 2019, 9(1), 27-32Published Online January 2019 in Hans. /journal/acmhttps:///10.12677/acm.2019.91006Progress of Melatonin in ReducingMitochondrial Injury by Interactingwith Sirt3Yanan Hu, Fei Han*Department of Anesthesiology, The Affiliated Oncology Hospital, Harbin Medical University,Harbin HeilongjiangReceived: Dec. 24th, 2018; accepted: Jan. 11th, 2019; published: Jan. 18th, 2019AbstractBackground: Melatonin is a special indole amine derived from the pineal gland, with multiple properties of antioxidant, anti-aging and metabolic. Recent years, studies related to the role of melatonin in cells have gradually focused on mitochondria. In mitochondria, melatonin stimulates Sirt3 activity. It regulates the activity of Foxo3a, SOD2 and the most metabolic enzymes in TCA cycles by strengthening the deacetylation effect of Sirt3, and thus plays a protective role in dis-eases such as cardiovascular disease, liver and kidney injury, and heavy metal hazards. Objective: To review the related literatures on the interaction between melatonin and Sirt3 in reducing mi-tochondria injury. Content: Based on series studies, this article illuminated the expression, me-tastasis and co-localization of melatonin and Sirt3 in mitochondria, and summarized the protec-tive mechanism of melatonin in multiple organs. Trend: The interaction between Melatonin and Sirt3 will be one of the most valuable research field in mitochondria protection with both shared multiple signal pathways.KeywordsMelatonin, Sirtuin 3, Protection of MitochondriaSirt3在褪黑素减少线粒体损伤的研究进展胡亚楠,韩非*哈尔滨医科大学附属肿瘤医院麻醉科,黑龙江哈尔滨收稿日期:2018年12月24日;录用日期:2019年1月11日;发布日期:2019年1月18日*通讯作者。
Enzyme and Microbial Technology 46 (2010) 113–117Contents lists available at ScienceDirectEnzyme and MicrobialTechnologyj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e mtProperties of an NAD +-dependent DNA ligase from the hyperthermophile Thermotoga maritima and its application in PCR amplification of long DNA fragmentsYilin Le a ,Jingjing Peng b ,Jianjun Pei a ,b ,Huazhong Li a ,Zuoying Duan a ,Weilan Shao a ,b ,∗a School of Biotechnology,Jiangnan University,Wuxi,Jiangsu 214122,PR ChinabCollege of Life Sciences,Nanjing Normal University,Nanjing,Jiangsu 210046,PR Chinaa r t i c l e i n f o Article history:Received 27May 2009Received in revised form 12August 2009Accepted 24August 2009Keywords:AmplificationLong DNA fragmentsThermostable DNA ligase Thermotoga maritimaa b s t r a c tThe thermostable DNA ligase of Thermotoga maritima (Tma DNA ligase)was expressed in Escherichia coli ,and purified by heat treatment followed by metal affinity chromatography.Purified Tma DNA ligase exhibited activity on DNA fragments with cohesive termini,and no activity was detected on blunt-end DNA.The ligase reaction required NAD +,and a divalent cation including Mg 2+,Mn 2+or Ca 2+.The highest activity of Tma DNA ligase occurred at 60◦C and pH 8.0when Hind III digested plasmid was used as substrate.The purified enzyme had a half-life of over 30min at 95◦C,and retained over 80%of its activity after holding a pH ranging from 7.2to 8.8for 1h at 80◦C.When the enzyme was employed in PCR cycles,Tma DNA ligase promoted the amplification of long DNA fragments from the genomic DNA of T.maritima .© 2009 Elsevier Inc. All rights reserved.1.IntroductionDNA ligase (EC 6.5.1.1and EC 6.5.1.2)catalyzes the sealing of5 -phosphateand 3 -hydroxyl termini at single-strand breaks indouble-stranded DNA.It plays an important role in DNA replication and DNA repair pathways [1,2].DNA ligases require ATP or NAD +as cofactor.According to the different cofactor,the DNA ligases have been divided into two classes:ATP-dependent ligases [3]and NAD +-dependent ligases [4].NAD +-dependent DNA ligases have two functional domains:an N-terminal cofactor binding domain and a C-terminal DNA-binding domain [4].T4DNA ligase and Escherichia coli DNA ligase are widely used as tools for DNA recombination.T4DNA ligase uses ATP as the source of energy,while E.coli DNA ligase uses NAD +as the source of energy.Under normal reaction conditions,only T4DNA ligase can ligate blunt ends.Recently,there has been increasing interest in the study of thermostable DNA ligase,which has been found useful either in DNA ligation for gene cloning,or in a technique known as LCR (lig-ase chain reaction)for detecting somatic mutations and viral or bacterial infections [5].Thermostable DNA ligases have been puri-fied or cloned from various thermophilic microorganisms,which include Thermus spp.[6,7],Sulfolobus shibatae [8],Rhodothermus marinus [9],Staphylothermus marinus [10],Aeropyrum pernix [11],∗Corresponding author at:School of Biotechnology,Jiangnan University,Wuxi,Jiangsu 214122,PR China.Tel.:+862585891836.E-mail address:shaoweilan@ (W.Shao).Aquifex pyrophilus [12],and Bacillus stearothermophilus [13].But the DNA ligase of hyperthermophilic bacterium Thermotoga spp.has not been reported previously.Thermotoga maritima is the type strain of the genus,which has an optimal growth temperature of 80◦C.The complete genome of T.maritima has been sequenced [14],and contains approximately 1928predicted genes.One of these genes encodes a putative NAD +-dependent DNA ligase,which is designated as Tma DNA ligase.In the present study,the DNA ligase gene of T.maritima was cloned,and expressed in E.coli .The recombinant Tma DNA ligase was puri-fied and characterized.In addition,the application of Tma DNA ligase was explored,and the enzyme exhibited a function in pro-moting long DNA amplification in PCR.2.Materials and methods2.1.Bacterial strains and growth mediaT.maritima (ATCC43589)was grown anaerobically at 80◦C in a medium as described previously [15].E.coli strain JM109(Promega Corp.,Madison,WI,USA)was employed as the host for cloning the ligase gene from T.maritima ,and strain BL21(DE3)was used as host for gene expression.Recombinant cells were cultured in Luria-Bertani (LB)medium supplemented with 100g ampicillin ml −1.2.2.Cloning of the DNA ligase gene from T.maritimaThe genomic DNA isolation and molecular cloning were carried out following the methods described by Frederick et al.[16].DNA transformation was performed by electroporation.Plasmid DNA and PCR products were purified using the Qiagen Plasmid kit and PCR purification kit (Qiagen,USA).0141-0229/$–see front matter © 2009 Elsevier Inc. All rights reserved.doi:10.1016/j.enzmictec.2009.08.015114Y.Le et al./Enzyme and Microbial Technology46 (2010) 113–117On the basis of the DNA sequence(GenBank:NC000853),Tma DNA ligase gene was amplified by using the primers with Nde I and HindШrestriction sites(indicated in bold):5’-CTT CATATG AGTGAGAGAAA GATC-3’and5’-ACA AAGCTT ACTC CATTCCT TCCAAC-3 .Thirty cycles of PCR with Pyrobest DNA polymerase(TaKaRa,P.R.China) was carried out in a50l reaction.Each cycle consisted of heating at94◦C for40s, 51◦C for40s and72◦C for2min10s.The PCR products were purified,digested with Nde I and HindШ,and then isolated on an agarose gel.The double-digested PCR products were ligated to Nde I/HindШ-digested pET-20b(+)(Novagen,Darmstadt, Germany),and the ligation mixture was transformed into JM109.The recombinant plasmid was isolated and confirmed by DNA sequencing using an ABI Prism377 automated DNA sequencer.2.3.Expression and purification of Tma DNA ligaseE.coli BL21(DE3)cells were transformed with the recombinant plasmid,and induced to express Tma DNA ligase by adding isopropyl--d-thiogalactopyranoside (IPTG)to afinal concentration of1mM at OD600about0.8.The cells were harvested by centrifugation(6000×g for10min at4◦C),and washed once with deionized water,re-suspended in a small volume of20mM Tris–HCl buffer(pH7.9)con-taining5mM imidazole and0.5M NaCl,cell disruption was carried out by French press(11,000psi,twice).Cellular debris was removed by centrifugation(20,000×g, 30min,4◦C).A heat treatment was performed by heating the suspension at80◦C for30min,then cooled in an ice bath,and centrifuged for30min at20,000×g, 4◦C.The supernatant was loaded on to an immobilized metal affinity column (Novagen,Inc),and eluted with1M imidazole and0.5M NaCl in20mM Tris–HCl buffer(pH7.9).The pooled fractions were dialyzed into storage buffer containing 50mM Tris–HCl(pH8.0),1mM EDTA,and20%(v/v)glycerol before the enzyme was stored at−20◦C.The protein concentration was determined by Bradford assay.The SDS-PAGE of the purified enzyme was performed according to standard procedures.2.4.Analysis of enzyme activity of Tma DNA ligaseThe assay for the ligating activity of Tma DNA ligase was performed by the method established by Takahashi et al.[6].The plasmid pHsh[17]was digested with Hind III(New England Biolabs)to generate a cohesive-ended DNA as ligation sub-strates.The reaction mixture contained0.1g Tma DNA ligase,1mM NAD+,3mM Mn2+,and150ng substrates in20l of50mM Tris–HCl(pH8.0).Ligation reaction was performed for1h at60◦C or as otherwise indicated.The ligation products were electrophoresed on1.0%agarose gel and the proportion of ligation products was esti-mated quantitatively from the intensity of the bands using the BandScan software (Glyko,Novato,USA).2.5.Amplification of DNA fragments in the presence of Tma DNA ligaseOn the basis of the DNA sequence(GenBank:AE001800)of T.maritima,PCR amplification was carried out using the following primers:T-1,pTACTGATGAC AAAACCGGGAAC;T-2,pGATTACTCTAAAAACACCCGTCG;T-3,pTCTCTTGTCAGCT-TAGTTTC TC;T-4,pATACTCCATCGTGTTGTTTCTG;T-5,pCTGGCACATTTGATACCT-GAAG;T-6,pGAAACGAAGGTCTTTCCTCATC(Fig.5).PCR amplification of25cycles was carried out in a20l reaction system containing the genomic DNA of T.maritima, 0.5U of Ex Taq DNA polymerase(TaKaRa,P.R.China),0.1g Tma DNA ligase,0.2mM primers,0.2mM each deoxynucleotide triphosphate,2.0mM MgCl2,and1.0mM NAD+.Cycling parameters:initial denaturation95◦C5min,subsequent steps94◦C 45s,annealing at56◦C45s,extension72◦C3min40s,additional ligation60◦C 6min.2.6.Examination of the internal sequences ligated by Tma DNA ligaseThe DNA sequences around ligated nicks in PCR products were subcloned and sequenced by using primer L1(TGCTGGGAGCCTATTATGTTC),L2(CCCAAGCT-TAATCGAGCATATTCACCTG),and primer L3(TGTTCCTGAA GATGTGGTGAAC),L4 (CCCAAGCTTCGGATAGATTTCCACGAAC),respectively(Fig.5).The fragments to be subcloned were amplified by Pyrobest DNA polymerase,and inserted into pHsh[17]at Stu I/HindШsites.Recombinant plasmids were sequenced,and sequence identities were analyzed by using an ABI Prism377automated DNA sequencer.2.7.The far-UV circular dichroism(CD)measurementsCD spectrum was acquired on a0.1cm path length cell of a Jasco-715spec-trometer(Jasco,Tokyo,Japan)equipped with RTE bath/circulator(NESLAB RTE-111; NESLAB,Tokyo,Japan).After a30min N2purge,the spectra was recorded from 190nm to250nm with a resolution of0.2nm,100nm min−1speed,1.0nm band-width at selected temperatures after balanced for about15min at each temperature. Protein concentration was0.105mg ml−1in H2O.The secondary structure parame-ters of Tma DNA ligase were estimated with the Jasco secondary structure manager software using the CD data-Yang.jwr as Ref.[18].3.Results3.1.Expression and purification of Tma DNA ligaseThe gene encoding the thermostable DNA ligase was ampli-fied from the genomic DNA of T.maritima,and inserted into gene expression vector pET-20b(+)at Nde I and HindШsites.The recom-binant plasmid was isolated and designated as pET-ligase,which was then transformed into E.coli BL21(DE3)for the production of Tma DNA ligase.Tma DNA ligase was expressed with a C-terminal His-tag.Most of the E.coli proteins were eliminated effectively after heat treatment at80◦C for30min.After a heat treatment and an affinity chromatography,the recombinant enzyme in cell-free extracts was purified to gel electrophoretic homogeneity(Fig.1). The yield of purified protein is1.23mg/l.An analysis by SDS-PAGE showed that the recombinant Tma DNA ligase had a molecular mass of about78kDa.3.2.The cofactor and divalent cation required for ligating activityPurified Tma DNA ligase exhibited activity of joining DNA frag-ments with cohesive termini.No DNA ligase activity was detected on the blunt-ended DNA when Stu I-digested plasmid was tried as substrate to be ligated.As shown in Fig.2,the activity of Tma DNA ligase required NAD+but not ATP as cofactor.The divalent cation Mg2+,Mn2+or Ca2+was also required by the enzyme.Fig.3shows the effect of the concentrations of NAD+,Mg2+,Mn2+or Ca2+on Tma DNA ligating activity.The optimal activity of the ligase was shown at about1mM NAD+and3mM Mn2+.However,although the enzyme also exhibited significant activity at3mM of Mg2+or Ca2+(Fig.2B),the highest ligating activity was detected when the concentration of Mg2+or Ca2+was about20mM(Fig.3B,D).3.3.Effects of pH and temperature on enzyme activity andstabilityWhen Hin d III-cleaved pHsh was used as substrate,the opti-mal ligase reaction of Tma DNA ligase occurred at60◦C,pH8.0 (Fig.4A,B).The purified enzyme retained over80%of its activity after holding a pH ranging from7.2to8.8for1h at80◦C(Fig.4C). The thermostability was evaluated by determination of the resid-ual ligating activity after incubating the mixtures(0.2mg ml−1TmaFig.1.SDS-PAGE analysis of the expression and purification of Tma DNA ligase. Lanes:M,protein marker;(1)soluble proteins of E.coli BL21(DE3)containing pET-20b(+);(2)recombinant Tma DNA ligase in soluble proteins of E.coli BL21(DE3);(3)soluble proteins after a heat treatment at80◦C for30min;(4)Tma DNA ligase purified after a His-tagged affinity chromatography.Y.Le et al./Enzyme and Microbial Technology46 (2010) 113–117115Fig.2.Requirement of cofactor and cation for the ligating activity of Tma DNA ligase.Activity assay was conducted by using Hind III-cleaved pHsh plasmid as substrate at 60◦C for1h,pH8.0.The20l reaction mixture contained0.1g Tm DNA ligase,0.15g substrate,1mM cofactor,and3mM cation.(A)Ligation reactions of Tma DNA ligasein the absence(Lane C)or presence of ATP,NAD+.(B)Ligation reactions of Tm DNA ligase in the absence(Lane C)or presence of variouscations.Fig.3.The effects of NAD+and cation concentrations on the ligating activity of Tma DNA ligase.The ligating activity assay was performed under standard conditions except the variation of the concentration of NAD+(A),Ca2+(B),Mn2+(C),or Mg2+(D). The ligation products were electrophoresed on1.0%agarose gel and the proportion of ligation products was estimated quantitatively from the intensity of the bands using the BandScan software(Glyko,Novato,USA).DNA ligase,50mM Tris–HCl pH8.0)for various durations at80◦C, 85◦C,90◦C,95◦C.Fig.4D shows the residual activity assayed under standard reaction conditions.After incubated at80◦C,Tma DNA lig-ase did not lose any activity,implying that no irreversible unfolding of the protein occurred during the period.The enzyme had a half-life of approximately30min at95◦C,indicating that the enzyme could stand for the temperature cycles of PCR.The conformational change was observed by far-UV circular dichroism spectra of a sample of Tma DNA ligase,which were examined in stepwise at25◦C,60◦C,80◦C,95◦C,and2nd60◦C. The relative contents of secondary structure for the ligase were obtained from the CD measurements(Table1).Provided that the enzyme was in steady state at25◦C,the variation of contents of sec-ondary structure at80◦C and95◦C could represent the tendency ofTable1Secondary structure content of Tma DNA ligase estimated from the far-ultraviolet CD spectra.Fraction of structures Temperature25◦C60◦C80◦C95◦C2nd60◦C ␣-Helix0.30.420.20.180.27-Sheet0.210.060.290.240.07Turn0.190.130.210.250.29 Random-coil0.30.390.30.330.37reversible and irreversible unfolding of the protein.However,the variation of contents of secondary structure at60◦C was obviously opposite to the tendency of unfolding(Table1).The most signifi-cant feature of the conformation at60◦C is a very high content of ␣-helix associated with a very low content of-sheet.The mea-surement at2nd60◦C proved the reversible unfolding and partial inactivation observed at80◦C and95◦C,and confirmed the confor-mation observed at60◦C following25◦C.This conformation can be related to the temperature optimum for Tma DNA ligase.3.4.Promotion of long DNA fragment amplificationWhen a couple pairs of primers are employed to amplify a long DNA fragment,the primers anneal to a template of full length,and a primer is extended at3’-end to reachthe5’-end of the next primer.Theoretically,the nicks can be repaired,and short single strand fragments can be connected before they are released from a template when the activity of DNA ligase is applied in PCR mixture(Fig.5).As the oligonucleotide primers areFig.4.The effects of temperature and pH on the ligating activity and enzyme sta-bility of Tma DNA ligase.(A)The optimal temperature determined by standard assay at various temperatures.(B)The optimal pH determined at60◦C in phthalate-imidazole buffer( ),or Tris–HCl buffer( ).(C)The pH stability of Tma DNA ligase. The remaining activity was determined after purified enzyme(0.1mg ml−1)was incubated at80◦C for1h in50mM Tris–HCl buffer.(D)The thermostability of the Tma DNA ligase.The purified enzyme(0.2mg ml−1)in50mM Tris–HCl buffer(pH 8.0)was incubated for various durations at80◦C( ),85◦C( ),90◦C( ),95◦C(•) with a paraffin oil overlay.The assay for the ligating activity of the treated lig-ase was performed under standard conditions.The activity of the enzyme without pre-incubation was defined as100%activity.116Y.Le et al./Enzyme and Microbial Technology46 (2010) 113–117Fig.5.Outline of the procedures for amplification of long DNA molecules in the presence of Tma DNA ligase.(A)Design of the primers over a 10.2kb region of chromosome DNA of Thermotoga maritima .(B)Proposed procedures for PCR amplification in the absence of DNA ligase.(C)Proposed procedures for PCR amplification in the presence of DNA ligase.complementary to the targeted sequence,there are no base mis-matches at the junction,which in favor of the ligation of nicks,and connecting each pair of fragment together to form continuous strands.To demonstrate the function of Tma DNA ligase to promote the PCR amplification of long DNA fragments,we use three pairs of primers to amplify three adjacent fragments of about 3.2kb,3.6kb and 3.4kb.In the absence of DNA ligase,the PCR prod-ucts were mainly 3.2–3.6kb fragments,and only a weak band was observed for the fragments of about 6.8–7.0kb DNA (Fig.6).However,the involvement of Tma DNA ligase in PCRprocessFig.6.Long DNA amplification promoted by the activity of Tma DNA ne M,EcoT14I marker;Lane 1,PCR using Ex Taq DNA polymerase;Lane 2,PCR using Ex Taq DNA polymerase and Tma DNA ligase.A PCR cycle included a repetitive series of the four steps as described in Section 2:denaturation,annealing,extension,and ligation when Tma DNA ligase was involved in PCR.significantly increased the amount of 6.8–7.0kb DNA,and the full length DNA of 10.2kb became detectable in a weak band (Fig.6).The ligation reaction can only occur at nicks before the newly polymerized fragments are released from template DNA because Tma DNA ligase could not ligate blunt-end DNA,and also because the fragments amplified by Ex Taq DNA polymerase often carry an additional A at 3 -end.This was confirmed by DNA sequence analysis.The DNA frag-ments around the ligated sites were amplified by using high fidelity DNA polymerase with primers L1,L2,and primers L3,L4(Fig.5C),and subjected to sequencing.The resulting sequence data shows that no error base was incorporated in these regions.4.DiscussionThermostable DNA ligases have been purified from various dif-ferent sources [6–13],and have been effectively applied in DNA diagnostics [5],chemical gene synthesis,and assembly of DNA frag-ments [19–21].T.maritima is a hyperthermophilic bacterium with an optimal growth temperature of 80◦C,and thus its DNA ligase is supposed to be useful in the temperature cycles of PCR.In this paper,the DNA ligase of T.maritima is for the first time to be purified and characterized,and the application of DNA ligase to promote the PCR amplification of long DNA fragments is also for the first time discussed here.By using purified Tma DNA ligase,the catalytic properties of the enzyme are investigated for designing reaction conditions.Like most bacterial origin DNA ligases,Tma DNA ligase uses NAD +as cofactor,and requires a divalent anion such as Mg 2+,Mn 2+or Ca 2+for reactions.Although Mn 2+is the best anion,3mM of Mg 2+is also effective for ligating activity (Fig.2).The ligating activity of the enzyme is higher than 90%in a pH range from pH 7.5to pH 8.5,andY.Le et al./Enzyme and Microbial Technology46 (2010) 113–117117the enzyme is relatively stable in this pH range(Fig.4B,C),which suit the pH value of the reaction mixture for PCR.Thermostabilities for the DNA ligases from thermophilic microorganisms have been determined under various conditions; T.filiformis(2h at90◦C)[7],S.shibatae(10min at90◦C)[8],R. marinus(7min at91◦C)[9],S.marinus(2.8h at100◦C)[10],and A.pernix(50min at105◦C)[11].Tma DNA ligase has a half-life of about30min at95◦C when protein concentration is0.2mg ml−1in 50mM Tris–HCl buffer,pH8.0,therefore,it is one of the most stable DNA ligases having been described to date.When Tma DNA ligase is involved in PCR,this enzyme should retain about half activity at the end of30-cycles,where the enzyme is added into the mixture after initial denaturation95◦C5min,and heated to94◦C for45s as the denaturation step for each cycle.Although Tma DNA ligase is stable up to40min at80◦C,and has a half-life of30min at95◦C,its opti-mum activity occurs at60◦C.The similar phenomenon is observed for the other thermostable DNA ligase[9–11].The far-ultraviolet CD spectra revealed that the secondary structure content of Tma DNA ligase at60◦C significantly differed from that at25◦C,80◦C, and95◦C.This result suggests that the enzyme has a unique con-formation at60◦C,which can favor the catalytic reaction for DNA ligation or nick-closing.Amplification of long DNA fragments produced by the poly-merase chain reaction has become an important tool.But long DNA amplification technique still has two limitations:thefidelity of the final product and the size of the product span that can be amplified. Methods developed for PCR amplification of long DNA fragments include the PCR performed with mixed DNA polymerase[22,23], and PCR with addition of internal primers[24].The addition of internal primers is found to be helpful to obtain full length DNA. When these primers anneal to a template of full length,each primer can be extended at3 -end to reach the5 -end of the next primer; and these short DNA fragments will be released at the1st step of the next thermal cycle,i.e.denaturation,In the next cycle,the frag-ments of3 -end defect will be further extended after they anneal to new templates,while those of5 -end defect are not reparable in vitro.In this study,we are exploring a method to use thermostable DNA ligase to promote the long DNA amplification by PCR.Ther-mostable DNA ligase can close the nicks in the chain newly synthesized from two or more primers after a repetitive series of the four fundamental steps:denaturation,annealing,extension and ligation.To confirm the function of Tma DNA ligase,three adjacent fragments were amplified in the presence or the absence of DNA ligase,so that ligation and disconnection between adjacent frag-ments were clearly displayed(Fig.5).The results show that the DNA ligase significantly increased the production of long fragments (Fig.6),and DNA sequencing data indicate that no error bases were incorporated into the ligation sites(data not shown).However, in practical applications,we would recommend that the primers should be designed to produce overlapped fragments.We have also realized that the DNA polymerases producing blunt-end fragments, e.g.Vent,or Pyrobest DNA polymerase are preferred,because the3 A-ended small fragments amplified from small templates would not be extensible after they annealed to the overlapped ones.In summary,this work has revealed several properties of the NAD+-dependent DNA ligase from the thermophilic bacterium T. maritima.Tma DNA ligase combined characteristics of high thermal stability and broad pH profile.A simple,easy to perform method was designed to amplify long DNA fragments with the involvement of Tma DNA ligase.AcknowledgementsThis work was supported by a“973”Grant2004CB719600from China.References[1]Lehman IR.DNA ligase:structure,mechanism,and function.Science1974;186:790–7.[2]Timson DJ,Singleton MR,Wigley DB.DNA ligases in the repair and replicationof DNA.Mutat Res2000;460:301–18.[3]Doherty AJ,Wigley DB.Functional domains of an ATP-dependent DNA ligase.JMol Biol1999;285:63–71.[4]Timson DJ,Wigley DB.Functional domains of an NAD+-dependent DNA ligase.J Mol Biol1999;285:73–83.[5]Barany F.Genetic disease detection and DNA amplification using cloned ther-mostable ligase.Proc Natl Acad Sci USA1991;88:189–93.[6]Takahashi M,Yamaguchi E,Uchida T.Thermophilic DNA ligase.Purificationand properties of the enzyme from Thermus thermophilus HB8.J Biol Chem 1984;259:10041–7.[7]Jeon HJ,Shin HJ,Choi JJ,Hoe HS,Kim HK,Suh SW,et al.Mutational analyses ofthe thermostable NAD+-dependent DNA ligase from Thermusfiliformis.FEMS Microbiol Lett2004;237:111–8.[8]Lai X,Shao H,Hao F,Huang L.Biochemical characterization of an ATP-dependent DNA ligase from the hyperthermophilic crenarchaeon Sulfolobus shibatae.Extremophiles2002;6:469–77.[9]Thorbjarnardóttir SH,Jónsson ZO,AndréssonÓS,Kristjánsson JK,Eggertsson G,Palsdottir A.Cloning and sequence analysis of the DNA ligase-encoding gene of Rhodothermus marinus,and overproduction,purification and characterization of two thermophilic DNA ligases.Gene1995;161:1–6.[10]Seo MS,Kim YJ,Choi JJ,Lee MS,Kim JH,Lee JH,et al.Cloning and expression ofa DNA ligase from the hyperthermophilic archaeon Staphylothermus marinusand properties of the enzyme.J Biotechnol2007;128:519–30.[11]Jeon SJ,Ishikawa K.A novel ADP-dependent DNA ligase from Aeropyrum pernixK1.FEBS Lett2003;550:69–73.[12]Lim JH,Yu YG,Han YS,Cho S,Ahn BY,Kim SH,et al.Molecular cloning andcharacterization of thermostable DNA ligase from Aquifex pyrophilus,a hyper-thermophilic bacterium.Extremophiles2001;5:161–8.[13]Brannigan JA,Ashford SR,Doherty AJ,Timson DJ,Wigley DB.Nucleotidesequence,heterologous expression and novel purification of DNA ligase from Bacillus stearothermophilus.Biochim Biophys Acta1999;1432:413–8.[14]Nelson KE,Clayton RA,Gill SR,Gwinn ML,Dodson RJ,Haft DH,et al.Evidence forlateral gene transfer between Archaea and Bacteria from the genome sequence of Thermotoga maritima.Nature1999;399:323–9.[15]Jiang Y,Zhou Q,Wu K,Li XQ,Shao WL.A highly efficient method for liquid andsolid cultivation of the anaerobic hyperthermophilic eubacterium Thermotoga maritima.FEMS Microbiol Lett2006;259:254–9.[16]Frederick M,Ausubel,Brent R,Kingston RE,Moore DD,Seidman JG,et al.Shortprotocols in molecular biology.3rd ed.New York:John Wiley&Sons;1995. [17]Shao W,Wu H,Pei J.A plasmid vector controlled by the Sigma32factor ofEscherichia coli and its use for the expression of heterologous protein.Interna-tional Patent2006;PCT WO2006/002574A1.[18]Yang YT,Wu CSC,Martinez HM.Calculation of protein conformation from cir-cular dichroism.Methods Enzymol1986;130:208–57.[19]Sutton DW,Havstad PK,Kemp JD.Synthetic crylllA gene from Bacil-lus thuringiensis improved for high expression in plants.Transgenic Res 1992;1:228–36.[20]Xiong AS,Peng RH,Zhuang J,Liu JG,Gao F,Chin JM,et al.Non-polymerase-cycling-assembly-based chemical gene synthesis:Strategies,methods,and progress.Biotechnol Adv2008;26:121–34.[21]Smith HO,Hutchison CA,Pfannkoch C,Venter JC.Generating a syntheticgenome by whole genome assembly:ØX174bacteriophage from synthetic oligonucleotides.Proc Natl Acad Sci USA2003;100:15440–5.[22]Cheng S,Fockler C,Barnes WM,Higuchi R.Effective amplification of long tar-gets from cloned inserts and human genomic DNA.Proc Natl Acad Sci USA 1994;91:5695–9.[23]Barnes WM.PCR amplification of up to35-kb DNA with highfidelity and highyield from bacteriophage templates.Proc Natl Acad Sci USA1994;91:2216–20.[24]Nikolai A,Shevchuk,Anton V,Bryksin,Yevgeniya A.Nusinovich.Construc-tion of long DNA molecules using long PCR-based fusion of several fragments simultaneously.Nucleic Acids Res2004;32:e19.。