(精品)2019年高中数学 第一章《常用逻辑用语》全称量词和存在量词学案(无答案)新人教A版选修2-1
- 格式:doc
- 大小:114.00 KB
- 文档页数:9
【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。
§1.4全称量词与存在量词1.4.1 全称量词1.4.2 存在量词学习目标 1.理解全称量词、全称命题的定义.2.理解存在量词、特称命题的定义.3.会判断一个命题是全称命题还是特称命题,并会判断它们的真假.知识点一全称量词与全称命题思考观察下列命题:(1)所有偶函数的图象都关于y轴对称;(2)每一个四边形都有外接圆;(3)任意实数x,x2≥0.以上三个命题有什么共同特征?答案都使用了表示“全部”的量词,如“所有”、“每一个”、“任意”.梳理知识点二存在量词与特称命题思考观察下列命题:(1)有些矩形是正方形;(2)存在实数x,使x>5;(3)至少有一个实数x,使x2-2x+2<0.以上三个命题有什么共同特征?答案都使用了表示“存在”的量词,如“有些”、“存在”、“至少有一个”.梳理1.“有些”“某个”“有的”等短语不是存在量词.( ×)2.全称量词的含义是“任意性”,存在量词的含义是“存在性”.( √)3.全称命题中一定含有全称量词,特称命题中一定含有存在量词.( ×)类型一全称命题与特称命题的辨析例1 判断下列语句是全称命题,还是特称命题.(1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.考点全称量词及全称命题的真假判断题点识别全称命题解(1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.反思与感悟判定命题是全称命题还是特称命题,主要方法是看命题中含有全称量词还是存在量词.要注意的是有些全称命题并不含有全称量词,这时我们就要根据命题涉及的意义去判断.跟踪训练1 将下列命题用“∀”或“∃”表示.(1)实数的平方是非负数;(2)方程ax2+2x+1=0(a<0)至少存在一个负根;(3)若直线l垂直于平面α内任一直线,则l⊥α.考点全称量词及全称命题的真假判断题点 全称命题的符号表示 解 (1)∀x ∈R ,x 2≥0.(2)∃x 0<0,ax 20+2x 0+1=0(a <0). (3)若∀a ⊂α,l ⊥a ,则l ⊥α. 类型二 全称命题与特称命题的真假判断 例2 判断下列命题的真假.(1)∃α,β,cos(α-β)=cos α-cos β; (2)存在一个函数既是偶函数又是奇函数; (3)每一条线段的长度都能用正有理数表示; (4)存在一个实数x 0,使等式x 20+x 0+8=0成立. 考点 存在量词与特称命题的真假判断 题点 特称命题真假的判断 解 (1)真命题,例如α=π4,β=π2,符合题意. (2)真命题,函数f (x )=0既是偶函数又是奇函数.(3)假命题,如:边长为1的正方形的对角线长为2,它的长度就不是有理数. (4)假命题,因为该方程的判别式Δ=-31<0,故无实数解.反思与感悟 要判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中每个元素x ,证明p (x )都成立;如果在集合M 中找到一个元素x 0,使得p (x 0)不成立,那么这个全称命题就是假命题.要判定特称命题“∃x 0∈M ,p (x 0)”是真命题,只需在集合M 中找到一个元素x 0,使p (x 0)成立即可;如果在集合M 中,使p (x )成立的元素x 不存在,那么这个特称命题就是假命题. 跟踪训练2 判断下列命题的真假: (1)有一些奇函数的图象过原点; (2)∃x 0∈R,2x 20+x 0+1<0; (3)∀x ∈R ,sin x +cos x ≤ 2. 考点 存在量词与特称命题的真假判断 题点 特称命题真假的判断解 (1)该命题中含有“有一些”,是特称命题.如y =x 是奇函数,其图象过原点,故该命题是真命题.(2)该命题是特称命题.∵2x 20+x 0+1=2⎝ ⎛⎭⎪⎫x 0+142+78≥78>0,∴不存在x 0∈R ,使2x 20+x 0+1<0.故该命题是假命题. (3)该命题是全称命题.∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2恒成立,∴对任意实数x ,sin x +cos x ≤2都成立,故该命题是真命题. 类型三 由含量词的命题求参数例3 对于任意实数x ,不等式sin x +cos x >m 恒成立,求实数m 的取值范围. 考点 全称量词及全称命题的真假判断 题点 恒成立求参数的范围 解 令y =sin x +cos x ,x ∈R ,则y =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4∈[-2,2],因为∀x ∈R ,sin x +cos x >m 恒成立, 所以只要m <-2即可.所以所求m 的取值范围是(-∞,-2). 引申探究若本例条件变为:“存在实数x 0,使不等式sin x 0+cos x 0>m 有解”,求实数m 的取值范围. 解 令y =sin x +cos x ,x ∈R ,因为y =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4∈[-2,2]. 又因为∃x 0∈R ,sin x 0+cos x 0>m 有解, 所以只要m <2即可,所以所求m 的取值范围是(-∞,2).反思与感悟 求解含有量词的命题中参数的范围的策略(1)对于全称命题“∀x ∈M ,a >f (x )(或a <f (x ))”为真的问题,实质就是不等式恒成立问题,通常转化为求函数f (x )的最大值(或最小值),即a >f (x )max (或a <f (x )min ).(2)对于特称命题“∃x 0∈M ,a >f (x 0)(或a <f (x 0))”为真的问题,实质就是不等式能成立问题,通常转化为求函数f (x )的最小值(或最大值),即a >f (x )min (或a <f (x )max ). 跟踪训练3 已知函数f (x )=x 2-2x +5.(1)是否存在实数m ,使不等式m +f (x )>0对于任意x ∈R 恒成立,并说明理由; (2)若至少存在一个实数x 0,使不等式m -f (x 0)>0成立,求实数m 的取值范围. 考点 存在量词与特称命题的真假判断 题点 存在性问题求参数的范围解 方法一 (1)不等式m +f (x )>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m使不等式m+f(x)>0对于任意x∈R恒成立,此时需m>-4.(2)不等式m-f(x0)>0,可化为m>f(x0),若至少存在一个实数x0使不等式m>f(x0)成立,只需m>f(x)min.又f(x)=(x-1)2+4,所以f(x)min=4,所以m>4.所以所求实数m的取值范围是(4,+∞).方法二(1)要使不等式m+f(x)>0对∀x∈R恒成立,即x2-2x+5+m>0对∀x∈R恒成立,所以Δ=(-2)2-4(5+m)<0,解得m>-4,所以当m>-4时,m+f(x)>0对于任意x∈R恒成立.(2)若至少存在一个实数x0,使m-f(x0)>0成立,即x20-2x0+5-m<0成立.只需Δ=(-2)2-4(5-m)>0即可,解得m>4.所以实数m的取值范围是(4,+∞).1.下列命题中,是正确的全称命题的是( )A.对任意的a,b∈R,都有a2+b2-2a-2b+2<0B.菱形的两条对角线相等C.∃x0,x20=x0D.对数函数在定义域上是单调函数考点全称量词及全称命题的真假判断题点识别全称命题答案 D2.下列命题中,既是真命题又是特称命题的是( )A.存在一个α,使tan(90°-α)=tanαB.存在实数x0,使sin x0=π2C.对一切α,sin(180°-α)=sinαD.对任意α,β,sin(α-β)=sinαcosβ-cosαsinβ考点存在量词与特称命题的真假判断题点特称命题真假的判断答案 A3.下列命题正确的是( )A.∀x∈Z,x4≥1B.∃x0∈Q,x20=3C.∀x∈R,x2-2x-1>0D.∃x0∈N,|x0|≤0考点存在量词与特称命题的真假判断题点特称命题真假的判断答案 D解析对于A,如x=0,不合题意;对于B,x=±3,错误;对于C,如x=0时,-1<0,错误.故选D.4.命题“有些负数满足不等式(1+x)(1-9x)>0”用“∃”或“∀”可表述为_____________.考点存在量词与特称命题的真假判断题点特称命题的符号表示答案∃x0<0,(1+x0)(1-9x0)>05.命题:3mx2+mx+1>0恒成立是真命题,求实数m的取值范围.考点全称量词及全称命题的真假判断题点恒成立求参数的范围解“3mx2+mx+1>0恒成立”是真命题,需对m进行分类讨论.当m=0时,1>0恒成立,所以m=0满足题意;当m>0,且Δ=m2-12m<0,即0<m<12时,3mx2+mx+1>0恒成立,所以0<m<12满足题意.综上所述,实数m的取值范围是0≤m<12.1.判断命题是全称命题还是特称命题,主要是看命题中是否含有全称量词或存在量词,有些全称命题虽然不含全称量词,可以根据命题涉及的意义去判断.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3.要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题.一、选择题1.给出下列命题:①存在实数x0>1,使x20>1;②全等的三角形必相似;③有些相似三角形全等;④至少有一个实数a,使ax2-ax+1=0的根为负数.其中特称命题的个数为( )A.1 B.2C.3 D.4考点存在量词与特称命题的真假判断题点识别特称命题答案 C解析由存在量词及特称命题的定义知①③④为特称命题.2.下列全称命题中真命题的个数为( )①负数没有对数;②对任意的实数a,b,都有a2+b2≥2ab;③二次函数f(x)=x2-ax-1与x轴恒有交点;④∀x∈R,y∈R,都有x2+|y|>0.A.1B.2C.3D.4考点全称量词及全称命题的真假判断题点全称命题真假的判断答案 C解析①②③为真命题.3.给出以下命题:①∀x∈R,有x4>x2;②∃α∈R,使得sin3α=3sinα;③∃a∈R,对∀x∈R,使得x2+2x+a<0.其中真命题的个数为( )A.0B.1C.2D.3考点存在量词与特称命题的真假判断题点 特称命题真假的判断 答案 B解析 ①中,当x =0时,x 4=x 2,故为假命题;②中,当α=k π(k ∈Z )时,sin3α=3sin α成立,故为真命题;③中,由于函数f (x )=x 2+2x +a 的图象开口向上,一定存在x ∈R ,使x 2+2x +a ≥0,故为假命题.故选B.4.有下列四个命题:①∀x ∈R,2x 2-3x +4>0;②∀x ∈{1,-1,0},2x +1>0;③∃x 0∈N ,x 20≤x 0;④∃x 0∈N *,x 0为29的约数,其中真命题的个数为( )A .1B .2C .3D .4考点 全称命题与特称命题的真假判断 题点 全称命题与特称命题的真假判断 答案 C解析 ①中,2x 2-3x +4=2⎝ ⎛⎭⎪⎫x -342+238>0,故①正确;②中,当x =-1时,2x +1<0,故②不正确; ③中,当x 0=0或1时,x 20≤x 0,故③正确; ④中,∃29∈N *,29为29的约数,④正确. ∴真命题的个数为3.5.已知命题p :∃x 0∈R ,x 20+1<2x 0;命题q :不等式x 2-2x -1>0恒成立,那么( ) A .“綈p ”是假命题 B .q 是真命题 C .“p ∨q ”是假命题 D .“p ∧q ”是真命题考点 “p ∨q ”形式的命题 题点 判断“p ∨q ”形式命题的真假 答案 C解析 根据基本不等式,x 2+1≥2x ,所以命题p 是假命题. 因为当x =0时,x 2-2x -1=-1<0,所以命题q 是假命题.所以綈p 是真命题,“p ∨q ”是假命题,“p ∧q ”是假命题,所以C 正确.6.已知a >0,函数f (x )=ax 2+bx +c ,若x 1满足关于x 的方程2ax +b =0,则下列命题中为假命题的是( ) A .∃x 0∈R ,f (x 0)≤f (x 1) B .∃x 0∈R ,f (x 0)≥f (x 1) C .∀x ∈R ,f (x )≤f (x 1) D .∀x ∈R ,f (x )≥f (x 1)题点 全称命题真假的判断 答案 C解析 ∵x 1是方程2ax +b =0的解, ∴x 1=-b2a ,又∵a >0,∴f (x 1)是y =f (x )的最小值, ∴f (x )≥f (x 1)恒成立.7.命题“∀x ∈[1,2],x 2-a ≤0”是真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≤5D .a ≥5考点 全称量词及全称命题的真假判断 题点 恒成立求参数的范围 答案 D解析 当该命题是真命题时,只需a ≥(x 2)max ,x ∈[1,2]. 又y =x 2在[1,2]上的最大值是4,所以a ≥4. 因为a ≥4⇏a ≥5,a ≥5⇒a ≥4,故选D.8.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意x 成立,则( ) A .-1<a <1 B .0<a <2 C .-12<a <32D .-32<a <12考点 全称量词及全称命题的应用 题点 求参数的范围 答案 C解析 应用新定义运算可得(x -a )⊗(x +a )=(x -a )·[1-(x +a )] =-x 2+x -a +a 2<1恒成立, 即x 2-x +a -a 2+1>0恒成立,a 2-a <x 2-x +1对∀x ∈R 恒成立,而x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴a 2-a <34,即-12<a <32.二、填空题9.命题“末位是0的整数可以被5整除”________全称命题.(填“是”或“不是”)题点 识别全称命题 答案 是解析 原命题可写为“所有末位为0的整数都可以被5整除”. 10.下列命题:①存在x 0<0,x 20-2x 0-3=0; ②对于一切实数x <0,都有|x |>x ;③已知a n =2n ,b m =3m ,对于任意n ,m ∈N *,a n ≠b m . 其中,所有真命题的序号为________. 考点 全称量词及全称命题的真假判断 题点 全称命题真假的判断 答案 ①②解析 因为x 2-2x -3=0的根为x =-1或3,所以存在x 0=-1<0,使x 20-2x 0-3=0,故①为真命题; ②显然为真命题;③当n =3,m =2时,a 3=b 2,故③为假命题.11.若“∀∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.考点 全称量词及全称命题的真假判断 题点 恒成立求参数的范围 答案 1解析 ∵∀x ∈⎣⎢⎡⎦⎥⎤0,π4,∴tan x ≤1,∴m ≥1,故实数m 的最小值为1. 三、解答题12.判断下列命题是否为全称命题或特称命题,若是,用符号表示,并判断其真假. (1)存在一条直线,其斜率不存在;(2)对所有的实数a ,b ,方程ax +b =0都有唯一解; (3)存在实数x 0,使得1x 2-x 0+1=2.考点 全称量词及全称命题的真假判断 题点 全称命题真假的判断解 (1)是特称命题,用符号表示为“∃直线l 0,l 0的斜率不存在”,是真命题. (2)是全称命题,用符号表示为“∀a ,b ∈R ,方程ax +b =0都有唯一解”,是假命题. (3)是特称命题,用符号表示为“∃x 0∈R ,1x 20-x 0+1=2”,是假命题.13.已知命题p :“∃x 0∈R ,sin x 0<m ”,命题q :“∀x ∈R ,x 2+mx +1>0恒成立”,若p ∧q 是真命题,求实数m 的取值范围.考点 全称量词及全称命题的应用题点 求参数的范围解 由于p ∧q 是真命题,则p ,q 都是真命题.因为“∃x 0∈R ,sin x 0<m ”是真命题,所以m >-1.又因为“∀x ∈R ,x 2+mx +1>0恒成立”是真命题,所以Δ=m 2-4<0,解得-2<m <2.综上所述,实数m 的取值范围是(-1,2).四、探究与拓展14.不等式组⎩⎪⎨⎪⎧ x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2;p 2:∃(x 0,y 0)∈D ,x 0+2y 0≥2;p 3:∀(x ,y )∈D ,x +2y ≤3;p 4:∃(x 0,y 0)∈D ,x 0+2y 0≤-1.其中真命题是( )A .p 2,p 3B .p 1,p 4C .p 1,p 2D .p 1,p 3考点 全称量词及全称命题的真假判断题点 全称命题真假的判断答案 C解析 画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.15.若命题“∃a ∈[1,3],使ax 2+(a -2)x -2>0”是真命题,则实数x 的取值范围是________.考点 存在量词与特称命题的真假判断题点 存在性问题求参数的范围答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫23,+∞ 解析 令f (a )=ax 2+(a -2)x -2=(x 2+x )a -2x -2,是关于a 的一次函数, 由题意,得(x 2+x )-2x -2>0或(x 2+x )·3-2x -2>0,即x 2-x -2>0或3x 2+x -2>0,解得x <-1或x >23.。
1.4 全称量词与存在量词(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题叫做全称命题,通常将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示,那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x).2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题,特称命题“存在M 中的元素x0,使p(x0)成立”,可用符号简记为“∃x0∈M,p(x0)”.思考:(1)“一元二次方程ax2+2x+1=0有实数解”是特称命题还是全称命题?请改写成相应命题的形式.(2)“不等式(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立”是特称命题还是全称命题?请改写成相应命题的形式.[提示](1)是特称命题,可改写为“存在x0∈R,使ax20+2x0+1=0”.(2)是全称命题,可改写成:“∀x∈R,(m+1)x2-(m-1)x+3(m-1)<0”.3.含有一个量词的命题的否定一般地,对于含有一个量词的全称命题的否定,有下面的结论:全称命题p:∀x∈M,p(x),它的否定p:∃x0∈M,p(x0);特称命题p:∃x0∈M,p(x0),它的否定p:∀x∈M,p(x).全称命题的否定是特称命题,特称命题的否定是全称命题.1.下列命题中全称命题的个数是( )①任意一个自然数都是正整数;②所有的素数都是奇数;③有的等差数列也是等比数列;④三角形的内角和是180°.A.0 B.1C.2 D.3D[命题①②含有全称量词,而命题④可以叙述为“每一个三角形的内角和都是180°”,故有三个全称命题.]2.下列命题中特称命题的个数是( )①至少有一个偶数是质数;②∃x0∈R,log2x0>0;③有的向量方向不确定.A.0 B.1C.2 D.3D[①中含有存在量词“至少”,所以是特称命题;②中含有存在量词符号“∃”,所以是特称命题;③中含有存在量词“有的”,所以是特称命题.]3.命题p:“存在实数m,使方程x2+mx+1=0有实数根”,则“p”形式的命题是( )A.存在实数m,使方程x2+mx+1=0无实根B.不存在实数m,使方程x2+mx+1=0无实根C.对任意的实数m,方程x2+mx+1=0无实根D.至多有一个实数m,使方程x2+mx+1=0有实根[答案]C4.命题“∃x0∈R,x20+x0+1≤0”的否定是________.[答案]∀x∈R,x2+x+1>0全称命题和特称命题的概念及真假判断们的真假.(1)∀x∈N,2x+1是奇数;(2)存在一个x0∈R,使1x0-1=0;(3)能被5整除的整数末位数是0;(4)有一个角α,使sin α>1.[解](1)是全称命题,因为∀x∈N,2x+1都是奇数,所以该命题是真命题.(2)是特称命题.因为不存在x0∈R,使1x0-1=0成立,所以该命题是假命题.(3)是全称命题.因为25能被5整除,但末位数不是0,因此该命题是假命题.(4)是特称命题,因为∀α∈R,sin α∈[-1,1],所以该命题是假命题.1.判断命题是全称命题还是特称命题的方法(1)分析命题中是否含有量词;(2)分析量词是全称量词还是存在量词;(3)若命题中不含量词,要根据命题的意义去判断.2.全称命题与特称命题真假的判断方法(1)要判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M 中每个元素x,证明p(x)都成立;如果在集合M中找到一个元素x0,使得p(x0)不成立,那么这个全称命题就是假命题.(2)要判定特称命题“∃x0∈M,p(x0)”是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么这个特称命题就是假命题.[跟进训练]1.(1)判断下列命题是全称命题还是特称命题?①凸多边形的外角和等于360°;②有的向量方向不定;③对任意角α,都有sin 2α+cos 2α=1;④有些素数的和仍是素数;⑤若一个四边形是菱形,则这个四边形的对角线互相垂直.(2)判断下列命题的真假:①p :任意等比数列的公比不能等于0;②q :存在等差数列,其前n 项和S n =n 2+2n -1;③r :∀x ∈R ,sin x +cos x ≥-1;④s :∃x 0∈R ,x 20-2x 0+3<0.[解] (1)①可以改写为所有的凸多边形的外角和都等于360°,故为全称命题.②含有存在量词“有的”,故为特称命题.③含有全称量词“任意”,故为全称命题.④含有存在量词“有些”,故为特称命题.⑤若一个四边形是菱形,也就是所有的菱形,故为全称命题.(2)①这是全称命题,由等比数列的定义知,等比数列中任意项a n ≠0,所以其公比q =a n +1a n≠0(n ∈N +),故该命题为真命题. ②这是特称命题,对于任意等差数列{a n },若设其公差为d ,则前n 项和S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,因此不可能是S n =n 2+2n -1这种形式,故该命题是假命题.③这是全称命题,因为对∀x ∈R ,sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≥-2,所以存在x 0∈R ,sin x +cos x ∈[-2,-1),故该命题为假命题.④这是特称命题,因为对任意x ∈R ,x 2-2x +3=(x -1)2+2≥2>0,所以不存在x 0∈R ,使x 20-2x 0+3<0,故命题为假命题.含有一个量词的命题的否定 【例2】 (1)命题“∀x ∈R ,x 2≠x ”的否定是( )A .∀x R ,x 2≠xB .∀x ∈R ,x 2=xC .∃x R ,x 2≠xD .∃x ∈R ,x 2=x(2)写出下列命题的否定,并判断其真假:①p :∀x ∈R ,x 2-x +14≥0; ②p :所有的正方形都是菱形;③p :至少有一个实数x 0,使x 30+1=0.思路探究:先判定命题是全称命题还是特称命题,再针对不同的形式加以否定.(1)D [原命题的否定为∃x ∈R ,x 2=x ,故选D .](2)解:①p :∃x 0∈R ,x 20-x 0+14<0,假命题.因为∀x∈R,x2-x +14=⎝⎛⎭⎪⎫x-122≥0恒成立.②p:至少存在一个正方形不是菱形,假命题.③p:∀x ∈R,x3+1≠0,假命题.因为x=-1时,x3+1=0.对全称命题和特称命题进行否定的步骤与方法1确定类型:是特称命题还是全称命题.2改变量词:把全称量词换为恰当的存在量词;把存在量词换为恰当的全称量词.3否定结论:原命题中“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.提醒:无量词的全称命题要先补回量词再否定.[跟进训练]2.(1)命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是( ) A.∀x∈(0,+∞),ln x≠x-1B.∀x(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0(0,+∞),ln x0=x0-1A[特称命题的否定是全称命题,故原命题的否定是∀x∈(0,+∞),ln x≠x-1.](2)写出下列命题的否定,并判断其真假.①p:不论m取何实数,方程x2+x-m=0必有实数根;②q: 存在一个实数x 0,使得x 20+x 0+1≤0;③r :等圆的面积相等,周长相等;④s :对任意角α,都有sin 2α+cos 2α=1.[解] ①这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有实数根”,其否定形式是p :“存在实数m ,使得x 2+x -m =0没有实数根”. 注意到当Δ=1+4m <0时,即m <-14时,一元二次方程没有实数根,所以p 是真命题.②这一命题的否定形式是q :“对所有的实数x ,都有x 2+x +1>0”,利用配方法可以证得q 是真命题.③这一命题的否定形式是r :“存在一对等圆,其面积不相等或周长不相等”,由平面几何知识知r 是假命题.④这一命题的否定形式是s :“存在α∈R ,sin 2α+cos 2α≠1”,由于命题s 是真命题,所以s 是假命题.由全称(特称)命题的真假确定参数的范围[探究问题]1.若含参数的命题p 是假命题,如何求参数的取值范围?[提示] 先求p ,再求参数的取值范围.2.全称命题和特称命题与恒成立问题和存在性问题有怎样的对应关系?[提示] 全称命题与恒成立问题对应,特称命题与存在性问题对应.【例3】(1)若命题p“∃x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是________.(2)已知命题“对于任意x∈R,x2+ax+1≥0”是假命题,求实数a的取值范围.思路探究:(1)先求p,再求参数的取值范围.(2)首先利用命题的否定与原命题的真假不同,写出该命题的否定,再计算a的取值范围.(1)-22,22[p:∀x∈R,2x2-3ax+9≥0为真命题.则Δ=9a2-72≤0,解得-22≤a≤22.](2)解:因为全称命题“对于任意x∈R,x2+ax+1≥0”的否定形式为:“存在x0∈R,x20+ax0+1<0”.由“命题真,其否定假;命题假,其否定真”可知,这个否定形式的命题是真命题.由于函数f(x)=x2+ax+1是开口向上的抛物线,借助二次函数的图象易知:Δ=a2-4>0,解得a<-2或a>2.所以实数a的取值范围是(-∞,-2)∪(2,+∞).1.本例(2)中把条件“任意x∈R”改为“x>0”,则实数a的取值范围是________.(-∞,-2)[由题意新命题的否定为“存在x0>0,x20+ax0+1<0”为真.因为f(x)=x2+ax+1是开口向上的抛物线且过(0,1)点,借助二次函数的图象易知⎩⎪⎨⎪⎧ Δ=a 2-4>0,-a 2>0,解得a <-2.所以实数a 的取值范围是(-∞,-2).]2.本例(2)中把条件“假命题”改为“真命题”,求实数a 的取值范围.[解] 对于任意x ∈R ,x 2+ax +1≥0是真命题,即对任意实数x ,不等式x 2+ax +1≥0恒成立,则Δ=a 2-4≤0,解得-2≤a ≤2.所以a 的取值范围是-2≤a ≤2.含有一个量词的命题与参数范围的求解策略1对于全称命题“∀x ∈M ,a >f x 或a <f x ”为真的问题,实质就是不等式恒成立问题,通常转化为求函数f x 的最大值或最小值,即a >f x max 或a <f x min . 2对于特称命题“∃x 0∈M ,a >f x 0或a <f x 0”为真的问题,实质就是不等式能成立问题,通常转化为求函数f x 的最小值或最大值,即a >f xmin 或a <f x max . 3若全称命题为假命题,通常转化为其否定形式——特称命题为真命题解决,同理,若特称命题为假命题,通常转化为其否定形式——全称命题为真命题解决.1.判定一个命题是全称命题还是特称命题的主要方法是看命题中含有哪种量词,判定时要特别注意省略量词的全称命题.2.要判定一个全称命题为真命题,必须对限定集合M 中的每一个元素x验证p(x)成立,要判定其为假命题,只要举出一个反例即可;对特称命题真假的判定方法正好与之相反.3.全称命题与特称命题的否定,其模式是固定的,即把相应的全称量词改为存在量词,存在量词改为全称量词,并把命题的结论加以否定.4.利用全称命题和特称命题的真假求参数的取值范围问题时,转化恒成立或有解的数学问题来解决.1.下列命题中是全称命题,且为假命题的是( )A.存在x0∈R,sin x0+cos x0=2B.偶函数图象关于y轴对称C.∃m∈R,x2+mx+1=0无解D.∀x∈N,x3>x2D[A,C中命题是特称命题,故排除.B为省略量词的全称命题,且为真命题.D为全称命题.当x=0或1时,x3=x2,故D中命题是假命题.]2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数D[全称命题的否定为相应的特称命题,即将“所有”变为“存在”,并且将结论进行否定.]3.命题p:∃x0∈R,x20+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定为p:________.特称命题假∀x∈R,x2+2x+5≥0[命题p:∃x0∈R,x20+2x0+5<0是特称命题.因为x2+2x+5=(x+1)2+4>0恒成立,所以命题p为假命题.命题p的否定为:∀x∈R,x2+2x+5≥0.]4.命题“∀x∈R,3x2-2x+1>0”的否定是________.∃x0∈R,3x20-2x0+1≤0[原命题为全称命题,其否定为特称命题,所以命题的否定为∃x0∈R,3x20-2x0+1≤0.]。
全称量词与存在量词预习课本P21~25,思考并完成以下问题1.全称量词、全称命题的定义是什么?2.存在量词、特称命题的定义是什么?3.全称命题与特称命题的否定分别是什么命题?[新知初探]1.全称量词与全称命题全称量词所有的、任意一个、一切、每一个、任给符号__∀__全称命题含有全称量词的命题形式“对M中任意一个x,有p(x)成立”,可用符号简记为“∀x∈M,p(x)”存在量词存在一个、至少有一个、有一个、有些、有的符号表示__∃__特称命题含有存在量词的命题形式“存在M中的一个x0,使p(x0)成立”可用符号简记为“∃x0∈M,p(x0)”知识点原命题命题的否定全称命题p:∀x∈M,p(x)綈p:∃x0∈M,綈p(x0)的否定特称命题p:∃x0∈M,p(x0)綈p:∀x∈M,綈p(x)的否定[(1)全称命题的否定全称命题的否定是一个特称命题,否定全称命题时关键是找出全称量词,明确命题所提供的性质.(2)特称命题的否定特称命题的否定是一个全称命题,否定特称命题时关键是找出存在量词,明确命题所提供的性质.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)在全称命题和特称命题中,量词都可以省略( )(2)“有的等差数列也是等比数列”是特称命题( )(3)“三角形内角和是180°”是全称命题( )答案:(1)×(2)√(3)√2.命题“∀x∈R,|x|+x2≥0”的否定是( )A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0答案:C3.下列全称命题为真命题的是( )A.所有的质数是奇数B.∀x∈R,x2+1≥1C.对每一个无理数x,x2也是无理数D.所有的能被5整除的整数,其末位数字都是5答案:B4.命题p:∃x0∈R,x20+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定为綈p:______________.答案:特称命题假∀x∈R,x2+2x+5≥0全称命题与特称命题的判断[典例](1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解] (1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.判断一个语句是全称命题还是特称命题的思路[注意] 全称命题可能省略全称量词,特称命题的存在量词一般不能省略. [活学活用]用全称量词或存在量词表示下列语句: (1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数;(3)等式sin(α+β)=sin α+sin β对有些角α,β成立; (4)方程3x -2y =10有整数解.解:(1)对任意实数x ,不等式x 2+x +1>0成立. (2)对任意有理数x ,13x 2+12x +1是有理数.(3)存在角α,β,使sin(α+β)=sin α+sin β成立. (4)存在一对整数x ,y ,使3x -2y =10成立.全称命题、特称命题的真假判断[典例] A .∃x 0∈R ,lg x 0=0 B .∃x 0∈R ,tan x 0=1 C .∀x ∈R ,x 2>0D .∀x ∈R ,e x>0(2)下列命题中的真命题是( )A .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数B .∃α0,β0∈R ,使cos(α0+β0)=cos α0+cos β0C .向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为2D .“|x |≤1”是“x ≤1”的既不充分又不必要条件 [解析] (1)对于A ,x =1时,lg x =0; 对于B ,x =k π+π4(k ∈Z)时,tan x =1;对于C ,当x =0时,x 2=0,所以C 中命题为假命题; 对于D ,e x>0恒成立.(2)对于A ,当φ=π2时,f (x )=cos 2x ,为偶函数,故A 为假命题;对于B ,令α0=π4,β0=-π2,则cos(α0+β0)=cos ⎝ ⎛⎭⎪⎫-π4=22,cos α0+cos β0=22+0=22,cos(α0+β0)=cos α0+cos β0成立,故B 为真命题; 对于C ,向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为a ·b |b |=-2+01=-2,故C 为假命题;对于D ,|x |≤1,即-1≤x ≤1,故充分性成立,若x ≤1,则|x |≤1不一定成立,所以“|x |≤1”为“x ≤1”的充分不必要条件,故D 为假命题.[答案] (1)C (2)B指出下列命题是全称命题,还是特称命题,并判断真假. (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)存在两个相交平面垂直于同一条直线. (4)∃x 0∈R ,使x 20+1<0. 解:(1)是全称命题.∵a x>0(a >0,且a ≠1)恒成立,∴命题(1)是真命题. (2)是全称命题.存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π, ∴命题(2)是假命题. (3)是特称命题.由于垂直于同一条直线的两个平面是互相平行的, ∴命题(3)是假命题. (4)是特称命题.对任意x ∈R ,x 2+1>0,∴命题(4)是假命题.全称命题与特称命题的否定[典例] p n n2n pA.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n(2)(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2[解析] (1)因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”,故选C.(2)由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.[答案] (1)C (2)D全称命题与特称命题的否定的思路(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.判断下列命题的真假,并写出它们的否定.(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.解:(1)三角形的内角和为180°,是全称命题,是真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形,其内角和不等于180°.(2)每个二次函数的图象都开口向下,是全称命题,是假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)存在一个四边形不是平行四边形,是特称命题,是真命题.命题的否定:所有的四边形都是平行四边形.利用全称命题与特称命题求参数[典例] 若命题“∀x ∈[-1,+∞),x 2-2ax +2≥a ”是真命题,求实数a 的取值范围.[解] 法一:由题意,∀x ∈[-1,+∞), 令f (x )=x 2-2ax +2≥a 恒成立,所以f (x )=(x -a )2+2-a 2≥a 可转化为∀x ∈[-1,+∞),f (x )min ≥a 恒成立, 而∀x ∈[-1,+∞),f (x )min =⎩⎪⎨⎪⎧2-a 2,a ≥-1,1+a 2+2-a 2,a <-1.由f (x )的最小值f (x )min ≥a ,知a ∈[-3,1]. 法二:x 2-2ax +2≥a , 即x 2-2ax +2-a ≥0, 令f (x )=x 2-2ax +2-a ,所以全称命题转化为∀x ∈[-1,+∞),f (x )≥0恒成立,所以Δ≤0或⎩⎪⎨⎪⎧Δ=4a 2-42-a >0,a <-1,f -1≥0,即-2≤a ≤1或-3≤a <-2.所以-3≤a ≤1. 综上,所求实数a 的取值范围是[-3,1].利用全称命题与特称命题求参数范围的两类题型(1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以利用代入可以体现集合中相应元素的具体性质;也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表达.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.命题p :∃x 0∈[0,π],使sin ⎝⎛⎭⎪⎫x 0+π3<a ,若p 是真命题,则实数a 的取值范围为________.解析:由0≤x ≤π,得π3≤x +π3≤4π3,所以-32≤sin ⎝⎛⎭⎪⎫x +π3≤1. 而命题p :∃x 0∈[0,π],使sin ⎝ ⎛⎭⎪⎫x 0+π3<a ,因为p 为真命题,所以a >-32. 答案:⎝ ⎛⎭⎪⎫-32,+∞ 2.已知命题p :∃x 0∈R ,使x 20-mx 0+1=0,命题q :∀x ∈R ,有x 2-2x +m >0.若命题q ∨(p ∧q )为真,綈p 为真,求实数m 的取值范围.解:由于綈p 为真,所以p 为假,则p ∧q 为假. 又q ∨(p ∧q )为真,故q 为真,即p 假、q 真.命题p 为假,即关于x 的方程x 2-mx +1=0无实数解,则m 2-4<0,解得-2<m <2; 命题q 为真,则4-4m <0,解得m >1. 故实数m 的取值范围是(1,2).层级一 学业水平达标1.已知命题p :∀x >0,总有e x>1,则綈p 为( ) A .∃x 0≤0,使得e x 0≤1 B .∃x 0>0,使得e x 0≤1 C .∀x >0,总有e x≤1D .∀x ≤0,总有e x<1解析:选B 因为全称命题的否定是特称命题,所以命题p 的否定綈p 为∃x 0>0,使得e x 0≤1.故选B.2.下列四个命题中的真命题为( ) A .若sin A =sin B ,则A =B B .∀x ∈R ,都有x 2+1>0 C .若lg x 2=0,则x =1 D .∃x 0∈Z ,使1<4x 0<3解析:选B A 中,若sin A =sin B ,不一定有A =B ,故A 为假命题,B 显然是真命题;C 中,若lg x 2=0,则x 2=1,解得x =±1,故C 为假命题;D 中,解1<4x <3得14<x <34,故不存在这样的x ∈Z ,故D 为假命题.3.命题“∃x 0∈R,2x 0<12或x 20>x 0”的否定是( )A .∃x 0∈R,2x 0≥12或x 20≤x 0B .∀x ∈R,2x ≥12或x 2≤xC .∀x ∈R,2x ≥12且x 2≤xD .∃x 0∈R,2x 0≥12且x 20≤x 0解析:选C 原命题为特称命题,其否定为全称命题,应选C. 4.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2解析:选B A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是特称命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.5.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:选D 当a =0时,不等式恒成立; 当a ≠0时,要使不等式恒成立,则有⎩⎪⎨⎪⎧a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,a 2-4a ≤0,解得0<a ≤4.综上,0≤a ≤4,则命题p :0≤a ≤4, 所以綈p :a <0或a >4.6.下列命题中,是全称命题的是________;是特称命题的是________.(填序号) ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.答案:①②③ ④7.命题“至少有一个正实数x 满足方程x 2+2(a -1)x +2a +6=0”的否定是________. 解析:把量词“至少有一个”改为“所有”,“满足”改为“都不满足”得命题的否定. 答案:所有正实数x 都不满足方程x 2+2(a -1)x +2a +6=08.已知命题“∃x 0∈R,2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________.解析:原命题等价于“∀x ∈R,2x 2+(a -1)x +12>0”是真命题,即Δ=(a -1)2-4<0,解得-1<a <3.答案:(-1,3)9.判断下列命题的真假,并写出它们的否定. (1)∀α,β∈R ,sin(α+β)≠sin α+sin β; (2)∃x 0,y 0∈Z,3x 0-4y 0=20;(3)在实数范围内,有些一元二次方程无解; (4)正数的绝对值是它本身.解:(1)当α=β=0时,sin(α+β)=sin α+sin β,故命题为假命题.命题的否定为:∃α0,β0∈R ,sin(α0+β0)=sin α0+sin β0.(2)真命题.命题的否定为:∀x ,y ∈Z,3x -4y ≠20.(3)真命题.命题的否定为:在实数范围内,所有的一元二次方程都有解.(4)省略了量词“所有的”,该命题是全称命题,且为真命题.命题的否定为:有的正数的绝对值不是它本身.10.已知命题p :∀a ∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a +π3的周期不大于4π.(1)写出綈p ;(2)当綈p 是假命题时,求实数b 的最大值. 解:(1)綈p :∃a 0∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a 0+π3的周期大于4π. (2)因为綈p 是假命题,所以p 是真命题, 所以∀a ∈(0,b ],2π1a≤4π恒成立,解得a ≤2,所以b ≤2,所以实数b 的最大值是2.层级二 应试能力达标1.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 解析:选D 由正弦函数的图象,知∀x ∈⎝⎛⎭⎪⎫0,π2,sin x <x ,又3<π,∴当x ∈⎝⎛⎭⎪⎫0,π2时,3sin x <πx ,即∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0恒成立,∴p 是真命题.又全称命题的否定是特称命题,∴綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0. 2.已知命题p :∀x ∈R,2x 2+2x +12<0;命题q :∃x 0∈R ,sin x 0-cos x 0= 2.则下列判断正确的是( )A .p 是真命题B .q 是假命题C .p ,q 都是假命题D .綈q 是假命题解析:选D p :2x 2+2x +12=2⎝ ⎛⎭⎪⎫x 2+x +14=2x +122≥0,∴p 为假命题,綈p 为真命题.q :sin x 0-cos x 0=2sin ⎝⎛⎭⎪⎫x 0-π4,∴x 0=34π时成立.故q 为真,而綈q 为假命题. 3.已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+12x +34>0.给出下列结论:①命题p 是真命题; ②命题q 是假命题; ③命题(綈p )∧q 是真命题; ④命题p ∨(綈q )是假命题. 其中正确的是( ) A .②④ B .②③ C .③④D .①②③解析:选C 对于命题p ,因为函数y =sin x 的值域为[-1,1],所以命题p 为假命题; 对于命题q ,因为函数y =x 2+12x +34的图象开口向上,最小值在x =-14处取得,且f ⎝ ⎛⎭⎪⎫-14=1116>0,所以命题q 为真命题. 由命题p 为假命题和命题q 为真命题可得:命题(綈p )∧q 是真命题,命题p ∨(綈q )是假命题.故③④正确.4.命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:选D 写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”.5.有下列四个命题:①∀x ∈R,2x 2-3x +4>0; ②∀x ∈{1,-1,0},2x +1>0; ③∃x 0∈N ,x 20≤x 0;④∃x 0∈N *,x 0为29的约数. 其中真命题有________个.解析:易知①③④正确.当x =-1时,2x +1<0,故②错误. 答案:36.已知命题p :∃c >0,y =(3-c )x在R 上为减函数,命题q :∀x ∈R ,x 2+2c -3>0.若p ∧q 为真命题,则实数c 的取值范围为________.解析:由于p ∧q 为真命题,所以p ,q 都是真命题,所以⎩⎪⎨⎪⎧0<3-c <1,2c -3>0,解得2<c <3.故实数c 的取值范围为(2,3).答案:(2,3)7.已知命题p :“至少存在一个实数x 0∈[1,2],使不等式x 2+2ax +2-a >0成立”为真,试求参数a 的取值范围.解:法一:由题意知,x 2+2ax +2-a >0在[1,2]上有解,令f (x )=x 2+2ax +2-a ,则只需f (1)>0或f (2)>0,即1+2a +2-a >0,或4+4a +2-a >0.整理得a >-3或a >-2.即a >-3.故参数a 的取值范围为(-3,+∞). 法二:綈p :∀x ∈[1,2],x 2+2ax +2-a >0无解, 令f (x )=x 2+2ax +2-a , 则⎩⎪⎨⎪⎧f 1≤0,f2≤0,即⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0.解得a ≤-3.故命题p 中,a >-3. 即参数a 的取值范围为(-3,+∞).8.已知f (t )=log 2t ,t ∈[2,8],若命题“对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立”为真命题,求实数x 的取值范围.解:易知f (t )∈⎣⎢⎡⎦⎥⎤12,3. 由题意,令g (m )=(x -2)m +x 2-4x +4=(x -2)m +(x -2)2,则g (m )>0对∀m ∈⎣⎢⎡⎦⎥⎤12,3恒成立.所以⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫12>0,g 3>0,即⎩⎪⎨⎪⎧12x -2+x -22>0,3x -2+x -22>0,解得x >2或x <-1.故实数x 的取值范围是(-∞,-1)∪(2,+∞).(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数 B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数解析:选B 根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.2.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.3.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析:选D ①的逆命题为1a <1b则,a >b ,若a =-2,b =3,则不成立.故A 错;②的逆命题为若(x +2)(x -3)≤0,则-2≤x ≤0是假命题,故B 错;①为假命题,其逆否命题也为假命题,故C 错;②为真命题,其逆否命题也为真命题,D 正确.4.已知命题p :实数的平方是非负数,则下列结论正确的是( ) A .命题綈p 是真命题B .命题p 是特称命题C .命题p 是全称命题D .命题p 既不是全称命题也不是特称命题解析:选C 命题p :实数的平方是非负数,是全称命题,且是真命题,故綈p 是假命题.5.下列命题中,真命题是( ) A .命题“若|a |>b ,则a >b ”B .命题“若“a =b ,则|a |=|b |”的逆命题C .命题“当x =2时,x 2-5x +6=0”的否命题 D .命题“终边相同的角的同名三角函数值相等”解析:选D 原命题可以改写成“若角的终边相同,则它们的同名三角函数值相等”,是真命题,故选D.6.已知命题p :若实数x ,y 满足x 3+y 3=0,则x ,y 互为相反数;命题q :若a >b >0,则1a <1b.下列命题p ∧q ,p ∨q ,綈p ,綈q 中,真命题的个数是( )A .1B .2C .3D .4解析:选B 易知命题p ,q 都是真命题,则p ∧q ,p ∨q 都是真命题,綈p ,綈q 是假命题.7.已知f (x )=e x+x -1,命题p :∀x ∈(0,+∞),f (x )>0,则( ) A .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 B .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0 C .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 D .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0解析:选B 由于函数y =e x 和y =x -1在R 上均是增函数,则f (x )=e x+x -1在R 上是增函数,当x >0时,f (x )>f (0)=0,所以p 为真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0,故选B.8.下列关于函数f (x )=x 2与函数g (x )=2x的描述,正确的是( ) A .∃a 0∈R ,当x >a 0时,总有f (x )<g (x ) B .∀x ∈R ,f (x )<g (x ) C .∀x <0,f (x )≠g (x )D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解解析:选A 在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),其余三命题均错误.9.已知p:x≥k,q:3x+1<1,如果p是q的充分不必要条件,则实数k的取值范围是( )A.[1,+∞) B.(2,+∞)C.[-1,+∞) D.(-∞,-1)解析:选B3x+1<1⇔x<-1或x>2.又p是q的充分不必要条件,则k>2,故选B.10.下列判断正确的是( )A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N*,x3>x2”的否定是“∃x0∈N*,x30<x20”C.“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的必要不充分条件D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件解析:选D 选项A是全称命题,不正确;选项B应该是∃x0∈N*,x30≤x20,不正确;对于选项C,f(x)=cos2ax-sin2ax=cos 2ax,周期T=2π2a=πa,当a=1时,周期是π,当周期是π时,a=1,所以“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的充要条件;选项D正确,故选D.11.设f(x)=x2-4x(x∈R),则f(x)>0的一个必要不充分条件是( )A.x<0 B.x<0或x>4C.|x-1|>1 D.|x-2|>3解析:选C 由f(x)=x2-4x>0,得x<0或x>4.由|x-1|>1,得x<0或x>2.由|x-2|>3,得x<-1或x>5,所以只有C是必要不充分条件.故选C.12.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0, 即m >1.∴③是真命题;④原命题为真,逆否命题也为真.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.命题“若a ∉A ,则b ∈B ”的逆否命题是________. 解析:逆否命题既否定其条件又否定其结论,然后交换其顺序. 答案:若b ∉B ,则a ∈A14.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“綈p ”中是真命题的为________.解析:p 为假命题,q 为真命题,故p ∨q 为真命题,綈p 为真命题. 答案:p ∨q ,綈p15.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________.解析:p :a -4<x <a +4,q :2<x <3. 由綈p 是綈q 的充分条件可知,q 是p 的充分条件,即q ⇒p ,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.答案:[-1,6]16.已知在实数a ,b 满足某一前提条件时,命题“若a >b ,则1a <1b”及其逆命题、否命题和逆否命题都是假命题,则实数a ,b 应满足的前提条件是________.解析:由题意,知ab ≠0,当ab >0时,1a <1b ⇔ab ·1a <1b·ab ⇔b <a ,所以四种命题都是正确的.当ab <0时,若a >b ,则必有a >0>b ,故1a>0>1b ,所以原命题是假命题;若1a <1b,则必有1a<0<1b,故a <0<b ,所以原命题的逆命题也是假命题.由命题的等价性,可知四种命题都是假命题,故填ab <0.答案:ab <0三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除; (3)∀x ∈{x |x >0},x +1x>2;(4)∃x 0∈Z ,log 2x 0>2.解:(1)命题中隐含了全称量词“所有的”,因此命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,且为真命题. (3)命题中含有全称量词“∀”,是全称命题,且为假命题. (4)命题中含有存在量词“∃”,是特称命题,且为真命题.18.(本小题满分12分)把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)能被6整除的数一定是偶数;(2)当a -1+|b +2|=0时,a =1,b =-2; (3)已知x ,y 为正整数,当y =x 2时,y =1,x =1.解:(1)若一个数能被6整除,则这个数为偶数,是真命题. (2)若a -1+|b +2|=0,则a =1且b =-2,真命题. (3)已知x ,y 为正整数,若y =x 2,则y =1且x =1,假命题.19.(本小题满分12分)已知c >0,设命题p :y =c x为减函数,命题q :函数f (x )=x +1x >1c 在x ∈⎣⎢⎡⎦⎥⎤12,2上恒成立.若p ∨q 为真命题,p ∧q 为假命题,求c 的取值范围. 解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可.若p 真,由y =c x为减函数,得0<c <1.当x ∈⎣⎢⎡⎦⎥⎤12,2时,由不等式x +1x ≥2(x =1时取等号)知, f (x )=x +1x 在⎣⎢⎡⎦⎥⎤12,2上的最小值为2.若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1,c ≤12,所以0<c ≤12;若p 假q 真,则c ≥1,c >12,所以c ≥1.综上可得,c ∈⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 20.(本小题满分12分)已知k ∈R 且k ≠1,直线l 1:y =k 2x +1和l 2:y =1k -1x -k .(1)求直线l 1∥l 2的充要条件;(2)当x ∈[-1,2]时,直线l 1恒在x 轴上方,求k 的取值范围.解:(1)由题意得⎩⎪⎨⎪⎧k 2=1k -1,k -1≠0,-k ≠1,解得k =2.当k =2时,l 1:y =x +1,l 2:y =x -2,此时l 1∥l 2. ∴直线l 1∥l 2的充要条件为k =2.(2)设f (x )=k2x +1.由题意,得⎩⎪⎨⎪⎧f-1>0,f 2>0,即⎩⎪⎨⎪⎧k2×-1+1>0,k 2×2+1>0,解得-1<k <2.∴k 的取值范围是(-1,2).21.(本小题满分12分)已知“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解:(1)由题意,知m =x 2-x =⎝ ⎛⎭⎪⎫x -122-14.由-1<x <1,得m ∈⎣⎢⎡⎭⎪⎫-14,2,故M =⎣⎢⎡⎭⎪⎫-14,2. (2)由x ∈N 是x ∈M 的必要条件,知M ⊆N . ①当a >2-a ,即a >1时,N =(2-a ,a ),则⎩⎪⎨⎪⎧2-a <-14,a ≥2,a >1,解得a >94.②当a <2-a ,即a <1时,N =(a,2-a ),则⎩⎪⎨⎪⎧a <1,a <-14,2-a ≥2,解得a <-14.③当a =2-a ,即a =1时,N =∅,不满足M ⊆N . 综上可得a ∈⎝ ⎛⎭⎪⎫-∞,-14∪⎝ ⎛⎭⎪⎫94,+∞. 22.(本小题满分12分)已知命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(x -3a )(x -a -2)<0的解集为A ,若x ∈A 是x ∈B 的充分不必要条件,求实数a 的取值范围.解:(1)命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题,得x 2-x -m <0在-1≤x ≤1时恒成立,∴m >(x 2-x )max ,得m >2, 即B ={m |m >2}.(2)不等式(x -3a )(x -a -2)<0,①当3a >2+a ,即a >1时,解集A ={x |2+a <x <3a },若x ∈A 是x ∈B 的充分不必要条件,则A B ,∴2+a ≥2,此时a ∈(1,+∞);②当3a =2+a ,即a =1时,解集A =∅,若x ∈A 是x ∈B 的充分不必要条件,则A B 成立;③当3a <2+a ,即a <1时,解集A ={x |3a <x <2+a },若x ∈A 是x ∈B 的充分不必要条件,则A B 成立,∴3a ≥2,此时a ∈⎣⎢⎡⎭⎪⎫23,1.综上①②③可得a ∈⎣⎢⎡⎭⎪⎫23,+∞.。
(全国通用版)2018-2019高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词学案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2018-2019高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词学案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2018-2019高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词学案新人教A版选修2-1的全部内容。
1。
4.1 全称量词 1。
4。
2 存在量词学习目标1。
理解全称量词与存在量词的含义。
2.理解并掌握全称命题和特称命题的概念。
3。
能判定全称命题与特称命题的真假,并掌握其判定方法.知识点一全称量词、全称命题思考观察下面的两个语句,思考下列问题:P:m≤5;Q:对所有的m∈R,m≤5.上面的两个语句是命题吗?二者之间有什么关系?答案语句P无法判断真假,不是命题;语句Q在语句P的基础上增加了“所有的”,可以判断真假,是命题.语句P是命题Q中的一部分.梳理(1)全称量词及全称命题的概念短语“所有的"“任意一个"在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题.(2)表示将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示.那么,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x 属于M,有p(x)成立".(3)全称命题的真假判定要判定全称命题是真命题,需要对集合M中每个元素x,证明p(x)成立,但要判定全称命题是假命题,只需举出一个x0∈M,使得p(x0)不成立即可.知识点二存在量词、特称命题思考找出下列命题的共同特征,并判断其真假.(1)存在x0∈R,x错误!≤0;(2)有些三棱锥是正四面体.答案所给命题都是真命题,它们都表示“存在”的意思.梳理(1)存在量词及特称命题的要命短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做特称命题.(2)表示特称命题“存在M中的元素x0,使p(x0)成立"可用符号简记为∃x0∈M,p(x0),读作“存在M 中的元素x0,使p(x0)成立”.(3)特称命题的真假判定要判定一个特称命题是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可,否则这一特称命题就是假命题.(1)“有些"“某个”“有的”等短语不是存在量词.(×)(2)全称量词的含义是“任意性”,存在量词的含义是“存在性”.(√)(3)全称命题中一定含有全称量词,特称命题中一定含有存在量词.(×)类型一判断命题的类型例1 将下列命题用“∀”或“∃"表示.(1)实数的平方是非负数;(2)方程ax2+2x+1=0(a<1)至少存在一个负根;(3)若直线l垂直于平面α内任一直线,则l⊥α。
2019-2020学年高中数学第一章常用逻辑用语 1.4.1-1.4.2 全称量词、存在量词教案新人教A版选修2-1思维品质,在练习过程中进行辩证唯物主义思想教育.能判断它的真假吗?(如x =2), x <3.(至少有一个x ∈R, x ≤3) 命题(4)是真命题。
事实上不存在某个x ∈Z,使2x +1不是整数。
二.发现、归纳 命题(3)(4)用到 “所有的”“任意一个” 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题。
命题(3)(4)都是全称命题。
通常将含有变量x 的语句用p (x ),q (x ),r (x ),……表示,变量x 的取值范围用M 表示。
那么全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为:∀x M , p (x ),读做“对任意x 属于M ,有p (x )成立”。
对于以上命题(3)(4)有: (5)存在一个(个别、某些)实数x (如x =2),使x ≤3.(至少有一个x ∈R, x ≤3) (6),不存在某个x ∈Z使2x +1不是整数. 这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。
并用符号“∃”表示。
含有存在量词的命题叫做特称命题(或存在命题)命题(5),(6),都是特称命题(存在命题). 特称命题:“存在M 中一个x ,使p (x )成立”可以用符号简记为:,()x M p x ∃∈。
读做“存在一个x 属于M ,使p (x )成立”. 全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“ 至多有一个”等. 三.巩固练习: (1)下列全称命题中,真命题是: A. 所有的素数是奇数; B. 2,(1)0x R x ∀∈-;x +五.课堂小结:学生总结归纳,教师指导补充。
1.4全称量词与存在量词教学目标:1.知识目标:①通过教学实例,理解全称量词和存在量词的含义;②能够用全称量词符号表示全称命题,能用存在量词符号表述特称命题;③会判断全称命题和特称命题的真假;2.能力与方法:通过观察命题、科学猜想以及通过参与过程的归纳和问题的演绎,培养学生的观察能力和概括能力;通过问题的辨析和探究,培养学生良好的学习习惯和反思意识;3.情感、态度与价值观:通过引导学生观察、发现、合作与交流,让学生经历知识的形成过程,增加直接经验基础,增强学生学习的成功感,激发学生学习数学的兴趣.教学重点:理解全称量词与存在量词的意义.教学难点:正确地判断全称命题和特称命题的真假.教学过程:一.情境设置:哥德巴赫猜想是世界近代三大数学难题之一.1742年,由德国中学教师哥德巴赫在教学中首先发现的.1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:(a任何一个大于 6的偶数都可以表示成两个质数之和.)(b任何一个大于9的奇数都可以表示成三个质数之和.)这就是哥德巴赫猜想.欧拉在回信中说,他相信这个猜想是正确的,但他不能证明.从此,这道数学难题引起了几乎所有数学家的注意。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.中国数学家陈景润于1966年证明:“任何充分大的偶数都是一个质数与两个质数的乘积的和”通常这个结果表示为“1+2”这是目前这个问题的最佳结果.科学猜想也是命题.哥德巴赫猜想它是一个迄今为止仍然是一个没有得到正面证明也没有被推翻的命题.二.新知探究观察以下命题:(1)对任意Rx;>x∈,3(2)所有的正整数都是有理数;(3)若函数)f=-,则)(xf是偶函数;xff对定义域D中的每一个x,都有)()(x(x(4)所有有中国国籍的人都是黄种人.问题1.(1)这些命题中的量词有何特点?(2)上述4个命题,可以用同一种形式表示它们吗?填一填:全称量词:全称命题:全称命题的符号表示:你能否举出一些全称命题的例子?试一试:判断下列全称命题的真假.(1)所有的素数都是奇数;(2)1R∀xx;,2≥∈1+(3)每一个无理数x,2x也是无理数.(4想一想:你是如何判断全称命题的真假的?问题2.下列命题中量词有何特点?与全称量词有何区别?(1)存在一个,0R x ∈使3120=+x ;(2)至少有一个,0Z x ∈0x 能被2和3整除;(3)有些无理数的平方是无理数. 类比归纳:存在量词特称命题特称命题的符号表示特称命题真假的判断方法练一练:判断下列特称命题的真假.(1)有一个实数0x ,使032020=++x x ;(2)存在两个相交平面垂直于同一平面;(3)有些整数只有两个正因数.三.自我检测1、用符号“∀” 、“∃”语言表达下列命题(1)自然数的平方不小于零(2)存在一个实数,使0122=+-X X2、判断下列命题的真假:(1)每个指数函数都是单调函数;(2)任何实数都有算术平方根;(3){}是无理数,是无理数2|x x x x ∈∀(4);0,00≤∈∃x R x3、下列说法正确吗?因为对)(,)(,x p M x x p M x ∈∃⇒∈∀,反之则不成立.所以说全称命题是特称命题,特称命题不一定是全称命题. 4、设函数m x x x f --=2)(2,若对[]4,2∈∀x ,0)(≥x f 恒成立,求m 的取值范围;四.学习小结五.能力提升1.下列命题中为全称命题的是( )(A)有些圆内接三角形是等腰三角形 ;(B )存在一个实数与它的相反数的和不为0;(C)所有矩形都有外接圆 ; (D )过直线外一点有一条直线和已知直线平行.2.下列全称命题中真命题的个数是( )①末位是0的整数,可以被3整除;②对12,2+∈∀x Z x 为奇数.③角平分线上的任意一点到这个角的两边的距离相等;(A ) 0 (B ) 1 (C ) 2 (D ) 33.下列特称命题中假命题...的个数是( ) ①0,≤∈∃x R x ;②有的菱形是正方形;③至少有一个整数,它既不是合数,也不是素数.(A ) 0 (B ) 1 (C ) 2 (D ) 34.命题“存在一个三角形,内角和不等于ο180”的否定为( )(A )存在一个三角形,内角和等于ο180;(B )所有三角形,内角和都等于ο180;(C )所有三角形,内角和都不等于ο180;(D )很多三角形,内角和不等于ο180.5.把“正弦定理”改成含有量词的命题.6.用符号“∀”与“∃”表示含有量词的命题“p :已知二次函数)1()1()(2+++=x b x a x f ,则存在实数b a ,,使不等式对任意实数x 恒成立”. 7.对),0(+∞∈∀x ,总∃),0(+∞∈a 使得恒成立,求a 的取值范围.。
第3讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”“且”“非”.(2)命题p∧q、p∨q、﹁p的真假判断p q p∧q p∨q ﹁p真真真真假真假假真假假真假真真假假假假真2.(1)全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的元素x0,使p(x0)成立∃x0∈M,p(x0)命题命题的否定∀x∈M,p(x)∃x0∈M,﹁p(x0)∃x0∈M,p(x0)∀x∈M,﹁p(x)常用结论(1)含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与﹁p→真假相反.(2)含有一个量词的命题的否定规律是“改量词,否结论”.(3)“p ∨q ”的否定是“(﹁p )∧(﹁q )”,“p ∧q ”的否定是“(﹁p )∨(﹁q )”. (4)逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( ) (2)命题p 和﹁p 不可能都是真命题.( )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题. ( ) (4)写特称命题的否定时,存在量词变为全称量词.( ) (5)∃x 0∈M ,p (x 0)与∀x ∈M ,﹁p (x )的真假性相反. ( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ 二、易错纠偏常见误区| (1)全称命题或特称命题的否定出错; (2)不会利用真值表判断命题的真假; (3)判断命题真假时忽视对参数的讨论. 1.命题“正方形都是矩形”的否定是________. 答案:存在一个正方形,这个正方形不是矩形2.已知命题p :若x >y ,则-x <-y ;命题q :若1x >1y,则x <y .在命题①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨q 中,真命题是________.(填序号)解析:由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p ∧q 为假命题;②p ∨q 为真命题;③﹁q 为真命题,则p ∧(﹁q )为真命题;④﹁p 为假命题,则(﹁p )∨q 为假命题.答案:②③3.若p :∀x ∈R ,ax 2+4x +1>0是假命题,则实数a 的取值范围为________. 答案:(-∞,4]含有逻辑联结词的命题的真假判断(自主练透)1.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( ) A .p ∨q B .p ∧q C .qD .﹁p解析:选B .取x =π3,y =5π6,可知命题p 是假命题;由(x -y )2≥0恒成立,可知命题q 是真命题,故﹁p 为真命题,p ∨q 是真命题,p ∧q 是假命题.2.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②﹁p ∨q ③p ∧﹁q ④﹁p ∧﹁q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A .通解:作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .优解:在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .3.(2020·高考全国卷Ⅱ)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题是________.(填序号) ①p 1∧p 4 ②p 1∧p 2 ③﹁p 2∨p 3④﹁p 3∨﹁p 4解析:方法一:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则由l 1∩l 2=A ,知l 1,l 2共面,设此平面为α,由B ∈l 2,l 2⊂α,知B ∈α,由C ∈l 1,l 1⊂α,知C ∈α,所以l 3⊂α,所以l 1,l 2,l 3共面于α,所以p 1是真命题.对于p 2,当A ,B ,C 三点不共线时,过A ,B ,C 三点有且仅有一个平面;当A ,B ,C 三点共线时,过A ,B ,C 的平面有无数个,所以p 2是假命题,﹁p 2是真命题.对于p 3,若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,﹁p 3是真命题.对于p 4,若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l ,所以p 4是真命题,﹁p 4是假命题.故p 1∧p 4为真命题,p 1∧p 2为假命题,﹁p 2∨p 3为真命题,﹁p 3∨﹁p 4为真命题.综上可知,真命题的序号是①③④.方法二:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则A ,B ,C 三点不共线,所以此三点确定一个平面α,则A ∈α,B ∈α,C ∈α,所以AB ⊂α,BC ⊂α,CA ⊂α,即l 1⊂α,l 2⊂α,l 3⊂α,所以p 1是真命题.以下同方法一.答案:①③④判断含有逻辑联结词命题真假的步骤全称命题与特称命题(多维探究) 角度一 全称命题、特称命题的否定(1)(2021·成都市诊断性检测)已知命题p :∀x ∈R ,2x -x 2≥1,则﹁p 为( )A .∀x ∉R ,2x -x 2<1 B .∃x 0∉R ,2x 0-x 20<1 C .∀x ∈R ,2x-x 2<1 D .∃x 0∈R ,2x 0-x 20<1(2)(2021·沈阳市教学质量监测(一))命题p :∀x ∈(0,+∞),x 13≠x 15,则﹁p 为( ) A .∃x 0∈(0,+∞),x 130=x 150 B .∀x ∈(0,+∞),x 13=x 15 C .∃x 0∈(-∞,0),x 130=x 150 D .∀x ∈(-∞,0),x 13=x 15【解析】 (1)全称命题的否定是特称命题,所以﹁p :∃x 0∈R ,2x 0-x 20<1. (2)由全称命题的否定为特称命题知,﹁p 为∃x 0∈(0,+∞),x 130=x 150,故选A .【答案】 (1)D (2)A全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写;(2)否定结论:对原命题的结论进行否定. 角度二 全称命题、特称命题的真假判断(1)下列命题中的假命题是( )A .∀x ∈R ,x 2≥0 B .∀x ∈R ,2x -1>0C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,sin x 0+cos x 0=2 (2)下列命题中的假命题是( ) A .∀x ∈R ,e x>0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin π2x 0=1【解析】 (1)A 显然正确;由指数函数的性质知2x -1>0恒成立,所以B 正确;当0<x <10时,lg x <1,所以C 正确;因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,所以-2≤sin x+cos x ≤2,所以D 错误.(2)对于B .当x =0时,x 2=0,因此B 中命题是假命题. 【答案】 (1)D (2)B全称命题与特称命题真假的判断方法命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题为真 否定为假 假 存在一个对象使命题为假 否定为真 特称命题真 存在一个对象使命题为真 否定为假 假所有对象使命题为假否定为真[提醒] 因为命题p 与﹁p 的真假性相反,因此不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.下列命题正确的是( ) A .∃x 0∈R ,x 20+2x 0+3=0B .x >1是x 2>1的充分不必要条件 C .∀x ∈N ,x 3>x 2D .若a >b ,则a 2>b 2解析:选B .对于x 2+2x +3=0,Δ=-8<0,故方程无实根,即∃x 0∈R ,x 20+2x 0+3=0错误,即A 错误;x 2>1⇔x <-1或x >1,故x >1是x 2>1的充分不必要条件,故B 正确;当x ≤1时,x 3≤x 2,故∀x ∈N ,x 3>x 2错误,即C 错误; 若a =1,b =-1,则a >b ,但a 2=b 2,故D 错误.故选B .2.已知f (x )=sin x -x ,命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0C .p 是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是真命题,﹁p :∃x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 解析:选C .易知f ′(x )=cos x -1<0,所以f (x )在⎝ ⎛⎭⎪⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0是真命题,﹁p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0,故选C .由命题的真假确定参数的取值范围(典例迁移)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.【解】 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).【迁移探究1】 (变问法)在本例条件下,若p ∧q 为真,求实数m 的取值范围. 解:依题意知p ,q 均为真命题,当p 是真命题时,有m <0; 当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 【迁移探究2】 (变问法)在本例条件下,若p ∧q 为假,p ∨q 为真,求实数m 的取值范围.解:若p ∧q 为假,p ∨q 为真,则p ,q 一真一假. 当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2).根据命题的真假求参数取值范围的策略(1)全称命题可转化为恒成立问题,特称命题转化为存在性问题. (2)含逻辑联结词问题:①求出每个命题是真命题时参数的取值范围; ②根据题意确定每个命题的真假;③由各个命题的真假列关于参数的不等式(组)求解.1.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值范围是______. 解析:因为命题“∃t ∈R ,t 2-2t -a <0”为假命题,所以命题“∀t ∈R ,t 2-2t -a ≥0”为真命题,所以Δ=(-2)2-4×1×(-a )=4a +4≤0,即a ≤-1.答案:(-∞,-1]2.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是________.解析:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).答案:(-∞,-12)∪(-4,4)。
全称量词和存在量词
展示课(时段:正课时间: 40分钟(自研)+60分钟(展示))
学习主题:1、理解全称量词、全称命题的概念,以及存在量词、特称命题的概念,并能利用数学符号加以表示
2、理解全称命题与特称命题之间的关系
【定向导学·互动展示·当堂反馈】
板书:例1,立2,例3,例4;.通过例1,例2找到判断命题真假的方法③通过例3,例4,体会全称命题和特称命题之间的关系。
高二班组姓名:满分:100分得分:
考查内容:全称量词和存在量词
考查主题:会区分全称命题和特称命题,并会运用他们的关系
考查形式:封闭式训练,导师不指导、不讨论、不抄袭. 温馨提示:本次训练时间约为40分钟,请同学们认真审题,仔细答题,安静、自主的完成训练内容.
基础巩固
1.下列语句不是全称命题的是( )
A.任何一个实数乘以零都等于零 B.自然数都是正整数
C.高二(一)班绝大多数同学是团员 D.每一个向量都有大小
2.下列命题是特称命题的是( )
A.偶函数的图象关于y轴对称 B.正四棱柱都是平行六面体
C.不相交的两条直线是平行直线 D.存在实数大于等于3
3.下列是全称命题且是真命题的是( )
A.∀x∈R,x2>0 B.∀x∈Q,x2∈Q
C.∃x0∈Z,2
x>1 D.∀x,y∈R,x2+y2>0
4.下列四个命题中,既是特称命题又是真命题的是( )
A.斜三角形的内角是锐角或钝角 B.至少有一个实数x0,使2
x>0
C.任一无理数的平方必是无理数 D.存在一个负数x0,使1
x0
>2
5.已知命题p:∀x∈R,sin x≤1,则( )
A.⌝p:∃x0∈R,sin x0≥1 B.⌝p:∀x∈R,sin x≥1
C.⌝p:∃x0∈R,sin x0>1 D.⌝p:∀x∈R,sin x>1
经典资料
6.下列说法中,正确的个数是( )
①存在一个实数,使2
240x x -+-=;
②所有的质数都是奇数; ③斜率相等的两条直线都平行;
④至少存在一个正整数,能被5和7整除。
A.1 B.2 C.3 D.4
7.下列命题中,是正确的全称命题的是( )
A.对任意的,a b R ∈,都有22
2220a b a b +--+<; B.菱形的两条对角线相等;
C.x x ∃; D.对数函数在定义域上是单调函数。
8.下列命题的否定不正确的是( ) A.存在偶数2n 是7的倍数;
B.在平面内存在一个三角形的内角和大于180; C.所有一元二次方程在区间[-1,1]内都有近似解; D.存在两个向量的和的模小于这两个向量的模。
9.命题
22:0(,)p a b a b R +<∈;命题22:0(,)q a b a b R +≥∈,下列结论正确地为( ) A.p q ∨为真 B.p q ∧为真 C.p ⌝为假 D. q ⌝为真
10.“存在整数m 0,n 0,使得m 2
0=n 2
0+2 011”的否定是( )
A .任意整数m ,n ,使得m 2
=n 2
+2 011 B .存在整数m 0,n 0,使得m 2
0≠n 2
0+2 011 C .任意整数m ,n ,使得m 2
≠n 2
+2 011 D .以上都不对
11.命题p :存在实数m ,使方程x 2
+mx +1=0有实数根,则“非p ”形式的命题是( ) A .存在实数m ,使得方程x 2
+mx +1=0无实根; B .不存在实数m ,使得方程x 2+mx +1=0有实根; C .对任意的实数m ,使得方程x 2+mx +1=0有实根; D .至多有一个实数m ,使得方程x 2+mx +1=0有实根;
12. “220
+≠”的含义是()
a b
A.,a b不全为0 B.,a b全不为0
C.,a b至少有一个为0 D.a不为0且b为0,或b不为0且a为0 发展提升
13.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假.
(1)若a>0,且a≠1,则对任意实数x,a x>0.
(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2.
(3)∃T0∈R,使|sin(x+T0)|=|sin x|.
(4)∃x0∈R,使x20+1<0.
14.写出下列命题的否定,并判断其真假.
(1)有些质数是奇数;
(2)所有二次函数的图象都开口向上;
(3)∃x0∈Q,x20=5;
(4)不论m取何实数,方程x2+2x-m=0都有实数根.
15.用符号“”与“”表示含有量词的命题
(1)实数的平方大于等于0
(2)存在一对实数,使2x+3y+3>0成立
拓展提高
16.给出两个命题:
命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.
分别求出符合下列条件的实数a的范围.
(1)甲、乙至少有一个是真命题;
(2)甲、乙中有且只有一个是真命题.。