七年级数学“希望杯”培训题7套人教版
- 格式:doc
- 大小:1.74 MB
- 文档页数:16
1.计算:230.2110.875(2)-+-+⨯-=______________.2.设有理数a ,b ,c 在数轴上的对应点如图所示,则│b-a │+│a+c │+│c-b•│=________.3.若m 人在a 天可完成一项工作,那么m+n 人完成这项工作需_______天(用代数式表示).4.如果75a b =,32b c =,那么a b b c-+=____________.5.已知│x-1│+│x+2│=3,则x 的取值范围是_______________. 6.“如果两个角的和等于90°,那么这两个角叫做互为余角;如果两个角的和等于180°,那么这两个角叫做互为补角”.已知一个角的补角等于这个角的余角的6倍,那么这个角等于______________.7.由O 点引出七条射线如上图,已知∠AOE 和∠COG 均等于90°,∠BOC>∠FOG ,那么在右图中,以O 为顶点的锐角共有___________个.8.某人将其甲、乙两种股票卖出,其中甲种股票卖价1200元,盈利20%;其乙种股票卖价也是1200元,但亏损20%,该人交易结果共盈利_______.9.时钟在12点25分时,分针与时针之间的夹角度数为________.10.已知a ×b ×ab =bbb ,其中a 、b 是1到9的数码.ab 表示个位数是b ,十位数是a 的两位数,bbb 表示其个位、十位、百位都是b 的三位数,那么a=_____,b=______.11.一个小于400的三位数,它是完全平方数,它的前两位数字组成的两位数还是完全平方数,其个位数字也是一个完全平方数,那么这个三位数是______.12.甲、乙、丙三人同时由A 地出发去B 地.甲骑自行车到C 地(C 是A 、B•之间的某地),然后步行;乙先步行到C 点,然后骑自行车;丙一直步行.结果三人同时到达B 地.已知甲步行速度是每小时7.5km ;乙步行速度是每小时5km .甲、乙骑自行车的速度都是每小时10km ,那么丙步行的速度是每小时________km .1.小虎和小明同做下面一道题目:“甲、乙、丙三个小孩分一袋糖果,分配如下:甲得总数的一半多一粒,乙得剩下来的三分之一,丙发现自己分得的糖果是乙的二倍,那么这袋糖果共多少颗。
七年级“希望杯”培训试题选讲测试题(上)一、单选题(共10道,每道10分)1.已知a,b均为有理数,且b .A.正数B.负数C.非正数D.非负数答案:A解题思路:把方程整理成ax=b的形式,得到(2007a+2008b)x=-2007.因为方程无解,所以2007a+2008b=0.即2007(a+b)+b=0.所以a+b=-,而b<0,所以a+b是正数.答案为A.试题难度:三颗星知识点:解一元一次方程2.明明从学校出发到距学校28千米的卢沟桥抗日战争纪念馆,共用了1小时,其中除乘汽车外,还需步行一段路.汽车的速度是每小时36千米,步行的速度是每小时4千米,则其中步行所用的时间是()小时.A.B.C.D.答案:B解题思路:解:设步行用了小时,则乘车用了小时,由题意得,解得.试题难度:三颗星知识点:行程问题3.已知p、q都是质数,并且以x为未知数的一元一次方程px+5q=97的解是1,则代数式40p+101q+4的值是.A.2003B.3686C.2013D.3676答案:A解题思路:将方程的解代入原方程,得到p+5q=97,97是奇数,易判断p和5q是一奇一偶.当p=2时,q=19,满足题意;当q=2时,p=87=29×3.所以p=2,q=19,代入原式得到:40×2+101×19+4=2003.答案为A.试题难度:四颗星知识点:一元一次方程的解4.若数a满足(a-2005)2+(2006-a)2=2007,则(a-2005)(a-2006)= .A.1003B.2006C.-1003D.-2006答案:A解题思路:由[(a-2005) +(2006-a)]2=(a-2005)2+2(a-2005) (2006-a)+(2006-a)2知道:1=2007+2(a-2005) (2006-a)所以(a-2005) (2006-a)=-1003,得到(a-2005)(a-2006)=1003试题难度:三颗星知识点:完全平方公式5.如果多项式2x2-x的值等于1,那么4x4-4x3+3x2-x-1的值等于.A.-1B.1C.-2D.0答案:B解题思路:由2x2-x=1,得到2x2=x+1,4x4-4x3+3x2-x-1=2x2·2x2-2x·2x2+·2x2–x-1=(x+1)2-2x·(x+1)+·(x+1)–x-1=x2+2x+1-2x2-2x+x+-x-1=-x2+x+=-(x+1)+x+=1试题难度:三颗星知识点:代数式求值6.三位数与的积等于五位数,其中,,互不相等,则=().A.5B.6C.7D.8答案:C解题思路:与的积等于五位数,则只能是0或5:①=0时,可能是2、4、6、8中的一个,且有整数,把可能的取值代入,没有符合条件的;②=5时,可能是1、3、5、7、9中的一个,且有整数,代入可得,,.试题难度:三颗星知识点:分类讨论思想7.三边长均为正整数的直角三角形中,有一条直角边为质数,面积为().A.B.C.D.答案:A解题思路:设其余两边为,,则由勾股定理得,所以.因为是质数,所以只能分解成,则有,解得,则三角形面积为.试题难度:三颗星知识点:勾股定理8.如图所示,∠A+∠B+∠C+∠D+∠E=()A.180°B.260°C.270°D.360°答案:A解题思路:把所有角度都转换到一个三角形中,然后三角形内角和为180°,所以选择A。
全国“希望杯”数学竞赛初一训练试题班级 姓名 学号 得分一、填空题(共50分,每小题5分)1.如果0=ba ,那么有理数a 、b ( ) (A )都是零 (B )互为相反数 (C )互为倒数 (D )不都是零2.若51,0,0---+-<<b a a b ab a 那么等于( )(A )4 (B )-4 (C )-2a +2b + 6 (D )63.用一副学生用的三角板的内角(00000090,45,4590,60,30和)可以画出大于00而小 于0176的不同角度的角共( )个(A )10 (B )12 (C )14 (D )114.在-0.1428中用数字3 替换其中的一个非零数码后,使所得的数最大,则被替 换的数字是( )(A )1 (B )2 (C )4 (D )85.有一份试卷共六道选择题,其评分标准是:答对一道得8分,答错得0分,不 答得2分,某同学共得20分,则他( )(A )至多答对一道题 (B )至少答对三道题(C )至少有三道题没答 (D )答错两道题6.数a 、b 、c 在数轴上的位置如图: ,则在a1- a c b c a +--,,中,最大的一个是( )(A )a1- (B )-a (C )c -b (D )c + a 7.当-1<a <0 时,则有( )(A )a a<1 (B )22a a > (C )-a >a (D )22a a -< 8.据报道:目前用超级计算机找到的最大质数是12859433-,它的末位数是( )(A )1 (B )3 (C )7 (D )99.数轴上坐标是整数的点称为整点。
某数轴的单位长度是1cm ,若在这条数轴上随 意画出一条长为1999cm 的线段AB ,则AB 盖住的整点个数是( )(A )1997或1998 (B )1998或1999 (C )19992或2000 (D )199910.在数1、2、3、4、……1997、1998的每一个数前任意添上“+”或“-”号,则· · · · · · -1 a 0 b c 1其代数和一定是( )(A )奇数 (B )偶数 (C )负整数 (D )非负整数二、填空题(共50分,每小题5分)11.计算=---⨯-÷-55512.0)()( . 12.若=+=++-222,0)7()1996y x y x 则( . 13.自然数m 、n 是两个不同质数,mn n m ++的最小值是p ,则=+pn m 22 . 14.不超过30的自然数中的质数之和是 .15.在1、2、3、……N 这前N 个自然数中,共有p 个质数、q 个合数、m 个奇数、 n 个偶数,则=-+-))(n q m p16.将3、33、333、…、333……333 ,这23个数相加,所得和数的末四位数字从 左到右按顺序排列组成的四位数是 . 17.若p 、q 都是质数,关于x 的方程975=+q px 的根是1,则=-q p 2 .18一个六位数abcde 2的3倍等于9abcde,则这个六位数是 . 19.在长方形ABCD 中,M 是CD 的中点,DN 是以A 为圆心的一段弧,AN = a ,BN = b ,则图中阴影部分的面积是 .20.一个年龄在13-19岁之间的孩子把自己的 年龄写在他父亲年龄的后面成为一个四位数,从这个四位数中减去他们的年龄 之差得到4289,孩子与父亲的年龄之和等于 .33 3B N。
希望杯试题及答案七年级一、选择题(每题2分,共10分)1. 下列哪个选项是正确的数学表达式?A. 2x + 3 = 5xB. 2x - 3 = 5xC. 2x + 3 = 5x - 3D. 2x - 3 = 5x + 3答案:C2. 一个数的三倍加上6等于这个数的两倍减去8,这个数是多少?A. 2B. 4C. 6D. 8答案:B3. 一个长方形的长是宽的两倍,如果宽是5厘米,那么长是多少厘米?A. 10B. 15C. 20D. 25答案:A4. 一个数的平方减去这个数的两倍等于36,这个数是多少?A. 6B. 7C. 8D. 9答案:C5. 一个数的一半加上3等于这个数的三分之一减去1,这个数是多少?A. 6B. 9C. 12D. 15答案:B二、填空题(每题3分,共15分)6. 一个数的平方是25,这个数是______。
答案:±57. 如果一个数的绝对值是7,那么这个数可以是______。
答案:7或-78. 一个数的立方是-8,这个数是______。
答案:-29. 一个数的倒数是1/3,那么这个数是______。
答案:310. 一个数的平方根是4,那么这个数是______。
答案:16三、解答题(每题5分,共20分)11. 一个数的四倍减去这个数的两倍等于36,求这个数。
答案:设这个数为x,则4x - 2x = 36,解得x = 18。
12. 一个数的平方加上这个数等于10,求这个数。
答案:设这个数为x,则x^2 + x = 10,解得x = 2 或 x = -5。
13. 一个数的两倍加上5等于这个数的三倍减去2,求这个数。
答案:设这个数为x,则2x + 5 = 3x - 2,解得x = 7。
14. 一个数的平方减去这个数等于24,求这个数。
答案:设这个数为x,则x^2 - x = 24,解得x = 6 或 x = -4。
四、应用题(每题10分,共20分)15. 一个班级有48名学生,其中女生人数是男生人数的两倍。
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 044-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 051-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 058-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 064-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 071-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 078-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 088-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 93-10515.希望杯第八届(1997年)初中一年级第一试试题........................................... 101-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 108-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 116-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 125-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 132-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 145-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 152-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 156-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 160-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 166-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 170-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 177-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 181-20029.希望杯第十五届(2004年)初中一年级第一试试题 (185)30.希望杯第十五届(2004年)初中一年级第二试试题 (186)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (186)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
希望杯初一组试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A3. 如果一个数的绝对值是4,那么这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C4. 计算下列算式的结果:A. 2 + 3 = 5B. 2 × 3 = 6C. 2 - 3 = -1D. 2 ÷ 3 = 0.67答案:C5. 下列哪个选项是正确的不等式?A. 3 > 2B. 3 < 2C. 3 = 2D. 3 ≥ 2答案:A6. 一个等腰三角形的两边长分别为5和10,那么这个三角形的周长是:A. 15B. 20C. 25D. 不能构成三角形答案:D7. 一个圆的半径是3厘米,那么它的面积是:A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:B8. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24 cm³B. 26 cm³C. 28 cm³D. 30 cm³答案:A9. 一个数的立方根是2,那么这个数是:A. 6B. 8C. 4D. 2答案:C10. 下列哪个选项是正确的因式分解?A. x² - 4 = (x + 2)(x - 2)B. x² - 4 = (x + 4)(x - 4)C. x² - 4 = (x + 2)(x + 2)D. x² - 4 = (x - 2)(x - 2)答案:A二、填空题(每题4分,共40分)11. 一个数的平方是16,这个数是______。
答案:±412. 一个数的倒数是2,这个数是______。
答案:1/213. 一个数的绝对值是5,这个数可能是______。
希望杯试题及答案初一希望杯试题及答案(初一)一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -1答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 已知a=2,b=-3,下列哪个表达式的值是正数?A. a+bB. a-bC. b-aD. a*b答案:B4. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C5. 计算下列哪个表达式的结果大于0?A. 3-5B. 4+(-2)C. 7*(-3)D. 9-(-6)答案:D6. 一个两位数,十位数字是a,个位数字是b,这个数可以表示为:A. 10a+bB. 10b+aC. a+bD. ab答案:A7. 一个数的平方是25,这个数可能是:A. 5C. 5或-5D. 0答案:C8. 计算下列哪个表达式的结果等于0?A. 3*0B. 0+5C. 5-5D. 2*(-2)答案:C9. 一个数的立方是-8,这个数是:A. 2B. -2C. 8答案:B10. 一个数的倒数是1/3,这个数是:A. 3B. 1/3C. 3/1D. -3答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是它自己,这个数是______。
答案:012. 两个数的和是10,其中一个数是3,另一个数是______。
答案:713. 一个数的绝对值是它本身,这个数是非负数,即这个数是______或______。
答案:正数,014. 一个数的平方等于它自己,这个数是______或______。
答案:0,115. 一个数的立方等于它自己,这个数是______,______或______。
答案:-1,0,116. 一个两位数,十位数字是4,个位数字是6,这个数是______。
答案:4617. 一个数的倒数是它自己,这个数是______。
答案:1或-118. 一个数的平方根是3,这个数是______。
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题......................018-0204.希望杯第二届(1991年)初中一年级第二试试题......................024-0265.希望杯第三届(1992年)初中一年级第一试试题......................032-0326.希望杯第三届(1992年)初中一年级第二试试题......................038-0407.希望杯第四届(1993年)初中一年级第一试试题......................048-0508.希望杯第四届(1993年)初中一年级第二试试题......................056-0589.希望杯第五届(1994年)初中一年级第一试试题......................064-06610.希望杯第五届(1994年)初中一年级第二试试题.....................071-07311.希望杯第六届(1995年)初中一年级第一试试题.....................078-080 12希望杯第六届(1995年)初中一年级第二试试题.....................085-08713.希望杯第七届(1996年)初中一年级第一试试题.....................096-09814.希望杯第七届(1996年)初中一年级第二试试题.....................103-10515.希望杯第八届(1997年)初中一年级第一试试题.....................111-11316.希望杯第八届(1997年)初中一年级第二试试题.....................118-12017.希望杯第九届(1998年)初中一年级第一试试题.....................127-12918.希望杯第九届(1998年)初中一年级第二试试题.....................136-13819.希望杯第十届(1999年)初中一年级第二试试题.....................145-14720.希望杯第十届(1999年)初中一年级第一试试题.....................148-15121.希望杯第十一届(2000年)初中一年级第一试试题...................159-16122.希望杯第十一届(2000年)初中一年级第二试试题...................167-16923.希望杯第十二届(2001年)初中一年级第一试试题...................171-17424.希望杯第十二届(2001年)初中一年级第二试试题...................176-17825.希望杯第十三届(2002年)初中一年级第一试试题...................182-18426.希望杯第十三届(2001年)初中一年级第二试试题...................186-18927.希望杯第十四届(2003年)初中一年级第一试试题...................193-19628.希望杯第十四届(2003年)初中一年级第二试试题...................198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题...................213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题...................228-23334.希望杯第十七届(2006年)初中一年级第二试试题...................234-23835.希望杯第十八届(2007年)初中一年级第一试试题...................242-246 26.希望杯第十八届(2007年)初中一年级第二试试题...................248-25137.希望杯第十九届(2008年)初中一年级第一试试题...................252-25638.希望杯第十九届(2008年)初中一年级第二试试题...................257-26239.希望杯第二十届(2009年)初中一年级第一试试题...................263-26620.希望杯第二十届(2009年)初中一年级第二试试题...................267-27121.希望杯第二十一届(2010年)初中一年级第一试试题.................274-27622.希望杯第二十二届(2011年)初中一年级第二试试题.................285-28823.希望杯第二十三届(2012年)初中一年级第二试试题.................288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B.没有最小的正有理数.C.没有最大的负整数. D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.2-2=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____.7.当a=-,b=时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=××a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.2-2=(+)×(-)=(+)×1=.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-,b=时,a2-b=(-2-=0,b+a+=-+=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即千克,此时,60×30%=×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回离出发地点最远的那辆车一共行驶了多少公里2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.×+×的值是( ) A..B..C..D..7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )11 20;413;316;617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43 x;C. 甲方程的两边都乘以43;D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,,与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( ) A .225. B ..C .. D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. >-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
2024第28届希望杯初一年级试题以及答案一、选择题(每小题4分,共40):1.计算:(-1)2024+(-2)16+1=()(A)-2 (B)0 (C)2 (D)2162.如图,线段AB所在的直线与线段CD所在的直线相互垂直,∠A=30°,∠D=50°,则∠E+∠F=()(A)190° (B)180° (C)170° (D)160°3.有理数α,-b,c在数轴上的位置如下图所示,则1ab ,1b-,ac,21b中最大的是()(A) 1ab (B) 1b- (C) ac (D)21b4.已知m,n都是质数,若关于x的方程mx+5n=97的解是3,则m-4n=(). (A)0 (B)3 (C)5 (D)135.Define new calculation rule ※ as x※y=ax+by+c.So we have 1※2=3,(-1) ※2=5,and (-1) ※(-2)=-7,then 2※3=().(A)5 (B)7 (C)-3 (D)136.如图、点A和B在直线MN的同侧,点A到MN的距离AC=6.点B到MN的距离BD=9,CD=4.当点P在直线MN上运动时. PA PB-的最大值等于().(A)3 (B)4 (C)5 (D)67. 若有理数a 满意2016a -+2017a -=a ,则这样的a 有( )个. (A )1 (B )2 (C )3 (D )无穷多8. 若正整数x,y 满意x 2+y 2=2024,则这样的数对(x ,y )有(A )1 (B )2 (C )4 (D )无穷多 9. 如图,等腰直角三角形ABC 的腰长3厘米,将三角形ABC 逆时针旋转90°,则线段AB 扫过的面积( )平方厘米.(A )2π(B )32π (C )94π (D )3π10.已知正数a 、b 、c 满意3410538{a b c a b c b c a b c a+=++++=+++则( ). (A )a<b<c (B )a<c<b (C )b<c<a (D )c<a<b二、 选择题(每小题4分,共40):11.若肯定值不小于2024且不大于202424的全部整数的和等于a,则2017a -= .12.Suppose a,b,and c are the three side length of a trsingle a with perimeteras 15,then a b c +++a b c --+a b c -++a b c +-= .13.某展厅的150盏电灯都是亮着的,每个灯都单独设有开关.现将开关按1~150编号.某同学先按下编号为3的倍数的开关,然后按下编号为5的倍数的开关.这时展厅中亮着的灯有 盏.14.某工人制作1个A 零件,1个B 零件,1个C零件所用的时间之比为1∶2∶3,他制作2个A 零件.3个B 零件和4个C 零件共用10工时,若他要制作14个A 零件和12个C零件,则需用 工时。
七年级数学“希望杯”培训题一一.选择题1.a --是( C )(A )正数 (B )负数 (C )非正数 (D )0 2.在下面的数轴上(图1)表示数(—2)—(—5)的点是 ( C )(A )M (B )N . (C )P. (D )Q. 3.49914991+-----的值的负倒数是( A )(A )314. (B )133-(C )1. (D )—1 4.)9187()8176()7165()6154()5143(+++++++++)10198(-+ ( B ) (A )0. (B )5.65. (C )6.05 (D )5.85 5.22)34(34⨯--⨯-等于( C )(A )0 (B )72 (C )—180 (D )108 6.x 的54与31的差是( B )(A )x x 3154- (B )3154-x (C ))31(54-x (D )345+x 7.n 是整数,那么被3整除并且商恰为n 的那个数是( C )(A )3n (B )3+n (C )n 3 (D )3n 8.如果2:3:=y x 并且273=+y x ,则y x ,中较小的是( B )(A )3 (B )6(C )9(D )129.20°角的余角的141等于( D )(A ) )731( (B ) )7311( (C ))767( (D )5°10.7)71()7(71⨯-÷-⨯等于( B )(A )1 (B )49 (C )—7 (D )7二、A 组填空题11.绝对值比2大并且比6小的整数共有( 6 )个。
12.在一次英语考试中,某八位同学的成绩分别是93,99,89,91,87.81,100,95,则他们的平均分数是( 91.875 )。
13.||||1992-1993|-1994|-1995|-1996|=( 1994 )。
14.数:-1.1,-1.01,-1.001,-1.0101,-1.00101中最大的一个数与最小的一个数的比值是( 0.91 )。
15.|10011-10001|+|10021-|1000110021||10011--=( 0 )。
16.在自然数中,从小到大地数,第15个质数是N 。
N 的数字和是a ,数字积是b ,则Nb a 22-的值是( 47514- )。
17.一年定期储蓄存款,月利率是0.945%。
现在存入100元,则明年的今日可取得本金与利息共( 111.34 )元。
18.若方程19x -a=0的根为19-a ,则a ( 18.05 )。
19.当|x |=x +2时,1994x + 3x + 27的值是( 43 )。
20.下面有一个加法竖式,其中每个□盖着一个数码,则被□盖住的七个数码之和等于( 51 )。
□ □ □+ □ □ □□ 9 9 4 三、B 组填空题21.已知b a ,是互为相反数,d c ,是互为负倒数,x 的绝对值等于它的相反数的2倍,则bcd a abcdx x -++3的值是( 0 )。
22.1992×19941994-1994×19931993=( -19941994 )。
23.按上表中的要求。
填在空格中的十个数的乘积是( -1 )。
24.在数码两两个不等的所有的五位数中,最大的减去最小的,所得的差是( 88531 ).25.已知199519941993199419931992⨯⨯+⨯⨯=N199619951994⨯⨯+199719961995⨯⨯,则N 的末位数字是( 4 ).26.要将含盐15%盐水20千克,变为含盐20%的盐水,需要加入纯盐( 1.25 )千克.27.一次考试共需做20个小题,做对一个得8分,做错一个减5分,不做的得0分,某学生共得13分,那么这个学生没有做的题目有( 7 )个. 28.如右图.将面积为2a 的小正方形与面积为2b 的大正方 形放在一起)0,0(>>b a 则三角形ABC 的面积是(221b )。
29.在1到100这一百个自然数中任取其中的n 个数,要使这几个数中至少有一个合数,则n 至少是( 27 ).30.如图3,是某个公园ABCDEF ,M 为AB 的中点,N 为CD 的中点, P 为DE 的中点,Q 为FA 的中点,其中游览区APEQ 与BNDM 的面积是900平方米,中间的湖水面积为361平方米,其余的部分是草地,则草地的总面积是( 539 )平方米.七年级数学“希望杯”培训题二一、填空题(每小题5分,共75分)1.计算:230.2110.875(2)-+-+⨯-=______________. 2.设有理数a ,b ,c 在数轴上的对应点如图所示,则│b-a │+│a+c │+│c-b•│=________.3.若m 人在a 天可完成一项工作,那么m+n 人完成这项工作需_______天(用代数式表示).4.如果75a b =,32b c =,那么a b b c-+=____________.5.已知│x-1│+│x+2│=1,则x 的取值范围是_______________. 6.“如果两个角的和等于90°,那么这两个角叫做互为余角;如果两个角的和等于180°,那么这两个角叫做互为补角”.已知一个角的补角等于这个角的余角的6倍,那么这个角等于______________.7.由O 点引出七条射线如上图,已知∠AOE 和∠COG 均等于90°,∠BOC>∠FOG ,那么在右图中,以O 为顶点的锐角共有___________个.8.某人将其甲、乙两种股票卖出,其中甲种股票卖价1200元,盈利20%;其乙种股票卖价也是1200元,但亏损20%,该人交易结果共盈利_______.9.时钟在12点25分时,分针与时针之间的夹角度数为________.10.已知a ×b ×ab =bbb ,其中a 、b 是1到9的数码.ab 表示个位数是b ,十位数是a 的两位数,bbb 表示其个位、十位、百位都是b 的三位数,那么a=_____,b=______.11.一个小于400的三位数,它是完全平方数,它的前两位数字组成的两位数还是完全平方数,其个位数字也是一个完全平方数,那么这个三位数是______.12.甲、乙、丙三人同时由A 地出发去B 地.甲骑自行车到C 地(C 是A 、B•之间的某地),然后步行;乙先步行到C 点,然后骑自行车;丙一直步行.结果三人同时到达B 地.已知甲步行速度是每小时7.5km ;乙步行速度是每小时5km .甲、乙骑自行车的速度都是每小时10km ,那么丙步行的速度是每小时________km.13.小虎和小明同做下面一道题目:“甲、乙、丙三个小孩分一袋糖果,分配如下:甲得总数的一半多一粒,乙得剩下来的三分之一,丙发现自己分得的糖果是乙的二倍,那么这袋糖果□小虎的答案是:糖的总数是38粒,甲得20粒,乙得6粒,丙得12粒.□小明的答案是:从题目给出的数据,无法确定糖果的总数.你认为他们的答案是否正确?在答案前的方框内,将你认为正确的打∨,•不正确的打×.14.如图,3×3的正方形的每一个方格内的字母都代表某一个数,已知其每一行、每一列以及两条对角线上的三个数之和都相等,若a=4,d=19,L=22,那么b=•_____,h=________.15.一幢楼房内住有六家住户,分别姓赵、钱、孙、李、周、吴.这幢楼住户共订有A、B、C、D、E、F这种报纸,每户至少订了一种报纸.已知赵、钱、孙、李、周分别订了其中2,2,4,3,5种报纸,而A、B、C、D、E五种报纸在这幢楼里分别有1、•4、2、2、2家订房.那么吴姓住户订有_______种报纸,报纸F在这幢楼里有_____•家订户.二、解答题(第16、17题各8分,第18题9分,第19,20题各10分,共45分)16.已知│ab+2│+│a+1│=0,求下式的值:1(1)(1)a b-++1(2)(2)a b-+…+1(2000)(2000)a b-+.17.对于有理数x,y,定义新运算:x*y=ax+bx+c,其中a、b、c是常数,等式右边是通常的加法与乘法运算.已知1*2=9,(-3)*3=6,0*1=2,求2*(-7)的值.18.甲、乙二人分编号分别为001,002,003,…,998,999的999张纸牌,•凡编号的三个数码都不大于5的纸牌都属于甲;•凡编号三个数码中有一个或一个以数码大于5的纸牌都属于乙.(1)甲分得多少张纸牌?(2)甲分得的所有纸牌的编号之和是多少?19.在边防沙漠地带,巡逻车每天行驶200千米,每辆巡逻车可载供行驶14天的汽油,现有5辆巡逻车,同时从驻地A出发,完成任务后再沿原路返回驻地.为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,•仅留足自己返回驻地所需的汽油,将其余的汽油留给另外三辆使用,问其他三辆可行进的最远距离是多少千米?20.要把一个边长为6cm的正方体分割成49个小正方体(小正方体大小可以不等),应如何分割?并画图示意.七年级数学“希望杯”培训题三1.计算:{[223÷(-43)+0.4×(-614)]-[712+414+318-0.875]÷(-75)]}×(-1)=________.2.已知有理数a、b、c在数轴上的对应点如图所示,那么│b-a│+│a+c│+•│c-b│的化简结果是_________.3.图中三角形的个数共有_______个.4.如果m 、n 为整数,且│m-2│+│m-n │=1,那么m+n 的值为_________.5.今天是星期六,101000天之后是星期________.6.已知关于x 的方程ax+b=37的解为7,且a 、b 都是质数,那么ab=________. 7.已知2n 是完全平方数,3n是立方数,则n 的最小正数值是_______. 8.从123456789101112…50中划掉80•个数字,•使剩下的数最大,•其数字之和是________.9.为了保护环境,某市规定,一大袋垃圾可换5枚邮票,一小袋垃圾可换3枚邮票.某个班的学生交纳了若干大袋垃圾和大袋垃圾3倍的小袋垃圾,共换了126枚邮票,•那么这个班的学生交纳了大袋、小袋垃圾共________袋. 10.规定a*b=(2a+1)(2b+1)-1,如果m*n=2000,且m 、n 为正整数,•那么有序数对(m ,n )共有________对. 11.有一个四位数是11的倍数,它的中间两位数是完全平方数,•中间的两位数的数字和等于首位数字,那么这个四位数是________.12.如图,正方形ABCD 的边长为4cm ,E 是AD 的中点,F 是EC 的中点,BD 是对角线,那么△BDF 的面积为_______c m 2. 13.已知关于x 的方程│x+3│+│x-6│=a 有解,那么a 的取值范围是_________.14.在1000到2000中,有_____个千位数字小于百位数字,百位数字小于十位数字,十位数字小于个位数字的正整数.15.有一边长分别是12,16,20厘米的密封的长方体容器,内装2880立方厘米的水.这个长方体最多可以放______个直径为4厘米的皮球,而这些皮球完全浮在水面上.16.某个水库建有10个泄洪闸.现在水库的水位已经超过安全线,•上游的水流还在按一定不变的速度增加.为了防洪,需调节泄洪速度.•如果每个闸门的泄洪速度相同,经计算,打开一个泄洪闸,30个小时水位降至安全线,打开两个泄洪闸,10•个小时水位降至安全线.现在抗洪指挥部要求在3小时内使水位降至安全线以下,•那么至少要同时打开______个闸门. 二、解答题(每小题10分,共40分)17.甲、乙两个缸里都放有水,第一次把甲缸里的水往乙缸里倒,•使乙缸的水增加一倍.第二次把乙缸里的水往甲缸里倒,使甲缸所剩的水增加一倍.第三次又把甲缸里的水往乙缸里倒,使乙缸所剩的水增加一倍.•这样一来,•两缸里各有水64升,问两个缸里原有的水各是多少升?18.小明和小亮分别从甲、乙两地同时出发,相向而行,当小明走完全程的一半时,小亮才走了16千米;当小亮走完全程的一半时,小明已走完了25千米.那么,当小明走完全程时,小亮未走完的路程还有多少千米?19.由0,1,2,3,4,5,6这7•个数字组成许多没有重复数字的七位数,•其中一些是55的倍数,在这些55的倍数中,求出最大数和最小数.20.三个整数p 、q 、r 满足条件0<p<q<r ,它们分别写在三张卡片上,A 、B 、C 三人进行某种游戏,每次各摸取一张卡片,然后按卡片上写的数走多少步.在进行N 次(N ≥2)后,A 已走了20步,B 走了10步,C 走了9步,已知最后一次B 走了r 步,•问第一次谁走了q 步?七年级数学“希望杯”培训题四1.x 是任意实数,则2|x |+x 的值 ( )A .大于零B . 不大于零C .小于零D .不小于零2.在-0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的数字是( )A .1B .4C .2D .83.如图,在数轴上1A 、B , A 是线段BC 的中点,则点C 所表示的数是 ( )A.2 B2 C1 D.14.221x x x ++-+-的最小值是( )A. 4 B. 3 C. 2 D. 15.若m <0,n >0,m+n <0,则m ,n ,-m ,-n 这四个数的大小关系是( ) A.m >n >-n>-m B.-m >n >-n >m C.m >-m >n >-n D.-m >-n >n >mx6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中相同的物体质量相等。