2018-2019学年高中数学人教A版必修四课件:第三章 3.1第3课时 二倍角的正弦、余弦、正切公式
- 格式:ppt
- 大小:1.14 MB
- 文档页数:36
第3课时 参数方程和普通方程的互化[核心必知]参数方程和普通方程的互化(1)将曲线的参数方程化为普通方程,有利于识别曲线类型,曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数而从参数方程得到普通方程.(2)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.[问题思考]1.将参数方程化为普通方程的实质是什么?提示:将参数方程化为普通方程的实质是消参法的应用. 2.将普通方程化为参数方程时,所得到的参数方程是唯一的吗?提示:同一个普通方程,选取的参数不同,所得到的参数方程也不同,所以在写参数方程时,必须注明参数是哪一个.根据所给条件,把曲线的普通方程化为参数方程.(1)(x -1)23+(y -2)25=1,x =3cos θ+1.(θ为参数)(2)x 2-y +x -1=0,x =t +1.(t 为参数)[精讲详析] 本题考查化普通方程为参数方程的方法,解答本题只需将已知的变量x 代入方程,求出y 即可.(1)将x =3cos θ+1代入(x -1)23+(y -2)25=1得:y =2+5sin θ.∴⎩⎨⎧x =3cos θ+1,y =5sin θ+2.(θ为参数) 这就是所求的参数方程.(2)将x =t +1代入x 2-y +x -1=0得: y =x 2+x -1=(t +1)2+t +1-1 =t 2+3t +1∴⎩⎪⎨⎪⎧x =t +1,y =t 2+3t +1.(t 为参数) 这就是所求的参数方程.(1)求曲线的参数方程,首先要注意参数的选取,一般来说,选择参数时应注意以下两点:一是曲线上每一点的坐标(x ,y )都能由参数取某一值唯一地确定出来;二是参数与x ,y 的相互关系比较明显,容易引出方程.(2)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与普通方程等价.1.把方程xy =1化为以t 为参数的参数方程是( ) A.⎩⎨⎧x =t 12,y =t -12 B.⎩⎪⎨⎪⎧x =sin t ,y =1sin t C.⎩⎪⎨⎪⎧x =cos t ,y =1cos t D.⎩⎪⎨⎪⎧x =tan t ,y =1tan t 解析:选D 由xy =1得x ∈(-∞,0)∪(0,+∞),而A 中x ∈[0,+∞),B 中x ∈[-1,1],C 中x ∈[-1,1],只有D 选项中x 、y 的取值范围与方程xy =1中x 、y 的取值范围相对应.分别在下列两种情况下,把参数方程⎩⎨⎧x =12(e t +e-t)cos θ,y =12(e t-e-t)sin θ化为普通方程:(1)θ为参数,t 为常数; (2)t 为参数,θ为常数.[精讲详析] 本题考查化参数方程为普通方程的方法,解答本题需要分清谁为参数,谁为常数,然后想办法消掉参数.(1)当t =0时,y =0,x =cos θ,即|x |≤1,且y =0; 当t ≠0时,cos θ=x 12(e t +e -t ),sin θ=y12(e t -e -t ),而sin 2θ+cos 2θ=1, 即x 214(e t +e -t )2+y 214(e t -e -t )2=1.(2)当θ=k π,k ∈Z 时,y =0,x =±12(e t +e -t ),即|x |≥1,且y =0;当θ=k π+π2,k ∈Z 时,x =0,y =±12(e t -e -t ),即x =0;当θ≠k π2,k ∈Z 时,得⎩⎨⎧e t +e -t =2x cos θ,e t -e -t =2y sin θ,即⎩⎨⎧2e t =2x cos θ+2y sin θ,2e -t =2x cos θ-2y sin θ.得2e t ·2e -t =(2x cos θ+2y sin θ)(2x cos θ-2y sin θ),即x 2cos 2θ-y 2sin 2θ=1.(1)将参数方程化为普通方程时,消去参数的常用方法有:①代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程.②利用代数或三角函数中的恒等式消去参数.例如对于参数方程⎩⎨⎧x =a ⎝⎛⎭⎫t +1t cos θ,y =a ⎝⎛⎭⎫t -1t sin θ,如果t 是常数,θ是参数,那么可以利用公式sin 2θ+cos 2θ=1消参;如果θ是常数,t 是参数,那么可以利用⎝⎛⎭⎫t +1t 2-⎝⎛⎭⎫t -1t 2=4消参.(2)一般来说,如果消去曲线的参数方程中的参数,就可以得到曲线的普通方程,但要注意,这种消参的过程要求不减少也不增加曲线上的点,即要求参数方程和消去参数后的普通方程是等价的.2.已知某曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (3,1)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.解:(1)由题意可知有⎩⎪⎨⎪⎧1+2t =3at 2=1,故⎩⎪⎨⎪⎧t =1,a =1,∴a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2.由第一个方程得t =x -12代入第二个方程得y =(x -12)2,即(x -1)2=4y 为所求.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线x -2y-7=0距离的最小值.[精讲详析] 本题考查化参数方程为普通方程的方法以及点到直线的距离的求法.解答本题需要先把题目条件中的参数方程转化为普通方程,然后根据普通方程解决问题.(1)C 1:(x +4)2+(y -3)2=1,C 2:x 264+y 29=1.C 1为圆心是(-4,3),半径是1的圆.C 2为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).M到C 3的距离d =55|4cos θ-3sin θ-13|=55|5sin (φ-θ)-13|(φ为锐角且tan φ=43). 从而当sin (φ-θ)=1时,d 取得最小值855.(1)将参数方程转化为我们所熟悉的普通方程是解决问题的关键. (2)将所求的问题用恰当的参数表示,是解决此类问题的转折点.3.已知方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,(0≤θ<2π). (1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线; (2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.解:(1)证明:将方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0可配方为(y -3sin θ)2=2(x -4cos θ)∴图象为抛物线设其顶点为(x ,y ),则有⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ,消去θ得顶点轨迹是椭圆x 216+y 29=1.(2)联立⎩⎪⎨⎪⎧x =14,y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0, 消去x ,得y 2-6y sin θ+9sin 2θ+8cos θ-28=0. 弦长|AB |=|y 1-y 2|=47-2cos θ, 当cos θ=-1,即θ=π时,弦长最大为12.曲线的参数方程化为普通方程是解决参数方程问题的根本方法,也是高考命题的重点内容,它体现了转化与化归的数学思想.湖北高考中,以射线(极坐标方程)与曲线(参数方程)相交为背景设置问题,是高考命题的一个新亮点.[考题印证](湖北高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =(t -1)2,(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.[命题立意] 本题主要考查参数方程与普通方程的互化,射线的极坐标方程及联立方程解方程组的解题思想.[解析] 记A (x 1,y 1),B (x 2,y 2),将θ=π4,转化为直角坐标方程为y =x (x ≥0),曲线为y =(x -2)2,联立上述两个方程得x 2-5x +4=0,所以x 1+x 2=5,故线段AB 的中点坐标为(52,52). 答案:(52,52)一、选择题1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( ) A .y =x -2 B .y =x +2 C .y =x -2(2≤x ≤3) D .y =x +2(0≤y ≤1)解析:选C 化为普通方程:y =x -2,但是x ∈[2,3],y ∈[0,1].2.下列在曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ+sin θ(θ为参数)上的点是( )A.⎝⎛⎭⎫12,-2B.⎝⎛⎭⎫-34,12 C .(2,3) D .(1,3)解析:选B 化为普通方程:y 2=1+x (-1≤x ≤1), 当x =-34时,y =±12.3.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( ) A .线段 B .双曲线的一支C .圆D .射线解析:选D 消去参数得:x -3y -5=0,且x ≥2,故是射线.4.与参数方程为⎩⎨⎧x =t ,y =21-t(t 为参数)等价的普通方程为 ( )A .x 2+y 24=1B .x 2+y 24=1(0≤x ≤1)C .x 2+y 24=1(0≤y ≤2)D .x 2+y 24=1(0≤x ≤1,0≤y ≤2)解析:选D x 2=t ,y 24=1-t =1-x 2,x 2+y 24=1,而由⎩⎪⎨⎪⎧t ≥01-t ≥0得0≤t ≤1,从而0≤x ≤1,0≤y ≤2.二、填空题5.曲线的参数方程是⎩⎪⎨⎪⎧x =1-1t ,y =1-t 2(t 为参数,t ≠0),则它的普通方程为________.解析:1-x =1t ,t =11-x ,而y =1-t 2,即y =1-(11-x )2=x (x -2)(x -1)2(x ≠1).答案:y =x (x -2)(x -1)2(x ≠1)6.参数方程⎩⎪⎨⎪⎧x =e t +e -t,y =2(e t-e -t )(t 为参数)的普通方程为________. 解析:⎩⎪⎨⎪⎧x =e t+e -t,y 2=e t -e -t ,⇒⎩⎨⎧x +y2=2e t,x -y 2=2e -t ,⇒(x +y 2)(x -y2)=4.答案:x 24-y 216=1(x ≥2)7.若点(x ,y )在圆⎩⎪⎨⎪⎧x =3+2cos θ,y =-4+2sin θ(θ为参数)上,则x 2+y 2的最小值是________.解析:法一:由题可知,x 2+y 2=(3+2cos θ)2+(-4+2sin θ)2=29+12cos θ- 16sin θ=29+20cos (θ+φ)(tan φ=43),当cos (θ+φ)=-1时最小,因此可得最小值为9.法二:将原式转化为普通方程(x -3)2+(y +4)2=4,它表示圆.令t =x 2+y 2,则t 可看做圆上的点到点(0,0)的距离的平方,圆外一点与圆上点的最近距离为该点与圆心的距离减去半径,t min =()(0-3)2+(0+4)2-22=9,所以x 2+y 2的最小值为9. 答案:98.点(x ,y )是曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数,0≤θ<2π)上任意一点,则yx 的取值范围是________.解析:曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ是以(-2,0)为圆心,1为半径的圆,即(x +2)2+y 2=1.设yx =k , ∴y =kx .当直线y =kx 与圆相切时,k 取得最小值与最大值. ∴|-2k |k 2+1=1,k 2=13.∴y x 的范围为⎣⎡⎦⎤-33,33. 答案:⎣⎡⎦⎤-33,33 三、解答题9.化下列参数方程为普通方程.(1)⎩⎪⎨⎪⎧x =1-t 1+t,y =2t1+t(t ∈R 且t ≠-1);(2)⎩⎨⎧x =tan θ+1tan θ,y =1cos θ+1sin θ⎝⎛⎭⎫θ≠k π,k π+π2,k ∈Z . 解:(1)变形为⎩⎨⎧x =-1+21+t,y =2-21+t.∴x ≠-1,y ≠2,∴x +y =1(x ≠-1).(2)⎩⎪⎨⎪⎧x =1sin θcos θ, ①y =sin θ+cos θsin θ·cos θ. ②②式平方结合①得y 2=x 2+2x , 又x =tan θ+1tan θ知|x |≥2,所以方程为(x +1)2-y 2=1(|x |≥2).10.求直线x +y =2被圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)截得的弦长.解:将圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α化为普通方程为x 2+y 2=9.圆心O 到直线的距离d =22=2,∴弦长L =2R 2-d 2=29-2=27.所以直线x +y =2被圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α截得的弦长为27.11.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),直线l 的方程是4x +3y -8=0.(1)将曲线C 的参数方程化为普通方程;(2)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求|MN |的最大值. 解:(1)曲线C 的普通方程为x 2+(y -1)2=1. (2)在方程4x +3y -8=0中, 令y =0,得x =2,即M 点的坐标为(2,0).又曲线C 为圆,圆C 的圆心坐标为(0,1),半径r =1,则|MC |= 5.所以|MN |≤|MC |+r =5+1. 即|MN |的最大值为5+1.。
3.1.2椭圆的简单几何性质第2课时本小节内容选自《普通高中数学选择性必修第一册》人教A 版(2019)第二章《圆锥曲线的方程》的第一节《椭圆》。
以下是本节的课时安排:第三章圆锥曲线的方程课时内容 3.1.1椭圆及其标准方程 3.1.2椭圆的简单几何性质所在位置教材第105页教材第109页新教材内容分析椭圆是生产生活中的常见曲线,教材在用细绳画椭圆的过程中,体会椭圆的定义,感知椭圆的形状,为选择适当的坐标系,建立椭圆的标准方程、研究椭圆的几何性质做好铺垫。
通过对椭圆标准方程的讨论,使学生掌握标准方程中的a,b,c,e 的几何意义及相互关系,体会坐标法研究曲线性质的基本思路与方法,感受通过代数运算研究曲线性质所具有的程序化、普适性特点。
核心素养培养通过椭圆的标准方程的推导,培养数学运算的核心素养;通过对椭圆的定义理解,培养数学抽象的核心素养。
通过椭圆的几何性质的研究,培养数学运算的核心素养;通过直线与椭圆的位置关系的判定,培养逻辑推理的核心素养。
教学主线椭圆的标准方程、几何性质学生已经学习了直线与圆的方程,已经具备了坐标法研究解析几何问题的能力。
本章学习圆锥曲线方程及几何性质,进一步提升用代数方法研究解析几何问题的方法。
1.进一步掌握椭圆的方程及其性质的应用,培养数学抽象的核心素养.2.会判断直线与椭圆的位置关系,培养数学运算的核心素养.3.能运用直线与椭圆的位置关系解决相关的弦长、中点弦问题,培养数学运算的核心素养.重点:直线与椭圆的位置关系难点:直线与椭圆的位置关系的应用(一)新知导入一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。
过对称轴的截口ABC 是椭圆的一部分,灯丝位于椭圆的一个焦点1上,片门位另一个焦点2上,由椭圆一个焦点1发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点2。
(二)椭圆的简单几何性质知识点一点与椭圆的位置关系【探究1】根据点与圆的位置关系,你能得出点P (x 0,y 0)与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系有哪些?怎样判断?◆点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内部⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外部⇔x 20a 2+y 20b2>1.【做一做1】点(1,1)与椭圆22132x y +=的位置关系为()A.在椭圆上B.在椭圆内C.在椭圆外D.不能确定【做一做2】若点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是________.知识点二直线与椭圆的位置关系【探究2】类比直线与圆的位置关系,思考直线与椭圆有几种位置关系?怎样判断其位置关系?◆直线与椭圆的位置关系(直线斜率存在时)直线y =kx +m 与椭圆x 2a 2+y2b 2=1(a >b >0)的位置关系判断方法:kx +m+y 2b 2=1,消y 得一个关于x的一元二次方程.位置关系公共点个数组成的方程组的解判定方法(利用判别式Δ)相交2个2解Δ>0相切1个1解Δ=0相离0个0解Δ<0斜率不存在时,观察可得.【做一做1】直线y =x +1与椭圆x 2+y 22=1的位置关系是()A.相离B.相切C.相交D.无法确定【做一做2】(教材P114练习2改编)椭圆x 23+y 2=1被直线x -y +1=0所截得的弦长|AB |=________.1.直线与椭圆的位置关系例1.已知直线y =x +m 与椭圆x 216+y 29=1,当直线和椭圆相离、相切、相交时,分别求m 的取值范围.[分析]将直线方程与椭圆方程联立,利用判别式Δ判断.【类题通法】代数法判断直线与椭圆的位置关系判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交;Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离.【巩固练习1】(1)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是()A.63B.-63C.±63D.±33(2)直线y =kx -k +1(k ∈R )与焦点在x 轴上的椭圆x 25+y 2m=1总有公共点,则m 的取值范围是________.2.弦长问题例2.已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围;(2)求被椭圆截得的最长弦所在的直线方程.[分析](1)将直线方程与椭圆方程联立,根据判别式Δ的符号,建立关于m 的不等式求解;(2)利用弦长公式建立关于m 的函数关系式,通过函数的最值求得m 的值,从而得到直线方程.【类题通法】1.求直线被椭圆截得弦长的方法:法一是求出两交点坐标,用两点间距离公式;法二是用弦长公式|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|,其中k 为直线AB 的斜率,A (x 1,y 1),B (x 2,y 2).2.有关直线与椭圆相交弦长最值问题,要特别注意判别式的限制.【巩固练习2】已知椭圆C 的中心在原点O ,焦点在x 轴上,其长轴长为焦距的2倍,且过点F 为其左焦点.(1)求椭圆C 的标准方程;(2)过左焦点F 的直线l 与椭圆交于A ,B 两点,当|AB |=185时,求直线l 的方程.3.中点弦问题例3.过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A ,B 两点,使线段AB 被P 点平分,求此直线的方程.[分析]由于弦所在直线过定点P (2,1),所以可设出弦所在直线的方程为y -1=k (x -2),与椭圆方程联立,通过中点为P ,得出k 的值,也可以通过设而不求的思想求直线的斜率.【类题通法】关于中点弦问题,一般采用两种方法解决(1)联立方程组,消元,利用根与系数的关系进行设而不求,从而简化运算.(2)利用“点差法”即若椭圆方程为x 2a 2+y 2b2=1,直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),且弦AB 的中点为M (x ,y +y 21b2=1,①+y 22b2=1,②①-②:a 2(y 21-y 22)+b 2(x 21-x 22)=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·xy.这样就建立了中点坐标与直线的斜率之间的关系,从而使问题得以解决.【巩固练习3】已知椭圆方程是x 29+y 24=1,求以A (1,1)为中点的弦MN 所在的直线方程.1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为()-233,2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是()A.相交B.相切C.相离D.不确定3.直线y =x +1被椭圆x24+y 22=1所截得的弦的中点坐标是()-23,-132,4.椭圆mx 2+ny 2=1(m >0,n >0且m ≠n )与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn 的值是()A.22B.233C.922D.2327(五)课堂小结,反思感悟1.知识总结:2.学生反思:(1)通过这节课,你学到了什么知识?(2)在解决问题时,用到了哪些数学思想?3.1.2椭圆的简单几何性质(2)-A 基础练一、选择题1.(2020·河北桃城衡水中学期末)已知椭圆()2222:10x y C a b a b+=>>,若长轴长为8,离心率为12,则此椭圆的标准方程为()A.2216448x y +=B.2216416x y +=C.221164x y +=D.2211612x y +=2.(2020全国高二课时练)椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为22143x y +=,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程不可能为()A.2B.4C.6D.83.(2020·金华市曙光学校月考)无论k 为何值,直线2y kx =+和曲线22194x y +=交点情况满足()A.没有公共点B.一个公共点C.两个公共点D.有公共点4.(2019·安徽安庆月考)椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为()A.22B.2115.(多选题)(2020广东濠江高二月考)椭圆22116x y m+=的焦距为,则m 的值为()A.9B.23C.16-D.16+6.(多选题)(2020全国高二课时练)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是()A.焦距长约为300公里B.长轴长约为3988公里C.两焦点坐标约为()1500±,D.离心率约为75994二、填空题7.(2020·全国课时练习)若直线2y kx =+与椭圆22132x y +=有且只有一个交点,则斜率k 的值是_______.8.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点1F ,2F 的椭圆Γ与双曲线'Γ构成,现一光线从左焦点1F 发出,依次经'Γ与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的'Γ去掉,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若214t t =,则Γ与'Γ的离心率之比为______.9.(2020·福建漳州高二月考)已知1F ,2F 是椭圆222:1(04)16x y C b b+=<<的左、右焦点,点P 在C 上,线段1PF 与y 轴交于点M ,O 为坐标原点,若OM 为12PF F △的中位线,且||1OM =,则1PF =________.10.(2020上海华师大二附中月考)已知点F 为椭圆22:143x y Γ+=的左焦点,点P 为椭圆Γ上任意一点,点O 为坐标原点,则OP FP ⋅的最大值为________三、解答题11.我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径3400km =R )的中心F 为一个焦点的椭圆.如图,已知探测器的近火星点(轨道上离火星表面最近的点)A 到火星表面的距离为800km ,远火星点(轨道上离火星表面最远的点)B 到火星表面的距离为80000km .假定探测器由近火星点A 第一次逆时针运行到与轨道中心O 时进行变轨,其中,a b 分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到100km ).12.(2020全国高二课时练习)已知椭圆C:()222210x y a b a b +=>>经过点3(1,)2M ,12,F F 是椭圆C 的两个焦点,12||F F =P 是椭圆C 上的一个动点.(1)求椭圆的标准方程;(2)若点在第一象限,且1214PF PF ⋅≤ ,求点的横坐标的取值范围;3.1.2椭圆的简单几何性质(2)-B 提高练一、选择题1.(2020·江苏省镇江中学开学考试)设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若2122BF F F ==则该椭圆的方程为()A.22143x y +=B.2213x y +=C.2212x y +=D.2214x y +=2.(2020·安徽省太和中学开学考试)“1a =”是“直线y x a =+与椭圆22:12516xy C +=有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.(2020·辽宁大连月考)2020年3月9日,我国在西昌卫星发射中心用长征三号运载火箭,成功发射北斗系统第54颗导航卫星.第54颗导航卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R ,若其近地点、远地点离地面的距离大约分别是115R ,13R ,则第54颗导航卫星运行轨道(椭圆)的离心率是()A.25B.15C.23D.194.(2020山东泰安一中高二月考)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论不正确的是()A.卫星向径的最小值为a c -B.卫星向径的最大值为a c+C.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D.卫星运行速度在近地点时最小,在远地点时最大5.(多选题)设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于A ,B 两点,则()A.AF BF +为定值B.ABF 的周长的取值范围是[]6,12C.当2m =时,ABF 为直角三角形D.当1m =时,ABF 6.(多选题)(2020江苏扬州中学月考)已知椭圆()22:10x y C a b a b+=>>的左、右焦点分别为1F ,2F 且122F F =,点()1,1P 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.1QF QP +的最小值为21a -B.椭圆C 的短轴长可能为2C.椭圆C 的离心率的取值范围为510,2⎛⎫- ⎪ ⎪⎝⎭D.若11PF FQ =,则椭圆C +二、填空题7.(2020·广西南宁高二月考)已知O 为坐标原点,点1F ,2F 分别为椭圆22:143x y C +=的左、右焦点,A 为椭圆C 上的一点,且212AF F F ⊥,1AF 与y 轴交于点B ,则OB =________.8.(2020南昌县莲塘第一中学月考)已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.9.(2020·山东泰安实验中学期末)直线2y x =+交椭圆2214x y m +=于,A B 两点,若AB =,则m的值为__________.10.(2020·河南南阳中学高二月考)过椭圆2222:1(0)x y M a b a b +=>>右焦点的直线0x y +=交于,A B 两点,P 为AB 的中点,且OP 的斜率为12,则椭圆M 的方程为__________.三、解答题11.(2020·贵港市高级中学期中)已知平面内两定点(1,0),(1,0)M N -,动点P 满足||||PM PN +=.(1)求动点P 的轨迹C 的方程;(2)若直线1y x =+与曲线C 交于不同的两点A 、B ,求||AB .12.(2020天津实验中学高二月考)已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B 2OB =(O 为原点)(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP ,求椭圆的方程.。