2011年“新希望杯”第七届全国青少年数学大赛八年级试题
- 格式:doc
- 大小:81.00 KB
- 文档页数:2
第七届“枫叶新希望杯”全国数学大赛八年级试题(C 卷)一、单选题1.若22429x kxy y -+是完全平方式,则k =( ).A .12B .6C .12±D .6±2.直线8y kx =+与x 轴交于点A ,与y 轴交于点B ,点O 为坐标原点,若4AOB S =△,则k =( ).A .8B .8-C .8±D .16±3.如果ABC V 是等腰三角形,且490AB AC -+-=,则ABC V 的周长为( ). A .13B .17C .17或22D .224.函数1y x -中自变量x 的取值范围是( ). A .2x ≤B .2x ≤且1x ≠-C .2x ≤且1x ≠-或0x ≠D .2x ≤且0x ≠且1x ≠-5.如图,在直角坐标系中,()2,6A -,()6,1B -,(),0C m ,()0,D n ,当四边形ABCD 周长最小时,m n 的值是( ).A .87-B .78-C ..1714-D .非以上答案 6.若2115x x x =++,则2421x x x =++( ) A .5 B .115 C .4 D .147.点M 是正六边形ABCDEF 内任一点,正六边形面积为18,若,,MAB MBC MCD S x S y S z ===V V V ,则x z y +-=( ).A .6B .3C .18D .98.按规律排列的一列数为:11212312341,,,,,,,,,,,12132143215L ,从左边起第n 个数记为()f n ,如()122f =,()283f =,若()72011f n =,则n =( ). A .2033143 B .2033136 C .2033351 D .非以上答案二、填空题9.学校有一块边长为13.2m 的正方形场地,准备在四个角各建一个边长为3.4m 的正方形喷水池,其余部分种上花草,则种花草部分的面积为2m .10.计算:2222010201122009=-+. 11.等腰三角形ABC 中,底边10BC =,且3AB BC -=,则AB =.12.若关于x 的不等式3x m <的正整数解是1,2,3,4,5,则m 的取值范围是. 13.如图,AB CD ∥,点E ,F 分别是BC ,AD 的中点,610AB CD ==,,则EF =.14.若245n ab =,这里a 、b 分别是百位、十位上的数字,则n a b ++=.15.已知a 、b 为正整数,且满足2011ab a b ++=,则满足条件的有序实数对(,)a b 的组数是. 16.已知28380x x --=,则22182828x x x x --=--.三、解答题17.有甲、乙两个杯子,甲杯装有V 克豆浆,乙杯装有V 克牛奶(都不是满杯),小芳同学用如下方法配制豆浆奶:先从乙杯中取出a 克牛奶倒入甲杯中,充分搅匀后,再从混合液中取出克倒入乙杯中,得到两杯豆浆奶.小芳同学通过思考说,现在甲杯中含牛奶的比率与乙杯中含豆浆的比率相同.请你用所学的知识判断小芳的说法是否正确,并说明理由. 18.如图,已知ABC V 中,120AB AC BAC =∠=︒,,点M 是AB 的中垂线与BC 的交点.求证:12BM CM =.19.聪聪是数学爱好者,多次参加“希望之星竞赛”活动.有一天聪聪和妈妈去商场购物,购A,B,C三样商品各3件、2件、1件,共付款315元,而另一位阿姨购A,B,C三样商品各5件、3件、1件,共付款480元,聪聪想了想,说:“我能算出购A,B,C三样商品各1件共多少钱.”请你用所学的知识算一算,相信你一定能算出来20.设今天是星期二,从今天起,201110天后的那天是星期几?请说明理由.。
希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
希望杯试题及答案初二希望杯数学竞赛是一项面向中学生的数学竞赛活动,旨在激发学生学习数学的兴趣,培养学生的数学思维能力。
以下是一份初二希望杯试题及答案的样例,供参考。
一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 2/3答案:B2. 如果一个等腰三角形的底边长为6,腰长为5,那么它的周长是多少?A. 16B. 17C. 18D. 19答案:C3. 一个数的平方根是它本身,这个数是?A. 0C. -1D. 以上都是答案:A4. 一个数的相反数是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A5. 一个数的绝对值是它本身,这个数是?A. 正数B. 负数C. 0D. 非负数答案:D6. 一个数的倒数是它本身,这个数是?A. 1B. -1C. 0D. 以上都不是答案:A和B7. 一个数的立方是它本身,这个数是?B. 1C. -1D. 以上都是答案:D8. 一个数的平方是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A和B9. 一个数的绝对值是它的相反数,这个数是?A. 正数B. 负数C. 0D. 非负数答案:B和C10. 一个数的平方根是它的相反数,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A和C二、填空题(每题3分,共30分)1. 一个数的平方是25,这个数是______。
答案:±52. 一个数的立方是-8,这个数是______。
答案:-23. 一个数的绝对值是5,这个数是______。
答案:±54. 一个数的倒数是1/3,这个数是______。
答案:35. 一个数的相反数是-3,这个数是______。
答案:36. 一个数的平方根是3,这个数是______。
答案:97. 一个数的立方根是2,这个数是______。
答案:88. 一个数的平方是-4,这个数是______。
第八届“希望杯”全国数学邀请赛初二第1试第八届“希望杯”全国数学邀请赛初二第2试第九届“希望杯”全国数学邀请赛初二第1试第九届“希望杯”全国数学邀请赛初二第2试第十届“希望杯”全国数学邀请赛初二第1试第十届“希望杯”全国数学邀请赛初二第2试第十一届“希望杯”全国数学邀请赛初二第1试第十一届“希望杯”全国数学邀请赛初二 第2试一、选择题:1.-20001999, -19991998, -999998, -1000999这四个数从小到大的排列顺序是(AA )-20001999<-19991998<-1000999<-999998 (B )-999998<-1000999<-19991998<-20001999(C )-19991998<-20001999<-1000999<-999998 (D )-1000999<-999998<-20001999<-199919982.一个三角形的三条边长分别是a , b , c (a , b , c 都是质数),且a +b +c =16,则这个三角形的形状是(A )直角三角形(B )等腰三角形(C )等边三角形(D )直角三角形或等腰三角形 3.已知25x =2000, 80y =2000,则y1x 1+等于 (A )2 (B )1 (C )21(D )23 4.设a +b +c =0, abc >0,则|c |ba |b |ac |a |c b +++++的值是 (A )-3 (B )1 (C )3或-1 (D )-3或15.设实数a 、b 、c 满足a <b <c (ac <0),且|c |<|b |<|a |,则|x -a |+|x -b |+|x +c |的最小值是 (A )3|c b a |++ (B )|b | (C )c -a (D )―c ―a 6.若一个等腰三角形的三条边长均为整数,且周长为10,则底边的长为 (A )一切偶数 (B )2或4或6或8 (C )2或4或6 (D )2或4 7.三元方程x +y +z =1999的非负整数解的个数有(A )20001999个 (B )19992000个 (C )2001000个 (D )2001999个 8.如图1,梯形ABCD 中,AB //CD ,且CD =3AB ,EF //CD ,EF 将梯形 ABCD 分成面积相等的两部分,则AE :ED 等于( )。
希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+. 7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( ) A .0.B .1.C .2.D .4.把f 1990化简后,等于 ( ) A .1-x x . B.1-x. C.x1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度. 6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______. 8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个. 9.x ,y ,z 适合方程组826532113533451x y z x z x yx y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120° 所以∠ADC 的度数是120度. 5.∠COD 度数的一半是30度.8.∵Δ=p 2-4q >p 2.9.方程组可化简为:解得: x=1,y=-1,z=0. ∴1989x-y+25z=1990.10.∵6x 4+11x 3-7x 2-3x-7=(3x 2+4x-7)(2x 2+x+1)而3x 2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A .7.5B .12.C .4.D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ] A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ] A .M >P >N 且M >Q >N. B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ] A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种 二、填空题:(每题1分,共5分)1. △ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA的延长线交于N .已知CL=3,则CN=______. 2. 21(2)0a ab -+-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____.3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP的长是[ ]A.2; B.3; C.4; D.52.方程x2-5x+6=0的两个根是[ ]A.1,6 ; B.2,3; C.2,3; D.1,63.已知△ABC是等腰三角形,则[ ]A.AB=AC;B.AB=BC;C.AB=AC或AB=BC;D.AB=AC或AB=BC或AC=BC344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角 [ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.18512.1,>+等于[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ]A.两负根;B.一正根、一负根且负根的绝对值大(1)BOC .一正根、一负根且负根的绝对值小;D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则[ ]到达N 地. A . 二人同时; B .甲先;C .乙先;D .若a >b 时,甲先到达,若a <b 时,乙先 二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度. 2.有理化分母=______________.3.0x =的解是x=________. 4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 2-9)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2-y 2=1991有______个整数解.8.当m______时,方程(m-1)x 2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.CBAFFEDCBA(2) (3) (4)10.如图3,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出__条. 11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于__度. 12.如图4,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______.14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时,3x y-等于( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( ) A .a <b <c. B .(a-b)2+(b-c)2=0. C .c <a <b. D .a=b ≠c 5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( ) A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 2 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为x 2、y 2的值是( )A.x 2,y 22y 2;C. x 2,y 2; D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( ) A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 2+1234567890a+3=0,3b 2+1234567890b+2=0,则ab=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列各式中与分式的值相等的是[ ]A.;B.;C.;D..试题2:一个角的补角的一半比这个角的余角的2倍小3°,那么这个角等于 [ ]A.58° B.59°. C.60° D.61°试题3:如图23,AB∥CD,AC∥DB,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有[ ] A.5对. B.6对. C.7对. D.8对.试题4:设a=,b=,c=,d=,则下列不等关系中成立的是[ ]评卷人得分A.a>b>c>d. B.c>a>d>b . C.a>d>c>b. D.a>c >d>b试题5:如图24,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于D点,∠ADC=130°,那么∠CAB的大小是[ ]A.80° B.50°. C.40° D.20°试题6:已知一个三角形中两条边的长分别为a,b,且a>b,那么这个三角形的周长l的取值范围是[ ]A. 3a>l>3b. B.2(a+b)>l>2a. C.2a+b>l>2b+a . D.3a-b>l>a+2b试题7:若::=2:3:4,则a:b:c等于[ ]A.4:3:2. B.6:4:3. C.3:4:2 . D.3:4:6试题8:如图25,四边形ABCD是一个梯形,AB∥CD,∠ABC=90°,AB=9厘米,BC=8厘米,CD=7厘米,M是AD的中点,从M作AD 的垂线交BC于N,则BN的长等于 [ ]A.1厘米. B.1.5厘米. C.2厘米. D.2.5厘米试题9:在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到47,61,60,那么这三个人中最大年龄与最小年龄的差是[ ]A.28 B.27 C.26 D.25试题10:已知x,y,a,b都是正数,且a<b,如果x+y=c,则x与y中较大的一个是[ ]A.;B.;C.;D. .试题11:因式公解:9a2-4b2+4bc-c2=______.试题12:化简分式:=_______.试题13:已知多项式3x3+ax2+3x+1能被x2+1整除,且商式是3x+1,那么a的值是______.试题14:关于x的方程(2-3a)x=1的根为负数,则a的取值范围是______.试题15:如图26,凸四边形ABCD的四边AB、BC、CD、和DA的长分别是3,4,12,和13,∠ABC=90°,则四边形ABCD的面积S=______.试题16:如图27,AOB是一条直线,∠AOC=60°,OD,OE分别是∠AOC和∠BOC的平分线,则图中互为补角关系的角共有______对.试题17:如果a+b=6,a3+b3=72,那么a2+b2的值是______.试题18:如果a2-3a+1=0,那么的值是___________.试题19:如图28,△ABC中,AD平分∠BAC,AB+BD=AC,则∠B:∠C的值是______.试题20:如图29,已知DO平分∠ADC,BO平分∠ABC,且∠A=27°,∠O=33°,则∠C的大小是______.试题21:若,则a2+b2的值是_________.试题22:已知a≥b>0且3a+2b-6=ac+4b-8=0,则c的取值范围是______.试题23:一个凸多边形有且仅有4个内角是钝角,这样的多边形的边数最多是______.试题24:如图30,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点,AB=10厘米,则MD的长为______.试题25:已知三个质数m,n,p的乘积等于这三个质数的和的5倍,则m2+n2+p2=______.试题1答案:∴选C.试题2答案:设该角为x°.试题3答案:在图23中有△ABC≌△DCB,△ACD≌△DBC,△AOB≌△DOC,△A OC≌△DOB,△AOE≌△DOF,△AEC≌△DFB,△AEB≌△DFC,共有7对三角形全等,选C.试题4答案:∴a>c>d>b,选D.试题5答案:解法1:如图31,连接BD,则BD也是∠ABC的角平分线.∵AB=AC,∴∠ABC=∠ACB,∠ADB=∠ADC=130°.∴∠BDC=360°-2×130°=100°.∴∠DCB=∠DBC=40°.∴∠ABC=∠ACB=80°.∴∠CAB=180°-2×80°=20°,选D.解法2:设∠CAB=x°,则∠B=∠ACB∴∠ACD+∠CAD=180°-∠ADC.解得x=20°,∴选D.试题6答案:三角形中两边长为a,b,且a>b,则第三边为C,满足条件a-b<c<a+b,∴a+b+(a-b)<a+b+c<a+b+(a+b).即 2a<a+b+c<2(a+b),∴选B 试题7答案:试题8答案:如图32,连接AN,DN.∵M为AD中点,MN⊥AD,∴AN=DN设BN=x,则CN=8-x,∵CD2+CN2=AB2+BN2.∴72+(8-x)2=92+x2.解得x=2,∴选C.试题9答案:设三个人年龄分别是x,y,z.①+②+③得2(x+y+z)=168.∴38-10=28,选A.试题10答案:∵x,y,a,b均为正数,且a<b,得x<y.∴x,y中较大的数是y.试题11答案:因式分解9a2-4b2+4bc-c2=9a2-(4b2-4bc+c2)=9a2-(2b-c)2=(3a+2b-c)(3a-2b+c)试题12答案:试题13答案:由已知3x3+ax2+3x+1=(x2+1)(3x+1),∴3x3+ax2+3x+1=3x3+x2+3x+1,∴a=1试题14答案:关于x的方程(2-3a)x=1的根为负数,试题15答案:连接AC,△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理得AC=5.在△ACD中,AC=5,CD=12,AD=13.∵132=122+52∴△ACD是直角三角形.∠ACD=90°.∴S四边形ABCD=S△ABC+S△ACD∵∠AOC=60°,∴∠BOC=120°,又OD,OE分别是∠AOC,∠BOC的平分线,∴∠AOD=∠COD,∠BOE=∠COE=60°.有∠AOD+∠DOB=180°,∠AOC+∠COB=180°,∠AOE+∠BOE=180°,∠COD+∠DOB=180°,∠AOC+∠AOE=180°,∠COE +∠AOE=180°,∠BOE+∠BOC=180°,∠COE+∠BOC=180°,共有8组角互为补角.试题17答案:∵a+b=6 ①,a3+b3=(a+b)(a2-ab+b2)=72.∴a2-ab+b2=12 ②①2-② 3ab=24∴ab=8 ③把③代入②得a2+b2=20.试题18答案:∵a2-3a+1=0,∴a2+1=3a.∵a≠0,=3(7-1)=18.如图33,在AC上取AE=AB.连接DE,在△ABD和△AED中,AB=AE,∠BAD=∠EAD,AD=AD∴△ABD≌△AED.∴BD=DE,∠B=∠AED.又AC=AB+BD,AE=AB,∴EC=BD=DE.∴∠EDC=∠C,∴∠B=∠AED=∠EDC+∠C=2∠C.试题20答案:由已知,∠ABO=∠CBO,∠ADO=∠CDO.比较△ABG和△OGD的角的关系得∠A+∠ABG=∠O+∠ODG,①同理比较△OBH和△CDH得∠C+∠CDH=∠O+∠OBH.②①+②得∠A+∠C=2∠O.∴∠C=2×33°-27°=39°.试题21答案:∴a2+b2=8.试题22答案:①×2-②得(6-c)a=4.∵a≥b>c.∴6-c>0,c<6且4≥12-3c>0试题23答案:设这个凸多边形的边数为n,其中4个内角为钝角,n-4个内角为直角或锐角.∴(n-2)·180°<4·180°+(n-4)·90°∴n<8,取n=7.当n=7时,可以作4个170°的内角,其余3个内角分别为80°,80°,60°.试题24答案:如图34,取AB中点N,连接DN,MN.在Rt△ADB中,N是斜边AB上的中点,∠NDB=∠B,在△ABC中,M,N分别是BC,AB的中点.∴MN∥AC,∠NMB=∠C.又∠NDB是△NDM的外角,∴∠NDB=∠NMD+∠DNM.即∠B=∠NMD+∠DNM=∠C+∠DNM.又∠B=2∠C,∴∠DNM=∠C=∠NMD.又AB=10(厘米),∴DM=5(厘米).试题25答案:由已知,mnp=5(m+n+p).由于m,n,p均为质数,5(m+n+p)中含有因数5.∴m,n,p中一定有一个是5.不妨设m=5.则5np=5(5+n+p).即np=5+n+p.∴np-n-p+1=6即(n-1)(p-1)=6又n,p均为质数.。
希望杯第一届(1990年)初中二年级第一试试题 (2)希望杯第一届(1990年)初中二年级第二试试题 (6)希望杯第二届(1991年)初中二年级第一试试题 (10)希望杯第二届(1991年)初中二年级第二试试题 (17)希望杯第三届(1992年)初中二年级第一试试题 (23)希望杯第三届(1992年)初中二年级第二试试题 (28)希望杯第四届(1993年)初中二年级第一试试题 (37)希望杯第四届(1993年)初中二年级第二试试题 (45)希望杯第五届(1994年)初中二年级第一试试题 (53)希望杯第五届(1994年)初中二年级第二试试题 (60)希望杯第六届(1995年)初中二年级第一试试题 (69)希望杯第六届(1995年)初中二年级第二试试题 (71)希望杯第七届(1996年)初中二年级第一试试题 (78)希望杯第七届(1996年)初中二年级第二试试题 (86)希望杯第八届(1997年)初中二年级第一试试题 (97)希望杯第八届(1997年)初中二年级第二试试题 (105)希望杯第九届(1998年)初中二年级第一试试题 (115)希望杯第九届(1998年)初中二年级第二试试题 (118)希望杯第十届(1999年)初中二年级第一试试题 (129)希望杯第十届(1999年)初中二年级第二试试题 (133)希望杯第十一届(2000年)初中二年级第一试试题 (137)希望杯第十一届(2000年)初中二年级第二试试题 (140)希望杯第十二届(2001年)初中二年级第一试试题 (145)希望杯第十二届(2001年)初中二年级第二试试题 (150)希望杯第十三届(2002年)初中二年级第一试试题 (156)希望杯第十三届(2002年)初中二年级第二试试题 (158)希望杯第十四届(2003年)初中二年级第一试试题 (167)希望杯第十四届(2003年)初中二年级第二试试题 (169)希望杯第十五届(2004年)初中二年级第一试试题 (174)希望杯第十五届(2004年)初中二年级第二试试题 (177)第十六届“希望杯”全国数学邀请赛初一第1试 (180)第十六届“希望杯”全国数学邀请赛初一第2试 (184)第十六届“希望杯”全国数学邀请赛初二第1试 (188)第十六届“希望杯”全国数学邀请赛初二第2试 (192)希望杯第一届(1990年)初中二年级第一试试题一、选择题(每题1分,共10分)以下每个题目里列出的A ,B ,C ,D ,四个结论中,有且仅有一个是正确的,请你在括号内填上你认为是正确的那个结论的英文字母代号.1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°B .75°C .55°D .65°2.2的平方的平方根是 ( )A .2B . 2C .±2D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( )A .0B .a 0.C .a 1D .a 0-a 1 4. ΔABC,若AB=π27,则下列式子成立的是( )A .∠A >∠C >∠B B .∠C >∠B >∠AC .∠B >∠A >∠CD .∠C >∠A >∠B5.平面上有4条直线,它们的交点最多有( )A .4个B .5个C .6个D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式aa 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组C .4组D .5组9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值,则这个值是( )A .0.B .1.C .2D .4.把f 1990化简后,等于 ( )A .1-x x . B.1-x. C.x 1. D.x. 二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度.6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______.8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个.9.x ,y ,z 适合方程组 826532113533451x y z x z x y x y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC的度数是120度.5.∠COD度数的一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得: x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届(1990年)初中二年级第二试试题一、选择题(每题1分,共5分)以下每个题目里给出的A ,B ,C ,D 四个结论中,有且仅有一个是正确的.请你将正确结论的英文字母代号填到括号内.1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是( )A .7.5B .12C .4D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则有( )A .M >P >N 且M >Q >NB .N >P >M 且N >Q >MC .P >M >Q 且P >N >QD .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ]A .30°B .45°C .60°D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割( )A .是不存在的B .恰有一种C .有有限多种,但不只是一种D .有无穷多种二、填空题(每题1分,共5分)1.△ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2.21(2)0a ab --=,那么111(1)(1)(1990)(1990)ab a b a b ++++++L L 的值是_____.3.已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4.ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5.设a,b,c 是非零整数,那么a bcabacbc abca b c ab ac bc abc ++++++的值等于_________.三、解答题(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD和A'B'C'D',且正方形A'B'C'D'的顶点A'在正方形ABCD的中心.当正方形A'B'C'D'绕A'转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7). 而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n . 又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n .即 n 1=4,n 2=7∴ n 1×n 2=4×7=28.希望杯第二届(1991年)初中二年级第一试试题一、选择题(每题1分,共15分)以下每个题目的A ,B ,C ,D 四个结论中,仅有一个是正确的.请在括号内填上正确的那个结论的英文字母代号.1.如图24,已知AB=8,AP=5,OB=6,则OP 的长是( )A .2B .3C .4D .52.方程x 25x+6=0的两个根是( )A .1,6B .2,3C .2, 3D .1, 63.已知△ABC 是等腰三角形,则( )A .AB=ACB .AB=BCC .AB=AC 或AB=BCD .AB=AC 或AB=BC 或AC=BC 22345(13)41(5)34b c ---==-+,则a,b,c 的大小关系是( ) A .a >b >c B .a=b=c C .a=c >b D .a=b >c(1)BO5.若a ≠b,则(b-a)a b -等于[ ]A.33()a b -;B.33()a b ---;C.33()a b --;D.33()b a --6.已知x ,y 都是正整数,那么三边是x ,y 和10的三角形有( ) A .3个 B .4个 C .5个 D .无数多个 7.两条直线相交所成的各角中, ( )A .必有一个钝角B .必有一个锐角C .必有一个不是钝角D .必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角( )A .一个是锐角另一个是钝角B .都是钝角C .都是直角D .必有一个角是直角 9.方程x 2+|x|+1=0有( )个实数根.( )A .4B .2C .1D .010.一个两位数,用它的个位、十位上的两个数之和的3倍减去2,仍得原数,这个两位数是( )A .26B .28C .36D .3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是 ( )A .179B .181C .183D .185 12.如果231,x x >+那么323(2)(3)x x +-+等于[ ]A .2x+5B .2x5 C .1D .113.方程2x 5+x 4-20x 3-10x 2+2x+1=0有一个实数根是 ( ) A.53+; B.52+; C.32+; D.53-14.当a <1时,方程(a 3+1)x 2+(a 2+1)x (a+1)=0的根的情况是 ( ) A .两负根 B .一正根、一负根且负根的绝对值大 C .一正根、一负根且负根的绝对值小 D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则( )到达N 地.( )A . 二人同时B .甲先C .乙先D .若a >b 时,甲先到达,若a <b 时,乙先二、填空题(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度.2.有理化分母:5757-+=______________.3.方程10x x ++=的解是x=________.4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 29)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2y 2=1991有______个整数解.8.当m______时,方程(m 1)x 2+2mx+m 3=0有两个实数根.9.如图25,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.DCBAGEDCFEDCBA10.如图26,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出______条.11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于______度.12.如图27,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______. 14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q 为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2. ∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题(每题1分,共10分)以下每个题目里给出的A ,B ,C ,D 四个结论中,有且仅有一个是正确的.请你在括号内填上你认为是正确的那个结论的英文字母代号.1.如图29,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 为线段AC 的中点,P 为NA 的中点,Q 为MA 的中点,则MN ∶PQ 等于( ) A .1 B .2 C .3 D .42.两个正数m ,n 的比是t(t >1).若m+n=s ,则m ,n 中较小的数可以表示为 ( ) A.ts; Bs-ts; C.1ts s +; D.1s t+. 3.y>0时,3x y -等于( )A.-x xy ;B.x xy ;C.-x xy -;D.x xy -.4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成 ( )A .a <b <cB .(a b)2+(b c)2=0C .c <a <bD .a=b ≠c5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍 B .3倍 C .2倍 D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( )A .AD 2=BD 2+CD 2B .AD 2>BD 2+CD 2C .2AD 2=BD 2+CD 2 D .2AD 2>BD 2+CD 2( ) 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3 C .2 D .18.能使分式33x y y x-的值为1123的x 2、y 2的值是( ) A.x 2=1+3,y 2=2+3; B. x 2=2+3,y 2=2-3; C. x 2=7+43,y 2=7-43; D. x 2=1+23,y 2=2-3.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为( )A .17B .15C .13D .11 10.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×199119911991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________.5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab≠1.且 2a2+1234567890a+3=0,3b2+1234567890b+2=0,则a=______.b三、解答题(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
第七届“枫叶新希望杯”全国数学大赛八年级试题(B 卷)一、单选题1.关于x 的不等式52x m -≤的解集如图所示,则m 的值是( ).A .3B .3-C .0D .22.若2310x x -+=,则22x x -+的值是( ).A .9B .7C .11D .以上答案均不对 3.如图,ABC V 是等边三角形,点DE 、分别是AC 、AB 边上的点,CD AE =,BD 、CE 交于点P ,则BPC ∠等于( )A .135°B .150°C .120°D .130°4.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >- 5.在ABC V 中,30 ABC ∠=︒,边10AB =,边AC 可以取值4,5,7,9,11之一,满足这些条件且互不全等的三角形的个数是( ).A .6个B .7个C .8个D .非以上答案 6.把2161x +加上一个单项式,使其成为一个完全平方式,在下列单项式:428,64,8,1,2,16x x x x x ---中,符合条件的有( ).A .4个B .5个C .6个D .3个7.将正方形ABCD 刚好分成n 个小正方形,则n 不可能取的数值是( ).A .5B .6C .7D .11 8.设201120112011201211112212221m =++++++-L ,则m 所在的范围是( ).A .34m <<B .23m <<C .12m <<D .01m <<二、填空题9.10.分解因式:3234y y -+=.11.已知a b a c b c k c b a+++===,则 k 的值是 . 12.如图,直线l 垂直于x 轴,垂足点F 的坐标为(2,0),已知点(1,0)A -,点(0,4)B -,点P 是直线l 上一点,当APB △的周长最小时,点P 的坐标为.13.已知226210m n m n +=+-.14.如图,在ABC V 中,120AB AC A =∠=︒,,DE ,GF 分别是AB ,AC 的中垂线,30cm BC =,则EG =cm .15.已知a ,b ,c 是非负数,且满足2410010a b c a b c ++-=-+-=,,设32y a b c =++,则y 的最小值为.16=.三、解答题17x ,y ,a 的值.18.为改善经营方式,促进销售额的增长,同时增加盈利,某茶商将原来售价a 元/千克的甲种茶叶x 千克和原来售价b 元/千克的乙种茶叶y 千克混合,取名“春蕊绿茶”,售价定为S 元/千克,结果很快销售一空,经核算,茶商发现比原来赚得更多,请你求出S 的取值范围.若80500100300a x b y ====,,,,制成“春蕊绿茶”后要比原来多赚2000元.求S 的值. 19.如图,ABC V ,DAE V 都是等边三角形,连接BD ,CE ,点M ,N 分别是BD ,CE 的中点,连接MN ,AM ,AN .请你判断MAN △的形状,并证明你的结论.20.(1)填空:(1)(1)x x -+=__________.()2(1)1x x x -++=__________.()32(1)1x x x x -+++=__________.……(2)猜想:()1(1)1n n x x x x --++++=L _________(n 为很大的正整数).(3)证明(2)中的猜想.(4)利用你发现的规律计算:()()10002032011201050275122212222-⎛⎫+++++⋅÷-⋅- ⎪⎝⎭L .。
八年级试题(A 卷)(时间:120分钟、选择题(每小题4分,共32分)满分:120分)1. 若 A , m 2 2015 4A.(m 2+2015)42. 已知等腰三角形的两边长分别为 a 、b ,,则A 的算术平方根是(B.(m 2+2015)2 C .m 2+2015D.m+2015 且3a b 16. a 3b 24 0,则此三角形的周长 是( )A.13B.17C.13 或 173. 将一副三角板如下图叠放在一起,则/ A.105° B.11004. 如图,在3X 4的正方形网格中,已有 D.14 或 1的度数是(C.1150 3个方格涂色, 16 个涂色的方格组成轴对称图形,可选择的方格共有( C.3个) D.1200 若再选择一个方格涂色,且使得 4 ) D.4个5.某超市购进50千克的散装糖果,决定包装后出售,方式一: 1千克/盒,包装盒成本1元/个.根据需要 装完,那么包装盒的总成本最低是(A.43.4 元B.43.1 元C.42.8 元D.42.5 元A.6B.3 3C.4,2D.3-2二、填空题:(每小题5分,共40分)9•化简:(x 2015)2 (x 2015)2 ______________________ .10. 已知正n边形的一个内角是一个外角的5倍,贝U n= ___________.11. 如图,△ ABC是格点三角形,点D是异于点A的一个格点,则使△ DBC和厶ABC全等的D点共有_________ 个.1007 2015 100813. 如图,等边三角形的边长为1,现将其各边n(n >2)等分,并以相邻分点为顶点向外作小等边三角形,再将相邻分点之间的线段去掉,得到一个锯齿图形,当n=k时,锯齿图形的周长为_____________ .(用含k的代数式表示)14. 将1、2、3、4、5这五个数排成一列,要求第一个数和最后一个数都是偶数,且其中任意三个相邻的数之和都能被这三个数中的第一个数整除,这样的排列方法共有_____________ 种.15. 对于实数m、n,定义运算m探n=m(1- n),下面是关于这种运算的几个结论:①2探3=-4;②若m探n=0,«=4 »=5则n=0;③m探n= (1-n)探(1-m);④若m+n=1,则(口※n) -(n※门)=0.其中正确的是_________________ .16. 如图,已知点A(1, 1),点B ( 7,3),点P为x轴上一个动点,当PA+PB的值最小时,点P的坐标为10+12+12+14=48 分)三、解答题(17.若x y9,xy 2,求(2x 3)(2y 3)的值. 218. 如图,△ ABC为等边三角形,点D是BC延长线上一点,且CD< BC, BD的垂直平分线交AC于E,过点E 作EF// BC交AB于F.(1 )求证:△ AEF为等边三角形;AE(2 )若BC=3CD求的值.EC19. 某数学俱乐部组织60名会员租车进行自驾游,共有两种车型可供选择,A型车共有8个座位,B型车有4个座位,要求租用的车不能空座,也不能超载(1 )共有多少种不同的租车方案?(2)若A型车的租金是400元/天,B型车的租金是260元/天,请设计最划算的租车方案,并说明理由20. 已知:直角三角形斜边上的中线等于斜边的一半,如图1,在厶ABC中,/ CAB=90°, D是BC的中点,连接AD,贝U AD=CD=BD.(1)如图2,过点D作DE丄AB于E,以E为边作等边三角形AEF,以DF为边作等边三角形DFG,连接AG,求证:AG平分/ FAB.(2)如图3,过点C作CH丄AF于H,连接DH,求证:DH=FG.12345678C B AD B C D A10 1/2910111213141516-8060X12310086K 6K6①③④2。
(第10题图)
C
D
C
“新希望杯”第七届全国青少年数学大赛
八年级试题(A 卷)
(时间:120分钟 满分:120分)
一、选择题(每题5分,共30分)
1.已知:m 75是整数,则满足条件的最小正整数m =( ) A .5 B .0 C .3 D .75 2.如果对于任何实数,分式m
x x ++-372
总有意义,则m 的取值范围是( )
A .m >4
9-
B .m <4
9-
C .m >0
D .非以上答案
3.已知正方形ABCD ,在平面上找一点P ,使△PAB ,△PBC , △PCD ,△PAD 都是等腰三角形,则这样的点P 可找( )。
A .1
B .5
C .9
D .10
4.已知ab 十5=0,a -b =5,则a 十b 的值是( )。
A .5 B .0 C .2 D .非以上答案
5.如图,等边△ABC 中,BD =CE ,AD 与BE 交于P ,AQ ⊥BE ,
垂足为Q ,PD =2,PQ =6,则BE 的长为( ). A .14 B .13 C .12 D .无法求出
6.小华到学校超市买铅笔11支,作业本5个,笔芯2支,共花
12.5元;小刚在这家超市买同样的铅笔10支,同样的作业本 4个,同样的笔芯1支,共花10元钱.若买这样的铅笔1支、作
业本1个,笔芯1支共需( )元.
A .3元
B .2.5元
C .2元
D .无法求出 二、填空题(每题5分,共30分)
7.若A(m ,5)与B(一6,一n )关于x 轴对称,则2011
)
(n m += 。
8.若)1)(1(12
2
3
---=++x x ax bx ax ,则b = 。
9.若f ex dx cx bx ax x +++++=+2
3
4
5
5
)12(,则a +c +e 10.如图,△ABC 中,AB =8,AC =3,AD 是中线,设AD =x 则x 的取值范围是 。
11.若a ,b 均为质数,且a 10
+b =1027,则10a +3b = 。
12.若方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解为⎩⎨⎧==43
y x 则方程组⎩⎨⎧=+=+2
22111523523c y b x a c y b x a 的解是 。
三、解答题(每题15分,共60分)
13.证明n (n +1)(n +2)(n +3) (n +4)是一个完全平方数(n 为正整数)。
14.已知A ,C ,B 在同一条直线上,△ACE ,△BCF 都是等边三角形,BE 交CF 于N ,AF
交CE 于M ,MG ⊥CN ,垂足为G 。
求证:CG ⊥NG 。
B
15.如图,河岸上L 1∥L 2,位置A 位于L 1上,位置B 位于L 2上, A 、B 的水平距离为120米,垂直距离为30米.小刚要从A 游泳过河再步行到B 。
已知步行速度是游泳速度的2倍.八 年级的小刚学以致用,先设计了如下甲、乙、丙三个方案,你 认为哪个方案费时最少?
说明理由.(只考虑游泳和步行时间,其它时间忽略不计,以下数据供选用:2≈1.414,3≈
1.732
,
1800≈42.42,300≈17.32)
方案甲:A →C →B 方案乙:A →D →B 方案丙:A →E →B
16.把一张纸片剪成7块,再从所得的纸片中任取若干块,每块又剪成7块,像这样地剪 下去,请问:能否剪出2010块?2011块?。