怎样提高变压器抗短路能力
- 格式:docx
- 大小:31.48 KB
- 文档页数:2
高电力系统中变压器抗短路能力的方法变压器是电力系统中重要的电力设备之一,承担着电能的转换和输送任务。
在高电力系统中,变压器的抗短路能力非常重要,因为短路故障对电力系统的稳定运行和设备的安全运行都会产生严重影响。
本文将从变压器自身结构和设计、保护装置和操作措施等几个方面,介绍提高变压器抗短路能力的方法。
一、变压器结构和设计1. 选用适当的变压器类型根据电力系统的需求和短路电流的大小,选择合适的变压器类型。
常见的变压器类型有干式变压器、油浸式变压器和干变油浸式变压器等。
不同类型的变压器具有不同的绝缘结构和冷却方式,对短路电流的承受能力也不同。
2. 采用适当的绕组结构采用合理的绕组结构,可以提高变压器的抗短路能力。
如采用低电阻率材料制作绕组,增加有效的导体截面积,降低绕组电阻;采用多股绕组,增加短路电流的分流路径,降低绕组的瞬态温升。
此外,绕组之间的绝缘层也需要设计合理,以防止绕组间的短路故障。
3. 提高绝缘水平提高变压器的绝缘水平,可以增强其抗短路能力。
首先,选择适当的绝缘材料,如采用高强度、高绝缘性能的绝缘材料;其次,设计合理的绝缘结构,如增大绝缘间隙,增加绝缘层数等;最后,加强绝缘表面的处理,如使用绝缘油浸润等。
二、保护装置1. 差动保护差动保护是最常用的变压器保护装置之一,可以有效地检测和切除变压器内部的短路故障。
差动保护的原理是通过比较主绕组和副绕组的电流差值,当电流差超过设定值时,差动保护动作。
差动保护具有快速、准确的特点,可以有效地保护变压器不受短路故障的影响。
2. 过电流保护过电流保护是变压器的常规保护装置之一,可以检测变压器内部和外部的短路故障。
过电流保护的原理是通过电流互感器检测电流的大小,当电流超过设定值时,过电流保护动作。
过电流保护可以根据短路电流的大小和持续时间,设定不同的保护动作方式,如熔断器保护、短路时间限制保护等。
3. 电压保护电压保护是变压器的重要保护装置之一,可以检测变压器的电压异常,如过高或过低。
电力系统中变压器抗短路能力提高的措施分析摘要:短路故障是在电力系统变压器运行过程中是很常见的。
其会导致电力系统中的部分电力设备无法正常运行。
应从变压器的设计工作、短路试验工作出发,加强变压器现场施工管理及后期运行维护的力度,保证电力系统稳定运行。
关键词:电力系统;变压器;抗短路;能力提高;措施分析引言为了加强对于变压器类产品的中标供应商的质量管控,促进变压器产品的质量提升,国家电网公司近年来多次组织对于变压器类产品的专项抽检工作,监督并提高待入网变压器的产品质量,以保障电网的安全稳定运行。
通过近年来大量的抽检变压器的检验工作,发现其短路承受能力试验的通过率远低于其他试验项目,变压器的抗突发短路水平已成为检验其质量好坏的关键因素。
1.电力变压器简述电力变压器依托电力电子技术发挥作用,可完成工频信号和高频信号间的转换,实现升频和降频的目的,工作人员需根据实际情况,从铁芯材质磁通密度、铁芯绕组温度允许范围对中间隔离变压器体积产生的影响出发,选用对应的方案来控制变压器频率、电压及波形等,以保证其运行效果。
2.突发短路故障变压器接入电源后,在绕组及其周围空间产生漏磁,不仅有轴向漏磁,而且有径向漏磁场分布。
在这个漏磁场中,配电变压器的高压和低压绕组将受到相应的感应力作用,即产生绕组的电动力。
当变压器额定运行时,绕组短路电动力在合理的数值区间内;当变压器发生突发短路故障时,绕组内产生的瞬时最大短路电流将达到额定运行时的数十倍,过电流将产生巨大的短路电动力。
这些电动力作用于变压器绕组,并传递到其他结构部件上,极易使绕组发生形变,甚至崩坏。
同时,巨大的短路电流将对导线产生热效应,使得绕组中导线急剧升温发热,损伤绝缘,破坏绝缘电气性能,影响变压器的正常使用寿命。
配电变压器的绕组所能承受的短路电动力是有一定的限度的,短路电动力与短路故障下的短路电流大小密切相关。
当绕组处于突发短路故障状态时,绕组的电磁力远大于正常运行状态下的电磁力,极易损坏变压器。
试论电力系统中变压器抗短路能力提高的办法摘要:人们对科技的需求随着时代的发展和科学技术水平的提升而不断提升,在电力高需求社会,电力建设对提高生活质量有很大的关系。
为解决电厂变压器短路事故,分析电厂变压器短路故障的原因,同时提出一系列故障解决措施。
并且就存在的故障解决措施中需要注意的因素详细分析,让电厂变压器短路故障处理人员在处理故障时有一定的理论参考依据。
及时有效处理变压器短路故障从而保障电厂变压器的安全运行具有现实的意义。
关键词:变压器;短路;办法引言近年来,电网系统在网运行的变压器因外部短路故障导致的恶性事故屡有发生,原因之一是变压器制造厂早些年因技术、材料及工艺等因素的限制,造成变压器自身的抗短路能力不足,无法承受短路机械力的作用,导致绕组变形、崩溃甚至烧毁。
变压器承受短路能力不足已成为危及电网安全运行最主要的因素之一。
变压器抗短路能力校核工作一般是在变压器制造厂进行,主要校核变压器是否满足设计时国标规定的抗短路能力要求。
目前电网在运的老旧变压器较多,若采用现行的GB1094.5-2008《电力变压器第5部分:承受短路的能力》标准,很多变压器抗短路能力难以满足国标要求,不利于抗短路能力不足变压器改造更换工作的有序推进。
1变压器及其稳定运行的重要性电力能源是当前社会中使用最为广泛的能源之一,工业生产、居民生活等活动中电力能源都起到非常关键的作用。
电厂是专门负责电力分配和传输的工作单位,是电力使用的中间站,在电力能源生产和使用环节起到至关重要的作用。
当前电厂运行中,变压器是非常重要的电力设备。
变压器的主要工作是完成电力升降压转换,将高压电力能源转化为各级低压电力能源之后,分配给各级电力资源使用用户,也可以将升高电压进行电力传输。
在变压器运行过程中使用的是电磁感应原理。
变压器按照不同的电力用途可以分为升压变压器、降压变压器和联络变压器三种形式,也可以根据绝缘介质进行分类,包括油浸变压器、干式变压以及10kVSF6气体绝缘变压器三种。
如何有效提高变压器抗短路能力变压器是电力系统中重要的电力设备之一,在电力系统中发挥着功率变换和电力传输的作用。
但是,在变压器实际应用中,由于各种因素,会出现变压器短路的情况,特别是在高压侧短路容易发生。
这时,如何提高变压器的抗短路能力,是保障电力系统安全运行的重要环节。
本文主要介绍了如何有效提高变压器抗短路能力。
一、提高绕组电气强度绕组的电气强度一般指变压器中的绝缘强度、空气间隙和介质损耗等电气性能,现场运行经验表明,提高绕组的电气强度可以显著提高变压器的抗短路能力。
在制造变压器时,增加变压器绕组的电气强度是提高变压器短路能力的有效方法。
一般来说,绕组电气强度与线与线之间的最小间距有关,提高线与线之间的最小间距,可增加绕组的电气强度,提高变压器的抗短路能力。
二、提高冷却系统的冷却能力变压器的短路能力与变压器的冷却系统密切相关,过热会导致绝缘层老化,降低绝缘强度,从而降低变压器的抗短路能力。
因此,提高变压器的冷却能力可以显著提高变压器的抗短路能力。
目前,变压器的冷却方式主要包括自然冷却和强制油循环冷却两种形式,采用强制油循环冷却可以显著提高变压器的冷却能力。
三、提高变压器的机械强度变压器的机械强度一般是指变压器沿变压器装载方向的承受能力。
随着用电设备数量的不断增长,变压器的装载电流也越来越大,变压器的机械强度需要不断提高,才能满足电力系统的需要。
在变压器制造的过程中,增加变压器机械强度的方法可以采用增加变压器铁芯的厚度、增加变压器绕组的宽度等方法,从而增加变压器的机械强度,提高变压器的抗短路能力。
四、采用低电阻高导电性的材料高导电材料对电流有更好的传导性质,低电阻的物质也有助于电流的流动,在工程实践中可以通过采取低电阻、高导电性的专用材料来提高变压器的短路能力。
铜线塑封成型、铜条穿孔装配和银质接触片是能够有效提高变压器抗短路能力的材料。
五、提高绝缘质量变压器的绝缘系统将绕组和绝缘物质置于同一电源中,依靠绝缘物质隔离两者防止漏电,因此提高变压器的绝缘质量也能提高变压器的抗短路能力。
高电力系统中变压器抗短路能力的方法变压器是电力系统中的重要设备,而抗短路能力是评价变压器性能的重要指标之一。
变压器的抗短路能力直接影响着电力系统的安全稳定运行。
下面将介绍几种提高变压器抗短路能力的方法。
1. 增强绝缘能力:绝缘是变压器抗短路能力的基础。
通过采用高绝缘材料和改进绝缘结构,可以提高变压器的绝缘能力,从而增强抗短路能力。
2. 提高短路电流容量:短路电流是变压器短路故障的直接原因,对变压器的短路故障处理能力有着重要影响。
为了提高变压器的短路电流容量,可以采取以下措施:
- 采用低电阻材料:低电阻材料能够降低电流通过的阻抗,从而提高短路电流容量。
- 增大铜箔截面积:增大铜箔截面积可以降低电流通过的阻抗,提高短路电流容量。
- 增加短路电压:增加短路电压可以提高短路电流容量。
3. 优化绕组设计:绕组是变压器的重要组成部分,其设计合理与否直接影响着变压器的抗短路能力。
通过合理设计绕组的截面积、绕组结构和绕组间隔等参数,可以提高绕组的抗短路能力。
4. 使用冷却装置:短路故障会导致变压器发热,进而影响变压器的抗短路能力。
通过安装冷却装置,可以及时散热,降低变压器温升,提高抗短路能力。
5. 采用适当的维护与检修措施:及时发现和排除变压器的隐患,做好变压器的维护与检修工作,可以保障变压器的正常运行和抗短路能力。
总结起来,提高变压器抗短路能力的方法主要有:增强绝缘能力、提高短路电流容量、优化绕组设计、使用冷却装置和采用适当的维护与检修措施。
通过采取这些措施,可以有效提高变压器的抗短路能力,保障电力系统的安全稳定运行。
提高变压器抵抗短路能力的措施摘要:为了提高变压器抗短路能力,必须及时进行短路引发故障的原因分析。
及时找到变压器设备损坏原因,指出存在问题。
本文从变压器短路损坏现象出发,进行了变压器结构、工艺和试验环节需考虑的问题,从运行维护角度提出了应对措施。
旨在提高变压器抗突发短路的能力。
关键词:变压器;抵抗短路;措施分析引言现今,中国在电力方面的进步非常大,中国经济的快速发展也使得社会提高了电力系统的标准,需要更好的供电方式来满足。
就现在正在使用的变压器的情况看,还有很多问题需要解决,其中之一就是短路问题,这一问题给电力系统正常供电的平稳及安全带来障碍。
所以,如何解决好变压器的短路问题显得十分有必要。
1.变压器短路原因的分析通过对损坏变压器维修,分析变压器出口短路导致变压器内部故障和事故造成变压器抗短路能力差有以下几个方面。
1.1结构设计不合理第一、分接段设计不合理。
目前变压器内主绕组中带分接尽管给运行带来很大方便,但分接引线端部引出会造成端部电场分布不均匀,导致局部增大,同时横向不平衡安匝漏磁增加,使变压器动稳定性降低。
第二、绕组结构设计不合理。
绕组设计时未采用硬纸筒绕制结构;主绕组带调压绕组的绕组结构,高低压安匝不平衡,调压绕组对应部分的低压绕组也容易变形;斜口螺旋式绕组两端不平衡安匝大,漏磁严重,变形也严重;采用普通换位导线时,机械强度较差,在承受短路机构力时易出现变形、散股、露铜现象。
第三、原材料选用不合理。
变压器绕制上采用的原材料不当,即使用软导线。
由于变压器结构设计,原材料采用的不合理造成变压器抗短路能力差的主要原因。
1.2制造工艺不良第一、绝缘垫块不进行预处理。
因绝缘垫块的收缩现象严重,冲剪下来的绝缘垫块边缘锋利,短路时锋利的边缘易挫伤导线绝缘,造成匝间短路。
第二、绕组绕制不紧。
绕组绕制时,导线的张紧力不够,造成绕组绕制较松,造成导线悬空。
第三、绕组套装间隙过大。
导线绕组内支撑不够,造成三相内外绕组中心不一致,三相频谱偏差严重。
轨道交通干式变压器抗短路能力提高措施经研究,变压器在发生短路时主要产生两方面作用力:辐向力和轴向力。
内绕组承受压力,外绕组承受拉力,绕组各部分所受到的电动力的大小不仅与短路发生时刻,系统容量大小,短路地点远近等密切相关,且是一个复杂的动态过程,而变压器各部耐受短路的能力与设计、结构、工艺等因素有关。
为此,我们主要采取主要采取以下措施,以提高变压器产品抗短路能力:一.变压器设计、结构因素:1.变压器高压线圈采用玻璃纤维和环氧树脂作为绝缘材料,玻璃纤维经环氧树脂浸渍固化后,不仅能增加电气强度,更能提高变压器抗短路冲击强度。
经研究测试,环氧树脂混合料经固化成形后,其弯曲、压缩强度均能达到150MPA以上。
2.变压器低压线圈采用专用的箔式卷绕机绕制,采用DMD 纸绕制后经烘焙固化成形。
对于大电流的变压器,低压线圈设有风道,风道上撑条布置均匀,在最大限度降低线圈变形的同时,提高了变压器绕组抗冲击能力。
3.变压器低压线圈与铁心间采用3240环氧板作撑条,按45°方向撑实,防止低压绕组产生位移,保证了线圈的同心度,使铁心与线圈连成一个整体。
4.变压器垫块采用玻璃纤维填充、环氧树脂压力凝胶、钢板预埋式垫块。
在变压器压紧垫块(上垫块)上表面里,预埋了钢板,通过变压器夹件上的独立压紧螺丝,对绕组进行逐一压紧,保证了绕组、铁心间的磁中心一致,使短路电动力降到最低。
5.变压器设计采用动态力计算考核产品的动热稳定性;高、低压线圈独立设定,调整轴向安匝的不平衡度,使之控制在5%以内。
同时,变压器绕组间采用T2Y作为引线,其延伸率大于30%,抗拉强度达200MPa,具有良好的导电率和抗冲击强度,为变压器正常运行提供了有力的保障。
二.工艺因素:1.绕制过程中,线圈的紧凑性是考验变压器承受短路能力的重要因素之一。
高压线圈绕制时,采用导线张紧装置作为放线架,根据导线截面的大小来调节导线的拉力辐向、轴向更紧凑,线圈相关尺寸得到保证,变压器抗短路能力得到提高。
浅议电力系统中变压器抗短路能力提高的措施一、电力变器概述电力变压主要是采用电力电子术实现的,其基本原为在原方将工频信号通过电力子电路转化为高频信号,即频,然后通过中间高频离变压器耦合到副方,再还原工频信号,即降频。
通采用适当的控制方案来控电力电子装置的工作,从而一种频率、电压、波形的电变换为另一种频率、电压波形的电能。
由于中间隔离变器的体积取决于铁芯材的饱和磁通密度以及铁芯和绕组最大允许温升,而饱磁通密度与工作频率成反比这样提高其工作频率就可提高铁的利用率,从而减小变压器的体积提高其整体效率。
二、提高电变压器抗短路能力措施变压器的安全、可靠运行与出力取决于本身的制造质量和运以及检修质量。
本章图回答在变压器运维护过程中,有效变压器发性故障的措施。
电网经常由于雷、继电保护误动或拒动等造短路,短路电流的强大冲击可使变压器受损,所以应从各方努力提高变压器的受短路能力。
变压器短路冲击事故结果表明,制造原因引起的占80%左右,而运行、维原因引起的仅占10%左右。
有关设计制造方面的措施在第二章已有述,本章着重就运行维护过程中应取的措施加以说明。
运行维护过程,一方面应尽量减少短路故障从而减少变压器所冲击的次数;另一方面应时测试变压器绕组的变,防患于未然。
(一)规范计,重视线圈制造的轴压紧工艺。
制造厂家设计时,除要考虑变压器低损耗,提高绝缘水平外,还要虑到提高变压器的强度和抗路故障能力。
在制造工艺方面,由很多变压器都采用绝缘压板,且高低压线圈共一个压板,这种结构要要有很高的制造工水平,应对垫块进行密化处,在线圈加工好后还要对单个线圈行恒压干燥,并测量出线圈压缩后高度;同一压板的各个线圈经上述工艺处理后,再调整到一高度,并在总装时油压装置对线圈施加规定压力,最终达到设计和工艺要的高度。
在总装配,除了要注意高压线圈的紧情况外,还要特别注意低压线压紧情况的控制。
(二)对变压器进行短路验,以防患于未然。
大型变器的运行可靠性,首先取于其结构和制造工艺水,其次是在运行过程中对设进行各种试验,及时掌握备的工况。
在电力系统中,变压器具有重要的地位,作为电力系统的中转站,其性能好坏直接影响到电能的分配和传输质量。
可以说,变压器是整个电力系统的核心元件,其运行状况关系到整个电力系统的供电质量以及运行的安全状况。
电力变压器设备状况决定了其运行的可靠性,结构材料以及设计制造都会对设备状况造成影响,设备的检修也是影响因素之一。
本文便针对当前电力系统中有关变压器在运行过程中对于短路故障的抵抗能力进行详细分析,从而对提高电力系统稳定性提出一些意见和建议。
一、概述
变压器作为当前电路系统中的重要结构部件,其对于短路电流的承受能力会直接影响到电路整体的运行状态,而短路电流承受能力直接受到其结构以及制造工艺影响,另外在设备的运行过程中的管理条件和运行条件也会对其抗短路电流能力造成影响。
电网在运行的过程中,变压器若出现短路事故会极大威胁电网安全,因此必须从多方面考虑对事故的发生予以避免,应当通过多方控制措施,用以保证变压器运行安全,确保电网运行的稳定。
二、提高变压器抗短路能力措施
变压器在运行过程中能最大程度的发挥其作用,并保证电网的安全稳定,最重要的是其运行环境是否适宜,制造质量是否合格以及日常检修是否到位。
文章主要针对设备在日常维护过程中,如何预防突发故障提出了几点建议。
由于受到雷击以及继电保护拒动、误动等影响,电路会发生短路故障,而短路产生的电流冲击对于电路会造成严重的损害,致使变压器受损,因此必须从各方面加强变压器对于短路电流冲击的抗性。
1注重设计
在变压器中,线圈是极为重要的结构,因而厂家在进行设计的过程中除了重视线圈的绝缘性外,还会考虑设备的损耗问题,另外抗短路能力以及机械强度也是制造过程中需要重点考虑的问题。
在变压器的制造中,应当将线圈的制造放在重点位置,注重轴向压紧工艺。
很多变压器的结构中都有绝缘压板,并且压板为高压和低压线圈共用,这种结构就对制造水平提出了较高的要求,垫块应当经过密化处理后才能被应用在变压器中,并且加工过程中,对于加工好的线圈还要进行单个的恒压干燥处理,同时将压缩后的线圈高度测量出来并记录;经过处理后的线圈需要将高度进行调整,保持一致,并使用油压装置在总装过程中在线圈上施加规定压力,保证线圈的工艺以及设计都能够符合高度的标准要求。
除了高压线圈压紧问题外,在装备设备的过程中还需要对低压线圈的压紧进行把握。
通过撑条数目的方式或者通过使用一些纸筒作为骨架,增加铁心同内线圈之间的支撑,提高线圈径向稳定性。
2短路试验的必要性
大型变压器在运行过程中是否可靠安全,主要受到其制造工艺以及设计结构的影响。
因此,在运行过程中对变压器的各类试验也是十分必要的,通过实验可以准确的掌握设备状况,及时的了解设备的稳定性。
通过对设备进行短路试验,对其存在的薄弱环节予以改进,从而对设备的结构强度予以准确掌握。
通过短路试验,针对性的找出变压器设备中的薄弱点,并针对薄弱部位产生的原因进行分析,制定出相关方案对变压器进行改进,从而有效提高变压
器的抗短路能力,从根本上对其性能进行改变。
3保证电路保护系统的安全可靠性
电网在运行过程中,最怕的便是短路事故,因此人们会极力排除隐患,避免该类事故的发生。
尤其是针对10kV线路,需要避免由于外力破坏、操作失误和小动物等引发的短路事故,另外,用户使用不当也是造成电路发生短路的原因,因而用户也是造成变压器受到短路电流冲击的因素之一。
因此,对于已经正在使用的变压器,针对使用电源应当提供可靠的保护系统,同时也要保证该保护系统能够发挥保护作用。
目前所使用的变压器对外部短路的抗性都较差,而系统在短路挑战后会出现自动合闸以及强行投运的现象,因此必须针对该类不利因素进行分析,否则,会严重损毁变压器,甚至会令设备无法修复。
依照故障自动消除率,一些运行部门针对电缆线路或者架空线等重合闸予以取消使用,或者对合闸间隔适当的予以延长,以此将重合闸对于电路的危害降至最低,同时还需要针对变压器的跳闸功能予以检查。
此外,对于已经有些损毁的变压设备应当对电力倍数以及相关参数进行记录。
4变形测试诊断的开展
通常变压器在遭受短路故障电流冲击后,绕组将发生局部变形,即使没有立即损坏,也有可能留下严重的故障隐患。
首先,绝缘距离将发生改变,固体绝缘受到损伤,导致局部放电发生。
当遇到雷电过电压作用时便有可能发生匝间、饼间击穿,导致突发性绝缘事故,甚至在正常运行电压下,因局部放电的长期作用也可能引发绝缘击穿事故。
其次,绕组机械性能下降,当再次遭受短路事故时,将承受不住巨大的电动力作用而发生损坏事故。
由于变压器绕组变形测试仪价格昂贵,且对人员的素质要求高,在生产运行中不易普遍开展。
5加强现场施工和运行维护中的检查,使用可靠的短路保护系统
现场进行变压器的安装时,必须严格按照厂家说明和规范要求进行施工,严把质量关,对发现的隐患必须采取相应措施加以消除。
运行维护人员应加强变压器的检查和维护保修管理工作,以保证变压器处于良好的运行状况,并采取相应措施,降低出口和近区短路故障的几率。
为尽量避免系统的短路故障,对于己投运的变压器,首先配备可靠的供保护系统使用的直流系统,以保证保护动作的正确性;其次,应尽量对因短路跳闸的变压器进行试验检查,可用频率响应法测试技术测量变压器受到短路跳闸冲击后的状况,根据测试结果有目的地进行吊罩检查,这样就可有效地避免重大事故的发生。
结语
如何提高变压器的性能一直是电力部门工作人员研究的重点,变压器作为整个电网系统中最重要的中转站,起到了稳定电路,保证电网安全的作用。
抗短路电流性能是变压器的基本性能,但是目前仍旧存在诸多的问题需要进一步改善,电力部门工作人员任重道远。