2010年北京房山区一模数学试题
- 格式:doc
- 大小:581.00 KB
- 文档页数:16
北京市房山区中考数学一模试卷数学(考试时间共100分钟,满分120分)准考证号:__________ 姓名:________ 座位号:___________{请同学们保持良好的心态,认真审真,认真答题,切不可马虎应付}一、选择题(本题共30分,每小题3分)1.(3分)(2015•房山区一模)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D2.(3分)(2015•房山区一模)据海关统计,前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A. 3.79×102 B. 0.379×105 C. 3.79×104 D. 379×1023.(3分)(2014•汕头)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.4.(3分)(2015•房山区一模)如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A. 20° B. 25° C. 30° D. 40°5.(3分)(2015•房山区一模)右图是某几何体的三视图,该几何体是()A.圆柱 B.正方体 C.圆锥 D.长方体6.(3分)(2015•柳江县二模)某地为了缓解旱情进行了一场人工降雨,现测得6个面积相等区域的降雨量如下表所示:区域 1 2 3 4 5 6降雨量(mm) 14 12 13 13 17 15则这6个区域降雨量的众数和平均数分别为()A. 13,13.8 B. 14,15 C. 13,14 D. 14,14.57.(3分)(2015•房山区一模)小强骑自行车去郊游,9时出发,15时返回.右图表示他距家的距离y(千米)与相应的时刻x(时)之间的函数关系的图象.根据这个图象,小强14时距家的距离是()A. 13 B. 14 C. 15 D. 168.(3分)(2015•房山区一模)如图,AB是⊙O的直径,C、D是圆上两点,∠BOC=70°,则∠D等于()A. 25° B. 35° C. 55° D. 70°9.(3分)(2015•鱼峰区二模)如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,那么,旗杆AB的高度是()A.(+8)M B.(8+8)M C.(8+)M D.(8+)M10.(3分)(2015•房山区一模)如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(﹣2,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A. B. C. D.二、填空题(本题共18分,每小题3分)11.(3分)(2014•本溪)因式分解:a3﹣4a= .12.(3分)(2015•房山区一模)把代数式x2﹣4x+1化成(x﹣h)2+k的形式,其结果是.13.(3分)(2015•房山区一模)请写出一个y随x的增大而增大的反比例函数的表达式:.14.(3分)(2015•房山区一模)甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是,,那么甲、乙两人成绩较为稳定的是.15.(3分)(2015•房山区一模)随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段 0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是元.16.(3分)(2015•房山区一模)如图,在平面直角坐标系中放置了5个正方形,点B1(0,2)在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3.则点A1到x轴的距离是,点A2到x轴的距离是,点A3到x轴的距离是.三、解答题(本题共30分,每小题5分)17.(5分)(2015•房山区一模)计算:.18.(5分)(2015•房山区一模)解不等式,并把它的解集在数轴上表示出来.19.(5分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20.(5分)(2015•房山区一模)已知x2+2x﹣8=0,求代数式的值.21.(5分)(2015•房山区一模)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过A(0,﹣2),B(1,0)两点,与反比例函数(m≠0)的图象在第一象限内交于点M,若△OBM的面积是2.(1)求一次函数和反比例函数的表达式;(2)若点P是x轴上一点,且满足△AMP是以AM为直角边的直角三角形,请直接写出点P的坐标.22.(5分)(2014•宁德)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?四、解答题(本题共20分,每小题5分)23.(5分)(2015•房山区一模)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若AB=4,CF=1,∠ABC=60°,求sin∠DEO的值.24.(5分)(2015•房山区一模)某校开展“人人读书”活动.小明为调查同学们的阅读兴趣,抽样调查了40名学生在本校图书馆的借阅情况(每人每次只能借阅一本图书),绘制了统计图1.并根据图书馆各类图书所占比例情况绘制了统计图2,已知综合类图书有40本.校图书馆各类图书所占比例统计图各类图书借阅人次分布统计图(1)补全统计图1;(2)该校图书馆共有图书本;(3)若该校共有学生1000人,试估算,借阅文学类图书的有人.25.(5分)(2015•房山区一模)如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE,使∠CDE=∠DFE,交AB的延长线于点E.过点A作⊙O 的切线交ED的延长线于点G.(1)求证:GE是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.26.(5分)(2015•房山区一模)小明遇到这样一个问题:如图1,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠AFE=∠ACB.小明是这样思考问题的:如图2,以BC为直径作半⊙O,则点F、E在⊙O上,∠BFE+∠BCE=180°,所以∠AFE=∠ACB.请回答:若∠ABC=40°,则∠AEF的度数是.参考小明思考问题的方法,解决问题:如图3,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠BDF=∠CDE.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)(2015•房山区一模)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0),B(1,0),顶点为C.(1)求抛物线的表达式和顶点坐标;(2)过点C作CH⊥x轴于点H,若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.28.(7分)(2015•房山区一模)如图1,已知线段BC=2,点B关于直线AC的对称点是点D,点E为射线CA上一点,且ED=BD,连接DE,BE.(1)依题意补全图1,并证明:△BDE为等边三角形;(2)若∠ACB=45°,点C关于直线BD的对称点为点F,连接FD、FB.将△CDE绕点D 顺时针旋转α度(0°<α<360°)得到△C′DE′,点E的对应点为E′,点C的对应点为点C′.①如图2,当α=30°时,连接BC′.证明:EF=BC′;②如图3,点M为DC中点,点P为线段C′E′上的任意一点,试探究:在此旋转过程中,线段PM长度的取值范围?29.(8分)(2015•房山区一模)【探究】如图1,点N(m,n)是抛物线上的任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点N作直线NH⊥l,垂足为H.①计算:m=0时,NH= ; m=4时,NO= .②猜想:m取任意值时,NO NH(填“>”、“=”或“<”).【定义】我们定义:平面内到一个定点F和一条直线l(点F不在直线l上)距离相等的点的集合叫做抛物线,其中点F叫做抛物线的“焦点”,直线l叫做抛物线的“准线”.如图1中的点O即为抛物线y1的“焦点”,直线l:y=﹣2即为抛物线y1的“准线”.可以发现“焦点”F在抛物线的对称轴上.【应用】(1)如图2,“焦点”为F(﹣4,﹣1)、“准线”为l的抛物线与y轴交于点N(0,2),点M为直线FN与抛物线的另一交点.MQ⊥l于点Q,直线l交y轴于点H.①直接写出抛物线y2的“准线”l:;②计算求值:= ;(2)如图3,在平面直角坐标系xOy中,以原点O为圆心,半径为1的⊙O与x轴分别交于A、B两点(A在B的左侧),直线与⊙O只有一个公共点F,求以F为“焦点”、x轴为“准线”的抛物线的表达式.北京市房山区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)(2015•房山区一模)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D考点:相反数;数轴.分析:相反数的定义:符号不同,绝对值相等的两个数叫互为相反数.根据定义,结合数轴进行分析.解答:解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.点评:本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.2.(3分)(2015•房山区一模)据海关统计,前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A. 3.79×102 B. 0.379×105 C. 3.79×104 D. 379×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将37900用科学记数法表示为:3.79×104.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•汕头)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.4.(3分)(2015•房山区一模)如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A. 20° B. 25° C. 30° D. 40°考点:平行线的性质.分析:先根据对顶角的定义求出∠3的度数,再由平行线的性质即可得出结论.解答:解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.5.(3分)(2015•房山区一模)右图是某几何体的三视图,该几何体是()A.圆柱 B.正方体 C.圆锥 D.长方体考点:由三视图判断几何体.分析:根据一个空间几何体的正视图和左视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体的形状.解答:解:∵几何体的主视图和左视图都是宽度相等的长方形,∴该几何体是一个柱体,∵俯视图是一个正方形,∴该几何体是一个长方体.故选:D.点评:本题考查的知识点是三视图,如果有两个视图为长方形,该几何体一定是柱体,底面由第三个视图的形状决定.6.(3分)(2015•柳江县二模)某地为了缓解旱情进行了一场人工降雨,现测得6个面积相等区域的降雨量如下表所示:区域 1 2 3 4 5 6降雨量(mm) 14 12 13 13 17 15则这6个区域降雨量的众数和平均数分别为()A. 13,13.8 B. 14,15 C. 13,14 D. 14,14.5考点:众数;加权平均数.分析:根据众数的定义即众数是指一组数据中出现次数最多的数据,平均数即把6个数据相加,再除以6即可求得.解答:解:数据13出现了2次,出现的次数最多,则众数是13(mm);平均降水量=(14+12+13+13+17+15)=14(mm).则这6个区域降雨量的众数和平均数分别为13,14;故选C.点评:主要考查了众数和平均数,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.7.(3分)(2015•房山区一模)小强骑自行车去郊游,9时出发,15时返回.右图表示他距家的距离y(千米)与相应的时刻x(时)之间的函数关系的图象.根据这个图象,小强14时距家的距离是()A. 13 B. 14 C. 15 D. 16考点:函数的图象.分析:根据函数图象的纵坐标,可得返回时离家的距离,根据函数图象的横坐标,可得返回时所用的时间,根据路程与时间的关系,可得速度,再根据速度与时间的关系,可得路程.解答:解:由纵坐标看出,返回时离家的距离是30千米,由横坐标看出,返回时所用的时间是15﹣13=2小时,由路程与时间的关系,得返回时的速度是30÷2=15千米,由时间、速度的关系得15×1=15千米,故选:C.点评:本题考查了函数图象,观察函数图象获得有效信息是解题关键,利用了时间、速度、路程的关系.8.(3分)(2015•房山区一模)如图,AB是⊙O的直径,C、D是圆上两点,∠BOC=70°,则∠D等于()A. 25° B. 35° C. 55° D. 70°考点:圆周角定理.分析:由AB是⊙O的直径,C、D是圆上两点,∠BOC=70°,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.即可求得答案.解答:解:∵∠BOC=70°,∴∠D=∠BOC=35°.故选B.点评:此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.9.(3分)(2015•鱼峰区二模)如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,那么,旗杆AB的高度是()A.(+8)M B.(8+8)M C.(8+)M D.(8+)M考点:解直角三角形的应用-仰角俯角问题.分析:利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,有AB=AE+BE.解答:解:解:在△EBC中,有BE=EC×tan45°=8,在△AEC中,有AE=EC×tan30°=,∴AB=8+(米).故选D.点评:本题考查了解直角三角形的应用﹣﹣﹣俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.10.(3分)(2015•房山区一模)如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(﹣2,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A. B. C. D.考点:动点问题的函数图象;二次函数图象与几何变换.分析:根据图形平移后面积不变的性质,可把不规则阴影部分的面积转化为规则图形(矩形)即可判断.解答:解:如图,我们把抛物线沿y轴向上平移,平移后的抛物线和原抛物线及直线x=2,x=﹣2所围成的阴影部分的面积S可以看做和矩形BB′C′C等积,于是可以看出S与m 是正比例函数关系故选:B.点评:本题主要考查了函数图象与几何变换:由于抛物线平移后的形状不变,因此可把平移后不规则图形转化为规则图形解决问题.二、填空题(本题共18分,每小题3分)11.(3分)(2014•本溪)因式分解:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.12.(3分)(2015•房山区一模)把代数式x2﹣4x+1化成(x﹣h)2+k的形式,其结果是(x﹣2)2﹣3 .考点:配方法的应用.分析:二次三项式是完全平方式,则常数项是一次项系数一半的平方.解答:解:x2﹣4x+1=x2﹣4x+22+1﹣22=(x﹣2)2﹣3.故答案是:=(x﹣2)2﹣3.点评:本题考查了配方法的应用.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.13.(3分)(2015•房山区一模)请写出一个y随x的增大而增大的反比例函数的表达式:y=﹣(x>0)(答案不唯一).考点:反比例函数的性质.专题:开放型.分析:反比例函数的图象在每个象限内,函数值y随自变量x的增大而增大,则反比例函数的反比例系数k<0;反之,只要k<0,则反比例函数在每个象限内,函数值y随自变量x的增大而增大.解答:解:只要使反比例系数小于0即可.如y=﹣(x>0),答案不唯一.故答案为:y=﹣(x>0)(答案不唯一).点评:本题主要考查了反比例函数y=(k≠0)的性质:①k>0时,函数图象在第一,三象限.在每个象限内y随x的增大而减小;②k<0时,函数图象在第二,四象限.在每个象限内y随x的增大而增大.14.(3分)(2015•房山区一模)甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是,,那么甲、乙两人成绩较为稳定的是甲.考点:方差.分析:根据方差的意义可作出判断;方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵他们的平均成绩相同,方差分别是,,∴S甲2<S乙2,∴成绩较稳定的同学是甲.故答案为:甲.点评:本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2015•房山区一模)随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段 0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是 1 元.考点:有理数的混合运算.分析:首先用下车时站名上对应的数字减去上车时站名上对应的数字,求出小明乘车的路程是多少,进而求出相应的票价是多少;然后用它乘以0.25,求出小明乘车的费用是多少元即可.解答:解:因为小明乘车的路程是:22﹣5=17,所以小明乘车的费用是:4×0.25=1(元).答:小明乘车的费用是1元.故答案为:1.点评:此题主要考查了有理数的混合运算,要熟练掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,解答此题的关键是求出小明乘车的路程、相应的票价是多少.16.(3分)(2015•房山区一模)如图,在平面直角坐标系中放置了5个正方形,点B1(0,2)在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3.则点A1到x轴的距离是 3 ,点A2到x轴的距离是,点A3到x轴的距离是.考点:正方形的性质;坐标与图形性质;全等三角形的判定与性质.专题:规律型.分析:根据勾股定理可得正方形A1B1C1D1的边长为,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第1、2、3个正方形和第1、2、3个正方形的边长,进一步得到点A1、A2、A3到x轴的距离.解答:解:如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△C1E1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为,∴D1F=,∴A1F=,∵A1E∥D1E1,∴,∴A1E=3,∴点A2到x轴的距离是,点A3到x轴的距离是;故答案为:3;;.点评:此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.三、解答题(本题共30分,每小题5分)17.(5分)(2015•房山区一模)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=2﹣2+3+1=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)(2015•房山区一模)解不等式,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:去分母得,6﹣3(x﹣2)≤2(x+1),去括号得,6﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣6﹣6,合并同类项得,﹣5x≤﹣10,系数化为1得,x≥2.在数轴上表示如下:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.(5分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.20.(5分)(2015•房山区一模)已知x2+2x﹣8=0,求代数式的值.考点:分式的化简求值.分析:首先将原式分母分解因式进而利用分式除法运算法则化简,进而求出即可.解答:解:原式=×﹣,=﹣,=﹣,=﹣,=﹣,∵x2+2x﹣8=0,∴x2+2x=8,∴原式=﹣.点评:此题主要考查了分式的化简求值,正确分解因式是解题关键.21.(5分)(2015•房山区一模)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k ≠0)的图象经过A(0,﹣2),B(1,0)两点,与反比例函数(m≠0)的图象在第一象限内交于点M,若△OBM的面积是2.(1)求一次函数和反比例函数的表达式;(2)若点P是x轴上一点,且满足△AMP是以AM为直角边的直角三角形,请直接写出点P的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)可得到关于b、k的方程组,进而可得到一次函数的解析式,设M(p,q)作MD⊥x轴于点D,由△OBM的面积为2可求出q的值,将M(p,4)代入y=2x﹣2求出p的值,由M(3,4)在双曲线(m ≠0)上即可求出m的值,进而求出其反比例函数的解析式;(2)作MD⊥x轴于D,分两种情况:①过点M(3,4)作MP⊥AM交x轴于点P,由MD ⊥BP可求出∠PMD=∠MBD=∠ABO,再由锐角三角函数的定义可得出OP的值,进而可得出结论;②过点A(0,﹣2)作AP⊥AM交x轴于点P,由MD⊥BP可求出∠MBD=∠ABO=∠PAO,再由锐角三角函数的定义可得出OP的值,进而可得出结论.解答:解:(1)∵直线y=kx+b过A(0,﹣2),B(1,0)两点∴,解得:∴一次函数的表达式为y=2x﹣2,∴设M(p,q),作MD⊥x轴于点D∵S△OBM=2,∴OB•MD=2,∴q=2,∴q=4,∴将M(p,4)代入y=2x﹣2得4=2p﹣2,∴p=3∵M(3,4)在双曲线(m≠0)上,∴4=,∴m=12,∴反比例函数的表达式为:y=;(2)作MD⊥x轴于D,①如图1,过点M(3,4)作MP⊥AM交x轴于点P,∵MD⊥BP,∴∠PMD=∠MBD=∠ABO∴tan∠PMD=tan∠MBD=tan∠ABO==2,∴在Rt△PDM中,=2,∴PD=2MD=8,∴OP=OD+PD=11或OP=PD﹣OD=8﹣3=5∴当PM⊥AM,此时点P的坐标为(11,0).②如图2,过点A(0,﹣2)作AP⊥AM交x轴于点P,∵MD⊥BP,∴∠MBD=∠ABO=∠PAO,∴tan∠PAO=tan∠MBD=tan∠ABO==2,∴在Rt△POA中,=2,∴OP=4,∴当PA⊥AM,此时点P的坐标为(﹣4,0).点评:本题考查的是反比例函数与一次函数的交点问题,涉及到的知识点为用待定系数法求一次函数与反比例函数的解析式、锐角三角函数的定义,熟知以上知识是解答此题的关键.22.(5分)(2014•宁德)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?考点:二元一次方程组的应用.分析:设第一阶梯电价每度x元,第二阶梯电价每度y元,分别根据3月份和4月份的电费收据,列出方程组,求出x和y值.解答:解:设第一阶梯电价每度x元,第二阶梯电价每度y元,由题意可得,,解得.答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.四、解答题(本题共20分,每小题5分)23.(5分)(2015•房山区一模)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若AB=4,CF=1,∠ABC=60°,求sin∠DEO的值.考点:菱形的性质;全等三角形的判定与性质;勾股定理.分析:(1)由四边形ABCD是菱形,可得AD∥BC,OA=OC,OB=OD,即可证得∠AEO=∠CFO,继而证得△AOE≌△COF,则可得OE=OF,即可判定四边形BFDE是平行四边形;(2)首先由在菱形ABCD中,∠ABC=60°,证得△ABC,△ADC为等边三角形,然后过点M作OM⊥AD于M,然后利用三角函数与勾股定理,求得OM与OE的长,则可求得答案.解答:(1)证明:∵四边形ABCD是菱形,∴AD∥BC,OA=OC,OB=OD,∴∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,又∵OB=OD,∴四边形BFDE是平行四边形;(2)∵菱形ABCD,∠ABC=60°,∴BD⊥AC,AB=BC=AD=CD=4,∠ADO=∠CDO=30°,∴△ABC,△ADC为等边三角形,∴AO=AD=2,∠OAD=60°,∴OD==2,过点M作OM⊥AD于M,∴OM=OA•sin60°=,∴AM=OA•cos60°=1,∵△AOE≌△COF,∴AE=CF=1,∴EM=AE+AM=2,∴OE==,在Rt△EOM中,sin∠DEO===.点评:此题考查了菱形的性质、平行四边形的判定与性质、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.24.(5分)(2015•房山区一模)某校开展“人人读书”活动.小明为调查同学们的阅读兴趣,抽样调查了40名学生在本校图书馆的借阅情况(每人每次只能借阅一本图书),绘制了统计图1.并根据图书馆各类图书所占比例情况绘制了统计图2,已知综合类图书有40本.校图书馆各类图书所占比例统计图各类图书借阅人次分布统计图(1)补全统计图1;(2)该校图书馆共有图书800 本;(3)若该校共有学生1000人,试估算,借阅文学类图书的有350 人.。
2010年房山区初三年级统一练习(一)数学学校 _________________ 姓名 _________________ 准考证号 ______________1 .本试卷共6页,共五道大题,25道小题,满分120分.考试时间120 分钟. 考2 .在试卷和答题卡上认真填写学校名称、姓名和准考证号. 生3 .试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 须4 .在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签 知字笔作答. 5 .考试结束,请将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共 32分,每小题4分) 下面各题均有四个选项,其中只有一个是符合题意的.11.的绝对值是34.某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为B . -32.上海世博会定于 2010年5月1日至10月 事,主办机构预计这届世博会将吸引世界各地约 将69 000 000用科学记数法表示正确的是 3111C .1D .—133日举行,这是继北京奥运会之后我国举办的又一世界盛 69 000 000人次参观.8A . 0 . 69 X 107B . 6. 9X 106C . 6. 9X 10669 X 103.如图,将一长方形纸条沿 EF 折叠,若/ AFD= 47 ,则/ CEB 等于A . 47°B . 86°C . 94 °D . 133°X 甲=82分,x 乙 =82分,S2甲=245, S2乙=190,那么成绩较为整齐的是5.6.A、甲班B、乙班C、两班一样整齐D、无法确定如图,L O的半径为2,弦AB丄OC于C, AB= 2.3,贝U OC等于A . 2 2B .3C. 1 D . 2 - 3如果正n边形的一个外角与和它相邻的内角之比是1: 3,那么n的值是B. 6 C . 7 D . 87.在一个不透明的口袋中装有2个红球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中一次摸出两个球,摸到两个球都是红球的概率是1 1A .B .-12 6& 如图,矩形纸片ABCD中, BC=4, AB=3,点P是BC边上的动不与点B、C重合).现将△ PCD沿PD翻折,得到△ PC' D;作/ BPC 分线,交AB于点E设BP=x,BE= y,则下列图象中,能表示y与数关系的图象大致是点(点P 的角平x的函R Ac. D .过点E作ED丄BF交BF的延长线于点 D .求证:ED=AB .二、填空题(本题共16分,每小题4分)29、分解因式:ax 2 ax a = ___________________10. 在函数、二丄 -中,自变量x的取值范围是_________________x -111. 如图,在等边厶ABC中,点D、E分别在AB、AC边上,且DE // BC,如果DE=1,AD:DB=1:3,那么△ ABC 的1 4 9 1612. —组按规律排列的式子:—,5,8,讦,…(a = 0),其中第8个式子是______________________a a a a三、解答题(本题共30分,每小题5 分)13. 计算:52-sin60「(二-1)0-(2)」.2x —1 5x 亠114. 解不等式------- - ----- < 1,并把它的解集在数轴上表示出来.3 2-5 -4 -3 -2 -1 0 1 2 3 4 515. 已知:如图,在△ ABC中,/ ABC= 90 , F是AC上一点,且FB=FC,延长BC到点E使BE=AC,18.上海世博园区中的中国馆、主题馆、世博中心、演艺中心非常引人注目 是55. 51万平方米,世博中心比演艺中心的建筑面积多 和演艺中心的建筑面积各是多少万平方米?建筑面积16.已知a 2, 2a-15=0,求电二 2-- - 的值.a +2 a —2a +1 a +317. (1) (2) 如图,直线AB 与y 轴交于点A,与 x 轴交于点B ,点A 的纵坐标、点B 的横坐标如图所示. 求直线AB 的解析式;过原点O 的直线把厶ABO 分成面积相等的两部分,直接写出这条直线的解析式.已知“四馆”的总建筑面积约1 . 4万平方米•结合表中其它信息,求世博中心 场馆中国馆 主题馆世博中演艺中心列方程或方程组解应用题: (万平方 16. 01 12. 9米)四、解答题(本题共 20分,第佃题5分, 第20题5分, 第21题6分,第22题4 分)19. 如图,在梯形ABCD 中,AD // BC , AC 丄AB, B = 30" , AD=DC, E 是 AB 中点,EF / AC 交 BC于点F且EF= .3,求梯形ABCD的面积.20. 已知:如图,在△ ABC中,AB=BC , D是AC中点,BE平分/ ABD交AC于点E,点0是AB上一点,O 0过B、E两点,交BD于点G,交AB于点F.(1) 求证:AC与O 0相切;1(2) 当BD=2 , sinC=_时,求O O的半径.221. 2009年我区消费品市场吃、穿、用、烧类商品实现全面增长.下面是根据有关数据制作的2009年全区社会消费品零售额的统计图表.表1 2009年我区消费品市场吃、穿、用、烧类商品零售额的统计表(单位:亿元)各类商品吃类商品穿类商品用类商品烧类商品2009年零售20. 9 7. 2 47.9 23. 1N'请根据以上信息解答下列问题: (1) 补全图1;(2) 求2009年我区消费品市场吃、穿、用、烧类商品零售额的平均数; (3)已知2009年“穿类商品”的零售额同比增长 15%若按照这个比例增长,估计2011年全年穿类商品的零售额可能达到多少亿元?22. 阅读下列材料:小明遇到一个问题: 如图1,正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 和DA 边上靠近 A 、 B 、C 、D 的n 等分点,连结 AF 、BG 、CH 、DE ,形成四边形 MNPQ .求四边形 MNPQ 与正方形 ABCD 的面积比(用含n 的代数式表示).小明的做法是:先取n=2,如图2,将△ ABN 绕点B 顺时针旋转90°至厶CBN ',再将厶ADM 绕点D 逆时针旋转190°至厶CDM ',得到5个小正方形,所以四边形 MNPQ 与正方形ABCD 的面积比是-;5然后取n=3,如图3,将△ ABN 绕点B 顺时针旋转90°至厶CBN ',再将厶ADM 绕点D 逆时针旋转42 90°至厶CDM ',得到10个小正方形,所以四边形 MNPQ 与正方形ABCD 的面积比是 ,即一;105请你参考小明的做法,解决下列问题:(1) 在图4中探究n=4时四边形MNPQ 与正方形ABCD 的面积比(在图4上画图并直接写出结果); (2) 图5是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图 5中画出并指明拼接后的正方形).图1DPC图4图B C五、解答题(本题共 22分,第23题7分,第24题7分,第25题8 分)223.已知:抛物线 C 1 : y =ax 4ax • 4a -5的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1) 求抛物线的解析式和顶点 P 的坐 标;(2) 将抛物线沿 x 轴翻折,再向右平移,平移后的抛物线c 2的顶F ,设由点E 、P 、F 、M 构成的-5四边形的面积为s,试用含m 的 -6代数式表示s .24.如图,在梯形 ABCD 中,AD // BC , Z B= 90 ,AD=AB=2, B 重合),连结ED ,过ED 的中点F 作ED 的垂线,交 AD 于 AD 于 M .— A,(1) 当E 为AB 中点时,求的值;DGAE 1 DM ⑵ 若,则 的值等于:AB 3 DGAE 1⑶ 若(n 为正整数),AB n点为M ,当点P 、M 关于点B 成 中心对称时,求平移后的抛物线C 2的解析式;3(3 )直线y x ■ m 与抛物线5C 1、C 2的对称轴分别交于点 E 、-6 -5 -4 -3 -2-1O-1 --2 --3 - -4 - 1 2 3 4 5 6 7y A6 -5 - 4 . 点E 是AB 边上一动点(点E 不与点A 、点G,交BC 于点K,过点K 作KM 丄则的值等于DG(用含n的式子表示).25、如图,在平面直角坐标系xOy中,直线11 : y = -'.3x・6'、3交x轴、y轴于A、B两点,点M(m,n)是线段AB上一动点,点C是线段0A的三等分点.(1)求点(2)连接A'C 'M. C的坐标;CM,将△ ACM 绕点M旋转180°,得到△1AM时,连结A'C、AC ',若过原点0212将四边形A'CAC '分成面积相等的两个四边形,直线的解析式;①当BM=②过点A'作A'丄x轴于H,当点M的坐标为何由点A' H、C、M构成的四边形为梯形?的直线确定此值时,X2010年房山区初三年级统一练习(一)数学试卷参考答案和评分标准13原式=加拧1-214.去分母,得2(2x-1)-3(5x 1) < 6去括号,得4x -2 -15x -3 < 6移项,合并同类项,得-11x < 11系数化为1,得x >-1 -----------不等式的解集在数轴上表示如下:15.证明:FB=FC•••/ FCB=/ FBC ---------ED 丄BF•/ EDB=90 -----------•/ ABC玄EDB在厶ABC和厶EDB中ABC= EDB, #ACB=/EBD, AC =EB•△ABC^A EDB• ED=AB --■----------- 1----------- 分----------- 2 分3 分----------- 4 分------ 5 分一、选择题(本题共1、C2、B3、A32分,每小题4、B5、C16分,每小题4分)6、D7、B8、D4分)29. a(x 1) 10. 11. 1212. --64; (一1)a233n Ja 三、解答题(本题共30分,每小题5分)1 分(a -2)(a • 3) a -1=(a-1)(a 3)a -2 1 ------ + -------- — a -1 a 3 2a a - 6 a -1 (a-1)(a 3) a 2 2a -7 a 2a -32 因为 a2a -1^0,所以 a 2 2a =15 -------------------------- 4分 所以原式=1^2=: 8--------------------------------- 5分15-3 12 317. (1)根据题意得,A ( 0, 2), B (4, 0) ---------------------2 分 设直线AB 的解析式为y = kx • b(k = 0)1直线AB 的解析式为y X 亠22(2) y ------------------------------------------218. 列方程或方程组解应用题: 解:设演艺中心的建筑面积是x 万平方米,则世博中心的建筑面积是(x+1.4 )万平方米.---------------------- 1分依题意得16.01+12.9+X+ (x+1.4 ) = 55.51 ------------- 2分 解得x = 12.6 ---------------3 分 x+1.4 = 14 ---------------- 4分答:演艺中心的建筑面积是12.6万平方米,世博中心的建筑面积是14万平方米. ---------------------- 5分四、解答题(本题共 20分,第19题5分,第20题5分,第21题6分,第22题4 分)19. 过点A 作AGL BC 于点G. --------------------- 1分■■ E 是AB 中点,且 EF // AC16•原式a -1 (a -2)(a 2) 1 —a 2 (a -1) a 3---4 分5 分••• EF是A ABQ的中位线EF= ,3• AC=2EF=2 .. 3/ B=30°且AC丄AB •••/ ACB=60 , BC=4^3AD// BC•••/ CAD=60又AD=DC•A ACD是等边三角形• AD=2.. 3 ----------------------------- 320. (1)证明:连接0E,------•/ AB=BC 且D是BC中点• BD丄AC•/ BE平分 / ABD•/ ABE=/ DBE•/ OB=OE•/ OBE/ OEB•/ OEB/ DBE• OE// BD• OEL AC• AC与O O相切----------- 21(2)v BD=2 sinC= —, BD丄AC2• BC=4 ---------------------------------- 3• AB=4设O O的半径为r,则AO=4-r•/ AB=BC•/ C=/ A1• si nA=si nC=—2••• AC与O O相切于点E,• OEL AC• sin人=匹=丄=丄分,AC=2 .、3 ,分在Rt A ACG中,/ AGC=90 , / ACG=60• AG=3 --------------------------- -----4• S 梯形ABC=—( 2」3 + 4 .i'3 ) •-3=9 .3 .2----------------------------------------- 4OA 4—r 24 r= ---------------------------------------------------------5 321. (1)五、解答题(本题共 22分,第23题7分,第24题7分,第25题8 分)23. ( 1)由抛物线 C 1: y =ax 2 4ax 4^-5得(2) 20-9 7-2 47-9 23-^"^.24.775 4 4 --------------------------------- 4 分 答:2009年我区消费品市场吃、穿、用、烧类商品零售额的平均数是 24.775 (3) 7.2 (1 15%)2 =9.522 ----------------------------------------------------- 6 分答:2011年全年穿类商品的零售额可能达到9.522亿元. 22.-------------------- 1 分四边形 MNPQ 与正方形 ABCD 的面积比是9 17 ------------------ 2 分 ----------------- 3 分 拼接后的正方形是 正方形ABCD ------------------ 4 分MNC2 4a 4a(4a -5) -16a——=一2, 5 2a •顶点P 的坐标为(-2 , •••点B (1 , 0)在抛物线• a -5•- — 9(2)连接PM ,作PH 丄x 轴于H ,作•••点P 、M 关于点B 成中心对称• PM 过点 B ,且 PB = MB• △ PBH ◎△ MBGMG = PH = 5, BG = BH = 3•顶点M 的坐标为(4,1/31 丄37、厂 门丄18 …s ( m m) — = -—m -------------- 2 5 55 当E 点的纵坐标大于-5且F 点的纵坐标小于 5时, —31 12 37 PE= m 「(一5) m , MF= 5「( m) m 5 5 5 5 24. (1)连接 GE .•/ KML AD KG 是DE 的垂直平分线• / KMG W DFG=90•••抛物线C i 的解析式为20 25 x - 9 9 • •抛物线C 2的表达式为 (3)依题意得,E(-2, — m ), 5 当E 点的纵坐标小于-5时, —31 PE= -5 -( m) m5 5 51 — y x -4 i 亠 5 --------------- 9 12丄 m ), HG=6 5 F(4, MF=5-(』m)旦-m 5 5 4a-5 )C i 上,MG 丄x 轴于GMF=-③••• / GKM W GDF•/ MK=AB=AD, KMG W DAE=90• △ KMG^ △ DAE --------- 1 分• MG = AE•/ E 是 AB 中点,且 AB=AD=2• AE=MG=1•/ KG 是DE 的垂直平分线• GE=GD ------------------ 2分设 GE=GD=x则 AG=2-x在 Rt △ AEG 中, / EAG=90° ,由勾股定理得(2-x ) 2+12=x 2• x= 5 --------------- 3 分 41• DM=GD-GM= 4• DM 1DG 525. (1)根据题意:A (6, 0) , B ( 0, 6^3 )•/ C 是线段OA 的三等分点• C (2, 0)或 C (4, 0) ---------- 2(2)①如图,过点 M 作MN 丄y 轴于点N , 则厶 BMNBAO1 •/ BM — AM 21• BMd BA 31• BN=— BO3 • N(0, 4,3)•.•点 M 在直线 y - - 3x ' 6*3 上• M(2, 4.3) -------------------------- 3------------------------------------------- 分•/ △ ACM 是由△ ACM 绕点M 旋转180°得到的 (3) (n -1)2 n 2 1----------------------------------- 7 (2)-------------------------------------------- 5• AC II AC•••无论是C1、C2点,四边形A CAC •是平行四边形且M为对称中心•••所求的直线12必过点M(2, 4\3)••直线丨2的解析式为:y =2、.3x ---------- 4 ------------------------------------------------------------------- 分②当C1 (2, 0)时,第一种情况:H在C点左侧若四边形A HC1M是梯形•/ AM与HC1不平行•AH // MC1此时M(2, 4、、3) ------------ 5第二种情况:H在C点右侧若四边形AC1HM是梯形••• AM与C1H不平行•AC1 // HM•/ M是线段AA的中点• H是线段AC1的中点•- H(4, 0)由OA=6,OB=6 .3•/ OAB=60;•点M的横坐标为5• M(5, 、、3 ) ----------- 6 分当C2 (4, 0 )时,同理可得H在C2点左侧时,M(4,2,3) ---------7分第一种情况:第二种情况:H在C2点右侧时,M(^,-)--------8分M(2, 4.3) , M(5,综上所述,所求M点的坐标为:,3) , M(4, 23 )或M(“ ,2。
2010年北京各区一模数学试题复数、算法、集合、简易逻辑、推理与证明、平面几何平面几何1. (崇文·理·题3)已知PA 是O e 的切线,切点为A ,2PA =,AC 是O e 的直径,PC 交O e 于点B ,30PAB ∠=o,则O e 的半径为 ( )PAA .1B .2CD .【解析】 C;30,tan30PAPCA PAB CA ∠=∠===o o2. (东城·理·题3)如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点,PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =,则PC 的长是( )A .3B .C .2D OPCB A【解析】 B ;延长CP 交于圆上一点,得到一条圆的弦,易知P点为该弦的中点,有28PC PA PB=⋅=.3.(丰台·理·题9)在平行四边形ABCD中,点E是边AB的中点,DE与AC交于点F,若AEF∆的面积是12cm,则CDF∆的面积是2cm.【解析】4;HGFEDCBA取CD的中点G,连结BG交AC于H,则∵BE DG∥且1122BE AB CD DG===,∴四边形BEDG为平行四边形∴AF FH HC==∴44DFC AEFS S==△△4.(海淀·理·题10)如图,AB为O e的直径,且8AB=,P为OA的中点,过P作O e的弦CD,且:3:4CP PD=,则弦CD的长度为.【解析】7;由8AB =得2,6AP PB ==.由已知和相交弦定理得:3:4CP PD AP PB CP PD ⋅=⋅⎧⎨=⎩,解得34CP PD =⎧⎨=⎩. 于是347CD CP PD =+=+=.5. (石景山·理·题10)已知曲线C 的参数方程为cos ,2sin ,x y θθ=⎧⎨=-+⎩()θ为参数,则曲线C 的普通方程是 ;点A 在曲线C 上,点(,)M x y 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,则AM 的最小值是 .【解析】22(2)1x y ++=,32; C是圆22(2)1xy ++=;不等式组的可行域如图阴影所示,A 点为(0,1)-、M 为10,2⎛⎫⎪⎝⎭时,||AM 最短,长度是32.6. (西城·理·题12) 如图,PC 切O e 于点C ,割线PAB 经过圆心O ,弦CD AB ⊥于点E .已知O e 的半径为3,2PA =,则PC = .OE = .AD E OCB【解析】 94,5;22(26)164PC PA PB PC =⋅=⨯+=⇒=;连结OC ,知OC PC ⊥,于是5PO =,2239235CO OE OP PE =⋅⇒==+.BCOE PD A7. (宣武·理·题11) 若,,A B C 是O ⊙上三点,PC 切O ⊙于点C ,110,40ABC BCP ∠=︒∠=︒,则AOB ∠的大小为 .【解析】 60︒;如图,弦切角40PCB CAB ∠=∠=︒,于是18030ACB CAB ABC ∠=︒-∠-∠=︒,从而260AOB ACB ∠=∠=︒.POCBA8. (朝阳·理·题12)如图,圆O 是ABC ∆的外接圆,过点C 的切线交AB 的延长线于点D ,27,3CD AB BC ===,则BD 的长为 ;AC 的长为 .ODCB【解析】 374,.()24CD DB DA DB AB BD BD =⋅=⋅+⇒=.又由DCB CAB ∠=∠知BCD ACD ∆≅∆.于是BC BD CDAC CD AD ==. 即33727BD AC AC CD ==⇒=.9. (西城·理·题12) 如图,PC 切O e 于点C ,割线PAB 经过圆心O ,弦CD AB ⊥于点E .已知O e 的半径为3,2PA =,则PC = .OE = .AD E OCB【解析】 94,5;22(26)164PC PA PB PC =⋅=⨯+=⇒=;连结OC ,知OC PC ⊥,于是5PO =,2239235CO OE OP PE =⋅⇒==+.BCOE PD A坐标系与参数方程1. (海淀·理·题4)在平面直角坐标系xOy 中,点P的直角坐标为(1,.若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是( )A .π1,3⎛⎫- ⎪⎝⎭B .4π2,3⎛⎫ ⎪⎝⎭C .π2,3⎛⎫- ⎪⎝⎭ D .4π2,3⎛⎫- ⎪⎝⎭ 【解析】C ;易知2ρ==,()π2π3k k θ=-∈Z .2. (朝阳·理·题9)已知圆的极坐标方程为2cos ρθ=,则圆心的直角坐标是 ;半径长为 . 【解析】 ()1,0,1;由22cos ρρθ=,有222xy x+=,即圆的直角坐标方程为()2211x y -+=.于是圆心坐标为()1,0,半径为1.3. (崇文·理·题11)将参数方程12cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数)化成普通方程为 . 【解析】 ()2214x y -+=;由12cos ,2sin x y θθ-==知()2214x y -+=.4. (石景山·理·题11)如图,已知PE 是圆O 的切线.直线PB 交圆O 于A 、B 两点,4PA =,12AB =,43AE =.则PE 的长为_____,ABE ∠的大小为________.POEBA【解析】 8,30︒;24(412)64PE PA PB =⋅=⨯+=,则8PE =;由222PEPA AE =+,可知90PAE ∠=︒,即90BAE ∠=︒,由tan AE ABE AB∠==,得30ABE ∠=︒.5. (西城·理·题11)将极坐标方程2cos ρθ=化成直角坐标方程为 .【解析】2220x y x +-=; 2222cos 2x y x ρρθ=⇒+=.6. (东城·理·题12)圆的极坐标方程为sin 2cos ρθθ=+,将其化成直角坐标方程为 ,圆心的直角坐标为 .【解析】 2215(1)()24x y -+-=,11,2⎛⎫⎪⎝⎭; 222sin 2cos 2x y y xρρθρθ=+⇒+=+.7. (东城·理·题12)圆的极坐标方程为sin 2cos ρθθ=+,将其化成直角坐标方程为 ,圆心的直角坐标为 .【解析】 2215(1)()24x y -+-=,11,2⎛⎫⎪⎝⎭; 222sin 2cos 2x y y xρρθρθ=+⇒+=+.8. (宣武·理·题12)若直线:0l x =与曲线:x a C y φφ⎧=⎪⎨=⎪⎩(φ为参数,0a >)有两个公共点,A B ,且||2AB =,则实数a 的值为 ;在此条件下,以直角坐标系的原点为极点,x 轴正方向为极轴建立坐标系,则曲线C 的极坐标方程为 .【解析】22,4cos 20ρρθ-+=;曲线C :22()2x a y -+=,点C 到l2a=,因此||22AB a=⇒=;222(2cos )(2sin )ρθθ-+=,即24cos 20ρρθ-+=.9. (丰台·理·题12)在平面直角坐标系xOy 中,直线l 的参数方程为11x y t =⎧⎨=+⎩(参数t ∈R ),圆C 的参数方程为cos 1sin x y θθ=+⎧⎨=⎩(参数[)0,2πθ∈),则圆心到直线l的距离是.直线方程为1y x =+,圆的方程为()2211x y -+=.于是圆心()1,0到直线10x y -+=.复数1. (海淀·理·题1)在复平面内,复数1ii z =-(i 是虚数单位)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】C ;()()1i1i i 1i iz -==--=--,该复数对应的点位于第三象限.2. (丰台·理·题1)如果1i1i a z a -=+为纯虚数,则实数a 等于( ) A .0 B .1- C .1 D .1-或1【解析】 D ;设i z x =,0x ≠则1ii 1i a x a -=+()1i 0ax a x ⇔+-+=100ax a x +=⎧⇔⎨+=⎩11a x =⎧⇔⎨=-⎩或11a x =-⎧⎨=⎩.3. (石景山·理·题1)复数21i+等于( ) A .2i - B .2i C .1i -D .1i +【解析】C ;22(1i)2(1i)1i 1i (1i)(1i)2--===-++-.4. (东城·理·题1)i 是虚数单位,若12ii(,)1i a b a b +=+∈+R ,则a b +的值是( )A .12-B .2- C .2D .12【解析】C ;12i (12i)(1i)3i1i (1i)(1i)2++-+==++-,于是31222a b +=+=. 5. (朝阳·理·题1)复数112ii ++等于 ( ) A .12i + B .12i - C .12- D .12 【解析】D ;计算容易有1i 11i 22+=+.6. (海淀·文·题1)在复平面内,复数()i 1i -(i 是虚数单位)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【解析】 A ;()i 1i 1i-=+,对应的点为()1,1位于第一象限.7. (丰台·文·题1)复数1i1i z -=+化简的结果等于( ) A .i - B .i C .2i - D .2i 【解析】 A ;1i 1i z -=+()()()21i 2ii 1i 1i 2--===-+-.8. (石景山·文·题1)复数21i+等于( ) A .2i - B .2i C .1i -D .1i +【解析】C ;22(1i)2(1i)1i 1i (1i)(1i)2--===-++-.9. (东城·文·题1)计算复数1i1i-+的结果为( ) A .i - B .i C .1- D .1 【解析】 A ;21i (1i)i 1i 2--==-+. 10. (朝阳·文·题1)复数22(1)i i+等于 ( ) A .2 B .-2 C .2i - D .2i 【解析】 C ;()221221i ii i +==--. 11. (宣武·理·题3)若复数z 满足2i 1iz=+,则z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】B ;2i(1i)22iz =+=-+.12. (宣武·文·题4)设i 是虚数单位,则复数(1i)2i z =+⋅所对应的点落在( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】B ;22iz =-+.13. (西城·文·题9)i 是虚数单位,1i 1i+=+ . 【解析】 11i22+;11i 1i i i 1i 22-++=+=+.14. (西城·理·题9)若(2i)i i a b -=+,其中,a b ∈R ,i 为虚数单位,则a b += . 【解析】 3;2i i a b +=+1,2a b ⇒==.15. (崇文·理·题9)如果复数()()2i 1i m m ++(其中i 是虚数单位)是实数,则实数m =___________. 【解析】 1-;()()()()223i 1i 1mm m m i m ++=-++.于是有3101mm +=⇒=-.16. (崇文·文·题10)如果复数()()2i 1i m m ++(其中i 是虚数单位)是实数,则实数m =___________. 【解析】 -1;()()()()223i 1i 1m m mm m i++=-++.于是有3101mm +=⇒=-.算法1. (丰台·文·题3)在右面的程序框图中,若5x =,则输出i 的值是( )x > 109i = i + 1NY 输出i结束x = 3x -2i = 0输入x开始A .2B .3C .4D .5【解析】C ;51337109325→→→→,对应的4i =.2. (石景山·理·题4)一个几何体的三视图如图所示,那么此几何体的侧面积(单位:2cm )为( )A .80B .60C .40D .20【解析】A ;几何体如图,是正四棱锥,底边长8,侧面底边上的高为5,因此侧面积为1854802⨯⨯⨯=.3.(西城·理·题5)阅读右面的程序框图,运行相应的程序,输出的结果为()A.1321B.2113C.813D.138【解析】D;1,1,220x y z===<;1,2,320x y z===<;L,8,13,2120x y z===>,故输出138.4.(东城·理·题5)如图是一个算法的程序框图,若该程序输出的结果为45,则判断框中应填入的条件是()A.4?T>B.4?T<C.3?T>D.3?T<【解析】B ;循环一次得:12,1,2i T S ===;两次得:1123,2,263i T S ===+=;三次得:2134,3,3124i T S ===+=;四次得:3145,4,4205i T S ===+=,此时需要跳出循环,故填4?T <.5. (东城·文·题5)按如图所示的程序框图运算,若输入6x =,则输出k 的值是( )A .3B .4C .5D .6【解析】B ;6x =,0k =,13x =,1k =,27x =,2k =,55x =,3k =,111x =,4k =,111100x =>,跳出循环,输出4k =.6. (石景山·文·题6)已知程序框图如图所示,则该程序框图的 功能是( )A .求数列1n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈N B .求数列12n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈N C .求数列1n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N D .求数列12n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N【解析】注意n和k的步长分别是2和1.7.(西城·文·题6)阅读右面的程序框图,运行相应的程序,输出的结果为()A.1321B.2113C.813D.138【解析】D;1,1,220x y z ===<;1,2,320x y z ===<;L,8,13,2120x y z ===>,故输出138.8. (海淀·理科·题7) 已知某程序框图如图所示,则执行该程序后输出的结果是( )第 7 题A .1-B .1C .2D .12【解析】A ;∵()20100mod 3i ==,∴对应的1a =-.9. (朝阳·文·题11)如图,下程序框图的程序执行后输出的结果是.【解析】55;将经过i次运行后的,n S值列表如下.于是S=.5510.(宣武·文·题12)执行如图程序框图,输出S的值等于.12题图【解析】20;运算顺序如下A S i A S i A S i A S i===→===→===→===>1,1,23,4,36,10,410,20,54,输出S,故20S=.11.(崇文·理·题12)(崇文·文·题12)某程序框图如图所示,该程序运行后输出,M N的值分别为.【解析】13,21;依据程序框图画出运行n 次后,,M N i 的值.n1 2 3 i2 3 4 M2 5 13 N3 8 21 4次运行后43i =>,于是有13,21M N ==. 12. (丰台·理·题13)在右边的程序框图中,若输出i 的值是4,则输入x 的取值范围是 .【解析】(]2,4;∵328228->⇔>,x xx x->⇔>,322810x x->⇔>x x->⇔>,324232104∴要使得刚好进行4次运算后输出的82x>,则有24x<≤.13.(朝阳·理·题13)右边程序框图的程序执行后输出的结果是.【解析】625;将经过i 次运行后的,n S 值列表如下.i1 2 3 4 5 ... m ...25 n3 5 7 9 11 21m + 51 S 14 9 16 25 2m 625 于是625S =.14. (海淀·文·题13) 已知程序框图如图所示,则执行该程序后输出的结果是_______________.结束输出 a i = i +1否是a = 1-1ai ≥ 20a = 2 , j = 1开始【解析】12;a = -1 , j = 3a = 12, j = 2a = 2 , j = 1∵()202mod 3i ==,∴对应的12a =.集合简易逻辑推理与证明1. (崇文·文·题1)已知全集U =R ,集合{}|12A x x =->,{}2|680B x x x =-+<,则集合()UA B =I ð ( )A .{}|14x x -≤≤B .{}|23x x <≤C . {}|23x x <≤D .{}|14x x -<< 【解析】 D ;容易解得{3A x x x =>或者}0x <,{}26B x x =<<. 于是()UA B =I ð{}23x x <≤.2. (西城·理·题1)设集合{|1}P x x =>,2{|0}Q x x x =->,则下列结论正确的是( )A .P Q =B .P Q R =UC .P Q Ü D .Q P Ü 【解析】 C ;(1,)P =+∞,(,0)(1,)Q =-∞+∞U .3. (宣武·理·题1)设集合20.3{|0},2P x x m =-=≤,则下列关系中正确的是( ) A .m P ⊂ B .m P ∉ C .{}m P ∈ D .{}m P Þ【解析】D ;{|0P x x =≤≤,0.3022m <=<<,故m P ∈,因此{}m P Þ4. (崇文·理·题1)已知全集U =R ,集合{}|12A x x =->,{}2|680B x x x =-+<,则集合()UA B =I ð( )A .{}|14x x -≤≤B .{}|14x x -<<C .{}|23x x <≤D .{}|23x x <≤ 【解析】D ;容易解得{3A x x x =>或者}0x <,{}26B x x =<<. 于是()UA B =I ð{}23x x <≤.5. (西城·文·题1)设集合{|1}P x x =>,{|(1)0}Q x x x =->,下列结论正确的是( )A .P Q =B .P Q R =UC .P Q ÜD .Q P Ü【解析】C ;(1,)P =+∞,(,0)(1,)Q =-∞+∞U .6. (宣武·文·题1)设集合{|4},sin 40A x x m ==︒≤,则下列关系中正确的是( ) A .m A ⊂ B .m A ⊄ C .{}m A ∈ D .{}m A ∉【解析】D ;正确的表示法,m A ∈,{}m A Þ,{}m A ∉.7. (东城·理·题2)设全集{33,}I x x x =-<<∈Z ,{1,2}A =,{2,1,2}B =--,则()IA B U ð等于( )A .{1}B .{1,2}C .{2}D .{0,1,2}【解析】D ;{2,1,0,1,2}I =--,{0,1}IB =ð,故(){0,1,2}IA B =U ð.8. (石景山·文·题2)已知命题 :p x ∀∈R ,2x ≥,那么命题p ⌝为( )A .,2x x ∀∈R ≤B .,2x x ∃∈<RC .,2x x ∀∈-R ≤D .,2x x ∃∈<-R【解析】B ;全称命题的否定是存在性命题,将∀改为∃,然后否定结论.9. (东城·文·题2)设集合{1,2,4,6}A =,{2,3,5}B =,则韦恩图中阴影部分表示的集合( )A .{2}B .{3,5}C .{1,4,6}D .{3,5,7,8}【解析】B ;阴影部分表示{3,5}UA B =I ð.10. (丰台·理·题2) 设集合[)1{|(),0,}2xM y y x ==∈+∞,(]2{|log ,0,1}N y y x x ==∈,则集合M N U 是( )A .[)(,0)1,-∞+∞UB .[)0,+∞C .(],1-∞D .(,0)(0,1)-∞U 【解析】 C ;(]0,1M =,(],0N =-∞,因此(],1M N =-∞U .11. (石景山·理·题2)已知命题 :p x ∀∈R ,2x ≥,那么命题p ⌝为( )A .,2x x ∀∈R ≤B .,2x x ∃∈<RC .,2x x ∀∈-R ≤D .,2x x ∃∈<-R【解析】 B ;全称命题的否定是存在性命题,将∀改为∃,然后否定结论.12. (朝阳·文·题2)命题:0p x ∀>,都有sin 1x -≥,则 ( )A .:0p x ⌝∃>,使得sin 1x <-B .:0p x ⌝∀> ,使得sin 1x <-C .:0p x ⌝∃>,使得sin 1x >-D .:0p x ⌝∀>,使得sin 1x -≥【解析】 A ;由命题的否定容易做出判断.13. (海淀·文·题7)给出下列四个命题:①若集合A 、B 满足A B A =I ,则A B ⊆;②给定命题,p q ,若“p q ∨”为真,则“p q ∧”为真; ③设,,a b m ∈R ,若a b <,则22am bm <;④若直线1:10l ax y ++=与直线2:10l x y -+=垂直,则1a =. 其中正确命题的个数是( )A .1B .2C .3D .4【解析】 B ;命题①和④正确.14. (丰台·文·题7)若集合{}0,1,2P =,10(,),,20x y Q x y x y P x y ⎧⎫-+>⎧⎪⎪=∈⎨⎨⎬--<⎩⎪⎪⎩⎭,则Q 中元素的个数是( )A .3B .5C .7D .9【解析】 B ;(){},|12,,Q x y x y x y P =-<-<∈, 由{}0,1,2P =得x y -的取值只可能是0和1. ∴()()()()(){}0,0,1,1,2,2,1,0,2,1Q =,含有5个元素.15. (崇文·文·题8)如果对于任意实数x ,[]x 表示不超过x 的最大整数. 例如[]3.273=,[]0.60=.那么“[][]x y =”是“1x y -<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 A ;由[][][][]1,1x x x y y y <+<+≤≤.于是有[][]()[][]1111x y x y x y -=+<-<+-=-则1x y -<.不妨设33,24x y ==,于是3331424x y -=-=<.但是[][]1,0.x y ==16. (东城·文·题9)已知命题3:(1,),log 0p x x ∀∈+∞>,则p †为 . 【解析】 030(1,),log 0x x ∃∈+∞≤;全称命题的否定为存在命题.17. (宣武·文·题10)命题“任意常数列都是等比数列”的否定形式是 .【解析】 存在一个常数列不是等比数列;全称命题的否定是存在性命题.18. (海淀·理·题11)给定下列四个命题:① “π6x =”是“1sin 2x =”的充分不必要条件; ② 若“p q ∨”为真,则“p q ∧”为真;③ 若a b <,则22am bm <;④ 若集合A B A =I ,则A B ⊆. 其中为真命题的是 (填上所有正确命题的序号). 【解析】 ①,④;19. (海淀·理·题14)在平面直角坐标系中,点集(){}22,|1A x y x y =+≤, {(,)|4,0,340}B x y x y x y =-≤≥≥,则 ⑴点集(){}1111(,)3,1,,P x y x x y y x y A ==+=+∈所表示的区域的面积为_____;⑵点集{}12121122(,),,(,),(,)Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为 . 【解析】 π;18π+.;⑴如左图所示,点集P 是以()3,1为圆心1为半径的圆,其表示区域的面积为π; ⑵如右图所示,点集Q 是由三段圆弧以及连结它们的三条切线段围成的区域,其面积为()1π433451π18π2OPQ OABP PCDQ OFEQ S S S S ++++=⨯⨯+++⨯+=+△.20. (海淀·文·题14) 在平面直角坐标系中,点集(){}22,|1A x y x y =+≤, (){},|11,11B x y x y =--≤≤≤≤,则⑴点集(){}1111(,)3,1,,P x y x x y y x y A ==+=+∈所表示的区域的面积为_____;⑵点集{}12121122(,),,(,),(,)Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为.【解析】π,12π+;⑴如左图所示,点集P是以()3,1为圆心1为半径的圆,其表示区域的面积为π;⑵如右图所示,点集Q是由四段圆弧以及连结它们的四条切线段围成的区域,其面积为+.12π。
平面解析几何一、选择题和填空题1.(海淀·理科·题13)已知有公共焦点的椭圆与双曲线中心为原点,焦点在x 轴上,左右焦点分别为12,F F ,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若110PF =,双曲线的离心率的取值范围为()1,2.则该椭圆的离心率的取值范围是 .【解析】 12,35⎛⎫⎪⎝⎭;如图,设椭圆的半长轴长,半焦距分别为1,a c ,双曲线的半实轴长,半焦距分别为2,a c ,12,PF m PF n ==,则1222102m n a m n a m n c+=⎧⎪-=⎪⎨=⎪⎪=⎩1255a c a c =+⎧⇒⎨=-⎩,问题转化为已知125c c <<-,求5c c +的取值范围. 设5c x c =-,则51x c x =+,11521242c x c x x ==-+++. ∵12x <<,∴11111126242210x -<-<-+,即111232425x <-<+.2.(海淀·文科·题8)1by +=与圆221x y +=相交于A ,B 两点(其中,a b 是实数),且AOB ∆是直角三角形(O 是坐标原点),则点(),P a b 与点()0,1之间距离的最大值为( ) A1 B .2 CD1 【解析】 A ;圆221x y +=1by +=,∴2222a b +=, 即2212b a +=.因此所求距离为椭圆2212b a +=上点(),P a b 到焦点()0,11.3.(海淀·文科·题10)已知动点P 到定点()2,0的距离和它到定直线:2l x =-的距离相等,则点P 的轨迹方程为________. 【解析】 28y x =;由已知,该轨迹为2p =,定点为()0,0,对称轴为x 轴的抛物线,即28y x =.4.(丰台·文科·题4)直线0x y +=截圆224x y +=所得劣弧所对圆心角为( )A .π6 B .π3 C .π2 D .2π3【解析】 D ;1=2=,于是1cos22θ=,2π3θ=.5.(丰台·文科·题14)已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 . 【解析】 ()2,2;连结AB 与直线y x =交于点Q ,则当P 点移动到Q 点位置时,||||PA PB +的值最小.直线AB 的方程为()()515331y x ---=--,即340x y --=. 解方程组340x y y x --=⎧⎨=⎩,得22x y =⎧⎨=⎩.于是当||||PA PB +的值最小时,点P 的坐标为()2,2.6.(石景山·理·题5)(石景山·文·题5)经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-=【解析】 A ;设圆心为C ,则AB 垂直于CP ,3012(1)CP k --==---,故:32AB y x +=-,选A .7.(西城·理·题13)(西城·文·题7)已知双曲线2213y x -=的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点,则12PA PF ⋅最小值为 _________ . 【解析】 2-;12(1,0),(2,0)A F -,设(,)(1)P x y x ≥,2212(1,)(2,)2PA PF x y x y x x y ⋅=--⋅-=--+,又2213y x -=,故223(1)y x =-,于是2212114545816PA PF x x x ⎛⎫⋅=--=--- ⎪⎝⎭,当1x =时,取到最小值2-.8.(东城·理·题13)直线x t =过双曲线22221x y a b-=(0,0)a b >>的右焦点且与双曲线的两条渐近线分别交于A ,B 两点,若原点在以AB 为直径的圆外,则双曲线离心率的取值范围是 .【解析】 (1,;,,,b b A t t B t t a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,要使原点在以AB 为直径的圆外,只需原点到直线AB 的距离t 大于半径b t a 即可,于是b a <,e c a ==e (1,∈.9.(东城·文·题7) 已知圆22104x y mx ++-=与抛物线214y x =的准线相切,则m 的值等于( )A .BCD . 【解析】 D ;抛物线的准线为1y =-,将圆化为标准方程222124m m x y +⎛⎫++= ⎪⎝⎭,圆心到直线的距离为1=m ⇒=10.(东城·文·题10)经过点(2,3)-且与直线250x y +-=垂直的直线方程为 . 【解析】280x y -+=; 直线250x y +-=的斜率为2-,故所求直线的斜率为12,从而所求直线方程为13(2)2y x -=+.11.(东城·文·题14)点P 是椭圆2212516x y +=上一点,12,F F 是椭圆的两个焦点,且12PF F ∆的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为 .【解析】 83;121210,6PF PF F F +==,1212121211()18322PF F P P S PF PF F F F F y y ∆=++⋅==⋅=.12.(宣武·理·题6)若椭圆221x y m n+=与双曲线221(,,,x y m n p q p q -=均为正数)有共同的焦点1F ,2F ,P 是两曲线的一个公共点,则12||||PF PF ⋅等于( )A .22p m -B .p m -C .m p -D .22m p -【解析】 C ;由题设可知m n >,再由椭圆和双曲线的定义有12||||PF PF +=及12||||PF PF -=±两个式子分别平方再相减即可得12||||PF PF m p =-.13.(宣武·文·题8)设圆C 的圆心在双曲线2221(0)2x y a a -=>的右焦点且与此双曲线的渐近线相切,若圆C 被直线:0l x =截得的弦长等于2,则a 的值为( )A B C .2D .3【解析】 A ;圆C 的圆心C ,双曲线的渐近线方程为0ay ±=,C 到渐近线的距离为d ==故圆C 方程22(2x y +=.由l 被圆C 截得的弦长是2及圆C知,圆心C 到直线l 的距离为11a =⇒=14.(崇文·文·题4)若直线y x b =+与圆222x y +=相切,则b 的值为 ( )A .4±B .2±C ..±【解析】 B ;2b ==. 15.(朝阳·理·题6)已知点(3,4)P -是双曲线22221(0,0)x y a b a b-=>>渐近线上的一点,,E F 是左、右两个焦点,若0EP FP ⋅=,则双曲线方程为( ) A .22134x y -=B .22143x y -=C .221916x y -=D .221169x y -=【解析】 C ;不妨设()(),0,,0E c F c -,于是有()()23,43,49160EP FP c c c ⋅=+-⋅--=-+=.于是225c =.排除A ,B .又由D 中双曲线的渐近线方程为34y x =±,点P 不在其上.排除D .16.(朝阳·理·题10)(朝阳·文·题13)圆224x y +=被直线0y +-=截得的劣弧所对的圆心角的大小为 .【解析】 π3.圆心到直线的距离为d ==θ,于是cos2θ=π3θ=.17.(朝阳·文·题10)在抛物线22(0)y px p =>上,横坐标为4的点到焦点的距离为5,则p 的值为 . 【解析】 2;由抛物线的几何性质,有4522pp +=⇒=.二、解答题18.(海淀·理科·题19)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且12||2F F =,点31,2⎛⎫⎪⎝⎭在椭圆C 上.⑴求椭圆C 的方程;⑵过1F 的直线l 与椭圆C 相交于A、B 两点,且2AF B ∆2F 为圆心且与直线l 相切的圆的方程.【解析】 ⑴设椭圆的方程为22221(0)x y a b a b+=>>,由题意可得:椭圆C 两焦点坐标分别为()11,0F -,()21,0F .∴532422a ==+=.∴2a =,又1c =,2413b =-=,故椭圆的方程为22143x y +=.⑵当直线l x ⊥轴,计算得到:31,2A ⎛⎫-- ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,21211||||32322AF B S AB F F ∆=⋅⋅=⨯⨯=,不符合题意.当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得2222(34)84120k x k x k +++-=.显然0∆>成立,设11(,)A x y ,22(,)B x y ,则2122834k x x k +=-+,212241234k x xk -⋅=+.又||AB即2212(1)||34k AB k +==+,又圆2F 的半径r ==.所以2221112(1)||2234AF BkS AB rk∆+==⨯==+,化简,得4217180k k+-=,即22(1)(1718)0k k-+=,解得1k=±.所以,r==.故圆2F的方程为:22(1)2x y-+=.⑵另解:设直线l的方程为1x ty=-,由221143x tyx y=-⎧⎪⎨+=⎪⎩,消去x得22(43)690t y ty+--=,0∆>恒成立,设()11,A x y,()22,B x y,则122643ty yt+=+,122943y yt⋅=-+.所以12||y y-==又圆2F的半径为r==.所以212121||||2AF BS F F y y∆=⋅⋅-12||y y=-==21t=,所以r==故圆2F的方程为:22(1)2x y-+=.19.(海淀·文科·题19)已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为12,且点31,2⎛⎫⎪⎝⎭0在该椭圆上.⑴求椭圆C的方程;⑵过椭圆C的左焦点1F的直线l与椭圆C相交于A、B两点,若AOB∆,求圆心在原点O且与直线l 相切的圆的方程.【解析】⑴设椭圆C的方程为22221x ya b+=(0)a b>>,由题意可得12cea==,又222a b c=+,所以2234b a=因为椭圆C经过31,2⎛⎫⎪⎝⎭,代入椭圆方程有22914134a a+=,解得2a=所以1c=,2413b=-=故椭圆C的方程为22143x y+=.⑵解法一:当直线l x⊥轴时,计算得到:31,2A⎛⎫-⎪⎝⎭,31,2B⎛⎫-⎪⎝⎭,1113||||13222AOBS AB OF∆=⋅⋅=⨯⨯=,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:(1)y k x=+,0k≠由22(1)143y k xx y=+⎧⎪⎨+=⎪⎩,消去y,得2222(34)84120k x k x k+++-=显然0∆>成立,设()11,A x y,()22,B x y,则2122834kx xk+=-+,212241234kx xk-⋅=+又||AB=即2212(1)||34kABk+==+又圆O的半径r==所以1||2AOBS AB r∆=⋅⋅22112(1)234kk+=⋅+=化简,得4217180k k+-=,即22(1)(1718)0k k-+=,解得211k=,2218k=-(舍)所以r==O的方程为2212x y+=.⑵解法二:设直线l的方程为1x ty=-,由221143x tyx y=-⎧⎪⎨+=⎪⎩,消去x,得22(43)690t y ty+--=因为0∆>恒成立,设()11,A x y,()22,B x y,则12122269,4343ty yy yt t+=⋅=-++所以12||y y-==所以1121||||2AOBS F O y y∆=⋅⋅-==化简得到4218170t t--=,即22(1817)(1)0t t+-=,解得211,t=221718t=-(舍)又圆O的半径为r==所以r==O的方程为:2212x y+=20.(丰台·理科·题19)在直角坐标系xOy中,点M到点()1,0F,)2,0F的距离之和是4,点M的轨迹是C与x轴的负半轴交于点A,不过点A的直线:l y kx b=+与轨迹C交于不同的两点P和Q.⑴求轨迹C的方程;⑵当0AP AQ⋅=时,求k与b的关系,并证明直线l过定点.【解析】⑴∵点M到(),0,),0的距离之和是4,∴M的轨迹C是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.⑵将y kx b =+,代入曲线C的方程,整理得22(14)40k x +++= 因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ① 设()11,P x y ,()22,Q x y,则12x x +=,122414x x k =+ ② 且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++ 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+,()222,AQ x y =+. 由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①当2b k =时,直线l 的方程为2y kx k =+. 显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点.21.(丰台·文科·题19)在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C ,直线:l y kx =轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵是否存在常数k ,0OP OQ ⋅=?若存在,求出k 的值;若不存在,请说明理由. 【解析】 ⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦距为的椭圆,其方程为2214x y +=.⑵将y kx =C 的方程,整理得22(14)40k x +++= ① 设()11,P x y ,()22,Q x y 由方程①,得12x x +=122414x x k =+ ②又(()2121212122y y kx kx k x x x x ⋅=+=++ ③ 若0OP OQ ⋅=,得12120x x y y += 将②、③代入上式,解得k =. 又因k 的取值应满足0∆>,即2410k ->(*),将k =代入(*)式知符合题意. 22.(石景山·理·题19)已知椭圆22221(0)x y a b a b+=>>:l y kx m =+交椭圆于不同的两点A ,B . ⑴求椭圆的方程;⑵若m k =,且0OA OB ⋅=,求k 的值(O 点为坐标原点); ⑶若坐标原点O 到直线lAOB △面积的最大值. 【解析】 ⑴设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩,解得c =由222a b c =+,得1b =∴所求椭圆方程为2213x y +=⑵∵m k =,∴(1)y kx k k x =+=+.设1122(,),(,)A x y B x y ,其坐标满足方程2213(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消去y 并整理得2222(13)6330k x k x k +++-=,则()()()22226413330()k k k ∆=-+->*故22121222633,1313k k x x x x k k --+==++. ∵0OA OB ⋅=,∴12121212(1)(1)x x y y x x k x k x +=++⋅+2221212(1)()k x x k x x k =++++2222222223363(1)0131331k k k k k k k k k ---=++⋅+==+++∴k =,经检验k =满足(*)式.=223(1)4m k =+ 将y kx m =+代入椭圆方程,整理得222(13)6330k x kmx m +++-=222(6)4(13)(33)0()km k m ∆=-+->*∴2121222633,1313km m x x x x k k --+==++.∴2222222122223612(1)||(1)()(1)(31)31k m m AB k x x k k k ⎡⎤-=+-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 242221212123334(0)196123696k k k k k k =+=++=≠++⨯+++≤当且仅当2219k k =,即k =经检验,k =满足(*)式. 当0k =时,||AB =综上可知,max ||2AB =所以,当||AB 最大时,AOB △的面积取得最大值max 122S =⨯=.23.(石景山·文·题19)已知椭圆22221(0)x y a b a b+=>>,直线:l y kx m =+交椭圆于不同的两点A ,B .⑴求椭圆的方程;⑵若1m =,且0OA OB ⋅=,求k 的值(O 点为坐标原点); ⑶若坐标原点O 到直线lAOB △面积的最大值. 【解析】 ⑴设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩,解得c =由222a b c =+,得1b =∴所求椭圆方程为2213x y +=⑵∵1m =,∴1y kx =+.设1122(,),(,)A x y B x y ,其坐标满足方程221,3 1.x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 并整理得22(13)60k x kx ++=,则()()22641300k k ∆=-+⨯>,解得0k ≠故121226,013kx x x x k -+=⋅=+. ∵0OA OB ⋅=,∴2121212121212(1)(1)(1)()1x x y y x x kx kx k x x k x x +=++⋅+=++++2222613(1)0101331k k k k k k --=+⨯+⋅+==++∴k =.=223(1)4m k =+.将y kx m =+代入椭圆方程,整理得222(13)6330k x kmx m +++-=()()()2226413330()km k m ∆=-+->*∴2121222633,1313km m x x x x k k --+==++ ∴2222222212223612(1)(1)()(1)(31)31k m m AB k x x k k k ⎡⎤-=+-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++242221212123334(0)196123696k k k k k k =+=++=≠++⨯+++≤. 当且仅当2219k k=,即k =时等号成立.经检验,k =满足()*式. 当0k =时,||AB =综上可知max 2AB =∴当AB 最大时,AOB △的面积取最大值122S =⨯=. 24.(西城·理·题18)椭圆C :22221(0)x y a b a b+=>>⑴求椭圆C 的方程;⑵设过点D (0,4)的直线l 与椭圆C 交于,E F 两点,O 为坐标原点,若OEF △为直角三角形,求直线l 的斜率.【解析】 ⑴由已知225c a b a =+=, 又222a b c =+,解得224,1a b ==,所以椭圆C 的方程为2214x y +=;⑵根据题意,过点(0,4)D 满足题意的直线斜率存在,设:4l y kx =+, 联立22144x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 得22(14)32600k x kx +++=,222(32)240(14)64240k k k ∆=-+=-,令0∆>,解得2154k >. 设E 、F 两点的坐标分别为1122(,),(,)x y x y , ⅰ)当EOF ∠为直角时, 则1212223260,1414k x x x x k k +=-=++, 因为EOF ∠为直角,所以0OE OF ⋅=,即12120x x y y +=,所以21212(1)4()160k x x k x x ++++=,所以222215(1)32401414k k k k ⨯+-+=++,解得k =ⅱ)当OEF ∠或OFE ∠为直角时,不妨设OEF ∠为直角, 此时,1OE k k ⋅=,所以111141y y x x -⋅=-,即221114x y y =-……① 又221114x y +=…………② 将①代入②,消去1x 得2113440y y +-=,解得123y =或12y =-(舍去), 将123y =代入①,得1x =所以114y k x -== 经检验,所求k 值均符合题意,综上,k的值为25.(西城·文·题18)椭圆C :22221(0)x y a b a b+=>>(2,0)点.⑴求椭圆C 的方程;⑵设直线l :y x m =+与椭圆C 交于,A B 两点,O 为坐标原点,若OAB ∆直角三角形,求m 的值.【解析】 ⑴已知241c a a ==,所以2,a c ==222a b c =+,所以1b =,所以椭圆C 的方程为2214x y +=.⑵联立2214x y y x m ⎧+=⎪⎨⎪=+⎩,消去y 得2258440x mx m ++-=,2226480(1)1680m m m ∆=--=-+,令0∆>,即216800m -+>,解得m <. 设A ,B 两点的坐标分别为1122(,),(,)x y x y ,i )当AOB ∠为直角时,则21212844,55m x x m x x -+=-=,因为AOB ∠为直角,所以0OA OB ⋅=,即12120x x y y +=, 所以212122()0x x m x x m +++=,所以222888055m m m --+=,解得m =ii )当OAB ∠或OBA ∠为直角时,不妨设OAB ∠为直角, 由直线l 的斜率为1,可得直线OA 的斜率为1-, 所以111y x =-,即11y x =-, 又2214x y +=,所以211514x x =⇒=1112m y x x =-=-=依题意m <,且0m ≠,经检验,所求m 值均符合题意,综上,m的值为26.(东城·理·题19)已知椭圆2222:1x y C a b+=(0)a b >>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -相切.⑴求椭圆C 的方程;⑵设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;⑶在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ⋅的取值范围.【解析】 ⑴由题意知12c e a ==,所以22222214c a b e a a -===.即2243a b =.又因为b ==24a =,23b =. 故椭圆C 的方程为22143x y +=.⑵由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-. 由22(4),1.43y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)3264120k x k x k +-+-=. ①设点11(,)B x y ,22(,)E x y ,则11(,)A x y -. 直线AE 的方程为212221()y y y y x x x x +-=--. 令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入整理,得12121224()8x x x x x x x -+=+-.②由①得21223243k x x k +=+,2122641243k x x k -=+代入②整理,得1x =. 所以直线AE 与x 轴相交于定点(1,0)Q .⑶当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(,)M M M x y ,(,)N N N x y 在椭圆C 上. 由22(1)143y m x x y =-⎧⎪⎨+=⎪⎩得2222(43)84120m x m x m +-+-=.易知0∆>.所以22843M N m x x m +=+,2241243M N m x x m -=+,22943M N m y y m =-+.则M N M N OM ON x x y y ⋅=+2225125334344(43)m m m +=-=--++.因为20m ≥,所以21133044(43)m --<+≤. 所以54,4OM ON ⎡⎫⋅∈--⎪⎢⎣⎭.当过点Q 直线MN 的斜率不存在时,其方程为1x =.解得3(1,)2M ,3(1,)2N -.此时54OM ON ⋅=-. 所以OM ON ⋅的取值范围是54,4⎡⎤--⎢⎥⎣⎦.27.(东城·文·题19)已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -相切.⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点. 【解析】 ⑴由题意知c e a ==, 所以22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==, 故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<,又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k << ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -, 直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).28.(宣武·理·题19)已知椭圆22221(0)x y a b a b+=>>⑴若原点到直线0x y b +-=⑵设过椭圆的右焦点且倾斜角为45︒的直线l 和椭圆交于,A B 两点. i)当||AB b 的值;ii)对于椭圆上任一点M ,若OM OA OB λμ=+,求实数,λμ满足的关系式. 【解析】 ⑴∵d ==2b =.∵c e a ==2223c a =.∵222a b c -=,∴22243a a -=,解得2212,4ab ==.椭圆的方程为221124x y+=.⑵i)∵c a =2222223,23a b c a b ===,椭圆的方程可化为 22233x y b += …………①易知右焦点,0)F ,据题意有AB:y x = ………②由①,②有:22430x b -+= …………③ 设1122(,),(,)A x y B x y ,||AB =∴1b =ii)显然OA 与OB 可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量OM ,有且只有一对实数,λμ,使得等式OM OA OB λμ=+成立.设(,)M x y ,∵1122(,)(,)(,)x y x y x y λμ=+,∴1212,x x x y y y λμλμ=+=+又点M 在椭圆上,∴2221212()3()3x x y y b λμλμ+++= ……………④由③有:2121234b x x x x +==则222212121212121233()()4()63960x x y y x x x x x x x x b b b b +=+=-++=-+=……………⑤又,A B 在椭圆上,故有222222112233,33x y b x y b +=+= …………⑥将⑥,⑤代入④可得:221λμ+=.29.(宣武·文·题19)已知椭圆的中心在原点O ,焦点在x轴上,点(A -是其左顶点,点C 在椭圆上且0,||||AC CO AC CO ⋅==. ⑴求椭圆的方程;⑵若平行于CO 的直线l 和椭圆交于,M N 两个不同点,求CMN △面积的最大值,并求此时直线l 的方程.【解析】 ⑴设椭圆的标准方程为22221(0)x y a b a b+=>>,∵左顶点(,||||A AC CO AC CO -⊥=. ∴212a =,(C又∵C 在椭圆上,∴233112b+=,24b = ∴椭圆的标准方程为221124x y +=.⑵设1122(,),(,)M x y N x y∵CO 的斜率为1-,∴设直线l 的方程为y x m =-+,代入221124x y +=,得22463120x mx m -+-=.22122123644(312)0323124m m m x x m x x ⎧⎪∆=-⋅->⎪⎪+=⎨⎪⎪-⋅=⎪⎩∴||MN ==又C 到直线l的距离d ==,∴CMN △的面积1||2S MN d =⋅⋅=22162m m +-= 当且仅当2216m m =-时取等号,此时m =± ∴直线l的方程为0x y +±=.30.(崇文·理·题19)已知抛物线24y x =,点(1,0)M 关于y 轴的对称点为N ,直线l 过点M 交抛物线于,A B 两点. ⑴证明:直线,NA NB 的斜率互为相反数; ⑵求ANB ∆面积的最小值;⑶当点M 的坐标为(,0)(0m m >,且1)m ≠.根据⑴⑵推测并回答下列问题(不必说明理由): ①直线,NA NB 的斜率是否互为相反数? ②ANB △面积的最小值是多少?【解析】 ⑴设直线l 的方程为()1(0)y k x k =-≠.由()21,4,y k x y x ⎧=-⎪⎨=⎪⎩ 可得 ()2222240k x k x k -++=. 设()()1122,,,A x y B x y ,则21212224,1k x x x x k ++==.∴124y y =-∴()1,0N - 1212221212441144NA NB y y y yk k x x y y +=+=+++++ ()()()()()()2212212112222212124444(4444)04444y y y y y y y y y y y y ⎡⎤+++-+-+⎣⎦===++++.又当l 垂直于x 轴时,点,A B 关于x 轴,显然0,NA NB NA NB k k k k +==-. 综上,0,NA NB NA NB k k k k +==-. ---------------- 5分 ⑵12NAB S y y ∆=-==4. 当l 垂直于x 轴时,4NAB S ∆=.∴ANB ∆面积的最小值等于4. ----------------10分 ⑶推测:①NA NB k k =-;②ANB∆面积的最小值为4.31.(崇文·文·题19)已知椭圆()222210x y a b a b+=>>短轴的一个端点(D ,离心率12e =.过D 作直线l 与椭圆交于另一点M ,与x轴交于点A (不同于原点O ),点M 关于x 轴的对称点为N ,直线DN 交x 轴于点B . ⑴求椭圆的方程; ⑵求OA OB ⋅的值.【解析】⑴由已知,2,a b =所以椭圆方程为 22143x y +=.⑵设直线l 方程为y kx =0y=,得A ⎛⎫⎪ ⎪⎝⎭.由方程组223412y kx x y ⎧=+⎪⎨+=⎪⎩ 可得(223412x k x +=,即()22340k x++=.所以M x =,所以M ⎛ ⎝,N ⎛- ⎝.所以34DN k k ==. 直线DN 的方程为34y x k=令0y =,得B ⎛⎫⎪ ⎪⎝⎭.所以 OA OB ⋅=4=.32.(朝阳·理·题19)已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点31,2⎛⎫- ⎪⎝⎭,过点()2,1P 的直线l 与椭圆C 在第一象限相切于点M .⑴求椭圆C 的方程;⑵求直线l 的方程以及点M 的坐标;⑶是否存过点P 的直线1l 与椭圆C 相交于不同的两点,A B ,满足2PA PB PM ⋅=?若存在,求出直线1l 的方程;若不存在,请说明理由.【解析】 ⑴设椭圆C 的方程为22221(0)x y a b a b +=>>,由题意得22222191412a b c a a b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得224,3a b ==,故椭圆C 的方程为22143x y+=.⑵因为过点()2,1P 的直线l 与椭圆在第一象限相切,所以l 的斜率存在,故可设直线l 的方程为(2)1y k x =-+.由221,43(2)1x y y k x ⎧+=⎪⎨⎪=-+⎩得222(34)8(21)161680k x k k x k k +--+--=. ①因为直线l 与椭圆相切,所以222[8(21)]4(34)(16168)0k k k k k ∆=---+--=.整理,得32(63)0k +>.解得12k >-.所以直线l 的方程为11(2)1222y x x =--+=-+.将12k =-代入①式,可以解得M 点横坐标为1,故切点M 坐标为31,2⎛⎫⎪⎝⎭.⑶若存在直线1l 满足条件的方程为1(2)1y k x =-+,代入椭圆C 的方程得 22211111(34)8(21)161680k x k k x k k +--+--=.因为直线1l 与椭圆C 相交于不同的两点,A B ,设,A B 两点的坐标分别为1122(,),(,)x y x y , 所以2221[8(21)]4(34)(16168)32(63)0.k k k k k k ∆=---+--=+> 所以12k =-.又21111121222118(21)16168,3434k k k k x x x x k k ---+==++,因为2PA PB PM ⋅=,即12125(2)(2)(1)(1)4x x y y --+--=,所以2212(2)(2)(1)||x x k PM --+=54=.即2121215[2()4](1)4x x x x k -+++=.所以222121111222111161688(21)445[24](1)3434344k k k k k k k k k ---+-⋅++==+++,解得112k =±. 因为,A B 为不同的两点,所以12k =.于是存在直线1l 满足条件,其方程为12y x =.33.(朝阳·文·题19)已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点31,2M ⎛⎫⎪⎝⎭,过点()2,1P 的直线l 与椭圆C 相交于不同的两点,A B . ⑴求椭圆C 的方程;⑵是否存直线l ,满足2PA PB PM ⋅=?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】 ⑴设椭圆C 的方程为22221(0)x y a b a b +=>>,由题意得22222191412a b c a a b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得224,3a b ==,故椭圆C 的方程为22143x y += 5分⑵若存在直线l 满足条件,设直线l 的方程为(2)1y k x =-+由221,43(2)1x y y k x ⎧+=⎪⎨⎪=-+⎩得222(34)8(21)161680k x k k x k k +--+--= 因为直线l 与椭圆C 相交于不同的两点,A B . 设,A B 两点的坐标分别为()()1122,,,x y x y所以222[8(21)]4(34)(16168)0.k k k k k ∆=---⋅+⋅-->整理,得32(63)0k +>解得12k >-.又21212228(21)16168,3434k k k k x x x x k k ---+==++ 且2PA PB PM ⋅=.即12125(2)(2)(1)(1)4x x y y --+--=. 所以2212(2)(2)(1)||x x k PM --+=54=即212125[2()4](1).4x x x x k -+++=所以222222161688(21)445[24](1)3434344k k k k k k k k k ---+-⋅++==+++ 解得12k =±.所以12k =.于是,存在直线l 满足条件,其方程为12y x =.二模:1、(丰台区)20.(13分)已知抛物线24x y =的焦点为F ,过焦点F 且不平行于x 轴的动直线l 交抛物线于A ,B 两点,抛物线在A 、B 两点处的切线交于点M . (Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列;(Ⅱ)设直线MF 交该抛物线于C ,D 两点,求四边形ACBD 面积的最小值.解:(Ⅰ)由已知,得(0,1)F ,显然直线AB 的斜率存在且不得0, 则可设直线AB 的方程为1y kx =+(0k ≠),11(,)A x y ,22(,)B x y ,由24,1x y y kx ⎧=⎨=+⎩消去y ,得2440x kx --=,显然216160k ∆=+>. 所以124x x k +=,124x x =-. ………………………………………………2分由24x y =,得214y x =,所以'12y x =, 所以,直线AM 的斜率为112AM k x =,所以,直线AM 的方程为1111()2y y x x x -=-,又2114x y =,所以,直线AM 的方程为 112()x x y y =+①。
初三数学综合练习(一)参考答案及评分标准 一、 选择题(本大题共30分,每小题3分):二、 填空题(本大题共18分,每小题3分):11.()()11a a a +-. 12. y=x6-. 13. ()20012025x x =-. 14.4≤m 且0≠m . 15. a=1,b=-1. 答案不唯一(全对给3分).16. (1) OD=OE 或DC=EC 或OC 平分∠AOB 等等均可;--------------------------1分(2)角平分线上的点到角两边距离相等. --------------------------3分三、解答题(本大题共72分,其中第17—26题,每小题5分,第27题7分,第28题7分,第29题8分): 17.解: 1)21(31)-(2016+3tan30 -+-+︒π=2131333+-++⨯----------------------------4分 =232+ ----------------------------5分18.解:法1:22))(()12(b b a b a a --+--=2222)(144b b a a a ---+- ---------------------------2分 =2222144b b a a a -+-+-=1432+-a a ----------------------------3分∵07432=--a a ,∴7432=-a a , -----------------------------4分 当7432=-a a 时原式=17+=8 --------------------------5分 法2:22))(()12(b b a b a a --+--=2222)(144b b a a a ---+- ---------------------------2分=2222144b b a a a -+-+-=1432+-a a ----------------------------3分∵07432=--a a , ∴11-=a ,372=a -----------------------------4分 当11-=a 时,原式=8 当372=a 时,原式=8 ------------------------------5分19.解: x x x x x 2)2()2)(2(=+-+- ---------------------------1分x x x x 22422=--- ----------------------------2分解得:1-=x ------------------------------------------------3分经检验1-=x 是原方程的解. ------------------------------------------------4分 ∴原方程的解是1-=x . -------------------------------------------------5分20.证明:法1:∵在△ABC 中, ∠ABC = 90°,BD 为AC 边的中线.∴BD = AD =21AC . ---------------------------------------------1分 ∴∠A= ∠ABD , ---------------------------------------------3分 ∵CE ∥AB ,∴∠ABD =∠E . --------------------------------------------4分 ∴∠A=∠E . ---------------------------------------------5分法2:∵CE ∥AB ,∴∠ABC +∠EC B =180°. ---------------------------------------------1分 ∵∠ABC = 90°, ∴∠EC B = 90°. ---------------------------------------------2分 ∴∠A +∠ACB =90°,∠E +∠EBC= 90°. ∵在△ABC 中, ∠ABC = 90°,BD 为AC 边的中线, ∴CD = BD =21AC . ---------------------------------------------3分 ∴∠ACB = ∠EBC , -----------------------------------------------4分 ∴∠A=∠E . ------------------------------------------------5分法3:∵CE ∥AB ,∴∠ABC +∠EC B =180°. ---------------------------------------------1分 ∵∠ABC = 90°, ∴∠EC B = 90°. ----------------------------------------------2分 ∴∠ABC =∠EC B .∵在△ABC 中, ∠ABC = 90°,BD 为AC 边的中线, ∴CD = BD =21AC . --------------------------------------------3分 ∴∠ACB = ∠EBC , --------------------------------------------4分 ∴△ABC ∽△ECB .∴∠A=∠E . --------------------------------------------5分法4:∵在△ABC 中, ∠ABC = 90°,BD 为AC 边的中线,∴CD = BD =21AC . ---------------------------------------------1分 ∴∠DCB = ∠DBC , -------------------------------------------2分 ∵CE ∥AB ,∴∠ABC +∠EC B =180°. ----------------------------------------------3分 ∵∠ABC = 90°, ∴∠EC B =90°.∴∠ABC =∠ECB . ----------------------------------------------4分 ∵BC=CB∴△ABC ≌△ECB .∴∠A=∠E . ----------------------------------------------5分法5:∵在△ABC 中, ∠ABC = 90°,BD 为AC 边的中线,∴BD = CD =21AC . ---------------------------------------------1分 ∴∠DBC= ∠DCB , ---------------------------------------------2分 ∵CE ∥AB ,∴∠ABC +∠EC B =180°. --------------------------------------------3分 ∵∠ABC = 90°, ∴∠EC B =90°.∴∠ABC =∠EC B . ---------------------------------------------4分 ∴∠ABC-∠DBC =∠EC B-∠DCB .即:∠ABD =∠ECD ∵∠ADB =∠EDC .∴∠A=∠E . --------------------------------------------5分21.解:设购进A 型号净水器每台x 元,B 型号净水器每台y 元,-----------------------1分根据题意,得:---------------------------3分解得:⎩⎨⎧==60100y x ----------------------------5分答:A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.22.解:∵四边形ABCD 是平行四边形∴AB ∥CD ,∵E G ⊥AB 于点G , ∴.90︒=∠=∠EHC BGE在△DHG 中,︒=∠90G H D ,45GDH ∠=︒,82DG =,∴8DH GH ==. -------------------------1分 ∵E 为BC 中点,10BC =,∴5BE EC ==. ------------------------2分 ∵BEG CEH ∠=∠ ∴△BEG ≌△CEH . ∴142GE HE GH ===. ------------------------3分 在△EHC 中,90H ∠=︒,5CE =,4EH =,∴3CH =. -----------------------4分∴5=CD -------------------------5分23.(1)图1,正确画出△COD ---------------------------1分(图1) (图2) (图3)点D 的坐标为:D (-3,2). -----------------------2分xyBDC A 12345–1–2123–1–2–3–4oxyP12345–1–2123–1–2–3–4A C DB oxy12345–1–2123–1–2–3–4B D C A Po(2) 由OC =OA =2,∠AOC =90°, ∴∠OAC =45°. ∵A (2,0),C (0,2)∴过A 、C 两点的一次函数的关系式为:2+-=x y ------------------3分当CD 为直角边时,如图2,此时,点P 的横坐标为-3.∴P(-3,5). --------------------------------------4分 ② 当CD 为斜边时,如图,此时3,点P 的横坐标为32-. ∴P(32-72). ---------------------------------------5分 ∴在直线AC 上,使△PCD 是等腰直角三角形的点P 坐标为:(-3,5)或(32-,72).24.解法1:连结BC∵AB 为⊙O 的直径,点C 在⊙O 上, ∴∠ACB =90°. -------------1分 ∵∠CAB =30°,∴∠D =60°. ---------------2分∵点D 为弧AB 的中点,∴∠ACD =45°.过点A 作AE ⊥CD , ∵AC=∴AE=CE =分 ∴DE =分 ∴CD =分解法2:∵AB 为⊙O 的直径,点D 为弧AB 的中点,∴∠DAB =∠ACD =45°. ------------1分∵∠CAB =30°,∴弧BC=60°,弧AC =120°.∴∠ADC =60°. ------------------2分 过点A 作AE ⊥CD , ∵AC=∴AE=CE =分B AB A∴DE =分 ∴CD =分25. 解:(1)20%; ---------------------------------- 1分 (2)如图-----------------------3分(3)400×20%=80(万人). -----------------------5分26.解:(1)x >0 -----------1分(2)当b <22-或b >22,-----3分(3)∵点B 的纵坐标为1,∴点B 的横坐标为2,∵点E 为AB 中点,∴点E 坐标为()23,23 ---------4分∴点F 的坐标为(23,34)∴EF=613423=- -------------5分27.解:(1)∵二次函数c bx x ++-=2y , 当0x =和2x -=时所对应的函数值相等,∴二次函数c bx x ++-=2y 的图象的对称轴是直线1-=x .∵二次函数c bx x ++-=2y 的图象经过点A (1,0),∴⎪⎩⎪⎨⎧-=++-=1210bc b ----------------------------------------1分解得⎩⎨⎧=-=32c b∴二次函数的表达式为:32y 2+--=x x . ---------------------------------------2分(2)存在由题知A 、B 两点关于抛物线的对称轴x=﹣1∴连接BC ,与x=﹣1的交于点 D ,此时△DAC 长最小 ----------------------3分 ∵32y 2+--=x x∴C 的坐标为:(0,3)直线BC 解析式为:y=x+3 --------------------4∴D (﹣1,2); ---------- 5分(3) 设M 点(x ,322+--x x )(﹣3<x <0) 作过点M 作M E ⊥x 轴于点E ,则E(x,0)∵S △MBC =S 四边形BMCO ﹣S △BOC =S 四边形BMCO ﹣29,S 四边形BMCO =S △BME +S 四边形MEOC)(2121OC ME OE ME BE +⨯⨯+⨯⨯==21(x+3)(322+--x x )+21(﹣x )(322+--x x +3)=8272923232++⎪⎭⎫ ⎝⎛+-x∵要使△MBC 的面积最大,就要使四边形BMCO 面积最大当x=23-时,四边形BMCO 在最大面积=82729+ ∴△BMC 最大面积=8272982729=-+ --------------------------------6分当x=23-时,32y 2+--=x x =415∴点M 坐标为(23-,415) --------------------------------7分②判断: AE =BD ---------------------------------2分 证明:如图2,连接AC ∵BA =BC ,且∠ABC =60° ∴△ABC 是等边三角形 ∴∠ACB =60°,且CA =CB∵将线段CD 绕点C 顺时针旋转60°得到线段CE ∴CD =CE ,且∠DCE =60° ∴∠BCD =∠ACE∴△BCD ≌△ACE (SAS )∴AE =BD ------------------------------3分 (2)判断:222DA DC DB += ------------------------4分(3)判断:222FA FC FB += -------------------------5分 证明:如图3,连接AC∵BA =BC ,且∠ABC =60° ∴△ABC 是等边三角形 ∴∠ACB =60°,且CA =CB将线段CF 绕点C 顺时针旋转60°得到线段CE ,连接EF 、EA ∴CE =CF ,且∠FCE =60°, ∴△CEF 是等边三角形 ∴∠CFE =60°,且FE =FC ∴∠BCF =∠ACE∴△BCF ≌△ACE (SAS )∴AE =BF ---------------------------------6分 ∵∠AFC =150°, ∠CFE =60° ∴∠AFE =90°在Rt △AEF 中, 有:222FA FE AE +=∴222FA FC FB +=. ---------------------------------7分BB28-图3BD②5或-1 ;----------------------------------3分(2)以ON为一边在第一象限作正方形OKIN,如图3①点M在正方形OKIN的边界上,抛物线一部分在正方形OKIN内,P是抛物线上一点,∴正方形OKIN是点M,N,P的一个面积最小的最佳外延正方形∴点M,N,P的最佳外延正方形的面积的最小值是16;∴点M,N,P的最佳外延正方形的面积S的取值范围是:S≥16 -----------------5分x3------------------------------6分满足条件的点P的横坐标x的取值范围是≠(3)6≥a----------------------------------8分。
21.已知:如图,⊙O 是ABC ∆的外接圆,AB 为⊙O 直径,且AB PA ⊥于点A ,AC PO ⊥于点M (1)求证:PC 是⊙O 的切线;(2)当2=OM ,42cos =B 时,求PC 的长。
[崇文一模] 20.如图,AB 是半圆⊙O 的直径,过点O 作弦AD 的垂线交半圆⊙O 于点E ,交AC 于点C ,使BED C ∠=∠ (1)判断直线AC 与圆O 的位置关系,并证明你的结论。
(2)若8=AC ,54cos =∠BED ,求AD 的长。
[延庆一模]20.如图,AB 为⊙O 的直径,AD 平分BAC ∠交⊙O 于点D ,AC 交AC DE ⊥的延长线于点E ,B BF A ⊥交AD 的延长线于点F ,(1)求证:DE 是⊙O 的切线;(2)若,3=DE ⊙O 的半径为5,求BF 的长. [西城一模]21.如图,ABC △内接于O ,AB AC =.点D 在O 上,AD AB ⊥于点A ,AD 与BC 交于点E ,点F 在DA 的延长线上,AF AE =.(1)求证:BF 是O 的切线;(2)若4AD =,4cos 5ABF ∠=,求BC 的长.O FEDCBAM B PO AC F E DCBAODCBAO21.如图,⊙O 的直径AB=4,C 、D 为圆周上两点,且四边形OBCD 是菱形,过点D 的直线EF ∥AC ,交BA 、BC 的延长线于点E 、F .(1)求证:EF 是⊙O 的切线;(2)求DE 的长.[门头沟一模]20. 已知:如图,BE 是⊙O 的直径,CB 与⊙O 相切于点B ,OC ∥DE 交⊙O 于点D ,CD 的延长线与BE 的延长线交于A 点.(1)求证:AC 是⊙O 的切线; (2)若AD =4,CD =6,求tan ∠ADE 的值.[丰台一模]20.已知:如图,AB 为⊙O 的直径,⊙O 过AC 的中点D ,DE ⊥BC 于点E . (1)求证:DE 为⊙O 的切线; (2)若DE =2,tan C =21,求⊙O 的直径.[石景山一模]20.已知:如图,AB 为⊙O 的直径,弦OD AC //,BD 切⊙O 于B ,联结CD . (1)判断CD 是否为⊙O 的切线,若是请证明;若不是请说明理由. (2)若2=AC ,6=OD ,求⊙O 的半径. OF E DCBAOE D C B A20. 已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F . (1)求证:AC 与⊙O 相切; (2)当BD=2,sinC=12时,求⊙O 的半径.[平谷一模]19. 已知,如图,直线MN 交⊙O 于A,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E .(1)求证:DE 是⊙O 的切线;(2)若6DE =cm ,3AE =cm ,求⊙O 的半径.[大兴一模]19.如图7,已知AB 是⊙O 的直径,⊙O 过BC 的中点D ,且︒=∠90DEC .(1)求证:DE 是⊙O 的切线;(2)若30C ∠=°,32=CE ,求⊙O 的半径.[密云一模]19.如图,等腰三角形ABC 中,AC =BC =6,AB =8.以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是⊙O 的切线; (2)求sin ∠E 的值. AF DO E B G C AE DOBC(图7)23.如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆交AD 于F ,交BC 于G ,延长BA 交圆于E.(1)若ED 与⊙A 相切,试判断GD 与 ⊙A 的位置关系,并证明你的结论; (2)在(1)的条件不变的情况下,若 GC =CD =5,求AD 的长.[海淀一模]20. 已知:如图,⊙O 为ABC ∆的外接圆,BC 为⊙O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D .(1)求证:DA 为⊙O 的切线; (2)若1BD =,1tan 2BAD ∠=,求⊙O 的半径.[昌平一模]20.已知:如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且.OA AB AD == (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且8BE =,5tan 2BFA ∠=, 求⊙O 的半径长.(第23题图) F OD CBAFE DCBAO[朝阳一模] 21.(本小题满分5分)如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD , 且∠CDB=∠OBD=30°,DB=63cm .(1)求证:AC 是⊙O 的切线; (2)求⊙O 的半径长;(3)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积 (结果保留π).[东城一模]20.如图,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°,∠C = 30°. (1)判断直线CD 是否为⊙O 的切线,并说明理由; (2)若CD = 33 ,求BC 的长.OBCDEA。
北京市房山区初中毕业考试(中考一模)数学试题初中数学第I 卷(选择题)一、选择题(本大题共30分,每小题3分):1.为了减少燃煤对大气的污染,北京实施煤改电工程.每年冬季采暖季期间可压减燃煤约608000吨,将608000用科学记数法表示应为A.460.810⨯ B.46.0810⨯ C. 60.60810⨯ D. 56.0810⨯【考点】科学记数法和近似数、有效数字【试题解析】608000= 所以选D【答案】D2.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是A.点AB.点BC.点CD.点D【考点】实数的相关概念【试题解析】解析:表示2的相反数的点是-2,所以选A【答案】A3.有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.C B A 12345-1-2-3-46将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是A. 51B. 52 C. 53 D. 54【考点】轴对称与轴对称图形【试题解析】解析:里面是轴对称图形,不是中心对称图形的有等腰三角形,所以概念为所以选A【答案】A4.如图,在△ABC 中,∠C =90°,点D 在AC 边上,DE ∥AB ,如果∠ADE =46°,那么∠B 等于A .34°B .54°C .46°D .44°【考点】轴对称与轴对称图形【试题解析】解析:∵DE//AB∴∠ADE=∠A=46°∴∠B=∠C-∠A=44°【答案】D5.象棋在中国有着三千多年的历史,属A BED C4题图于二人对抗性游戏的一种。
由于用具简单,趣味性强,成为流行极为广泛的棋艺活动。
如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是A.(-2,1) B.(2,-2) C.(-2,2) D.(2,2)【考点】平面直角坐标系及点的坐标【试题解析】解析:马的坐标纵坐标和卒的相等,所以排除A,B横坐标,在帅的左边2个单位,所以是-2所以选C【答案】C6.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,•如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是A.75米 B.25米 C.100米 D.120米【考点】相似三角形的应用【试题解析】解析:根据题意可得:△ABD∽△CDE∴AB:CE=BD:CD∴AB=100米所以选C【答案】C7. 在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的A. 中位数B. 众数C.平均数D. 方差【考点】平均数、众数、中位数【试题解析】中位数是表示在中间的那一个数或者中间两个数的平均数,有5名同学,那么中位数就是第3名同学的成绩,所以只要知道中位数,就可以知道是否进入前三名了.【答案】A8. 下列几何体中,主视图相同的是A.①② B.①④ C.①③ D.②④【考点】几何体的三视图【试题解析】解析:主视图就是指从正面观察到的图形是什么,①从正面观察到的是一个长方形,③也是一个长方形,所以选C【答案】C9.如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为A. 23π B.83π C.6π D.103π【考点】图形的旋转【试题解析】解析:阴影面积=故选D.【答案】D10.如图,在正方形ABCD中,AB=3cm,动点M自点A出发沿AB方向以每秒1厘米的速度运动,同时动点N自点A出发沿折线AD—DC—CB以每秒3厘米的速度运动,到达点B时运动同时停止.设△AMN的面积为y(厘米2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是NMD CB A【考点】函数的表示方法及其图像【试题解析】解析:当点N在AD上时,即0≤x≤1,S△AMN=当点N在AD上时,即0≤x≤1,S△AMN=×x×3x=x2,点N在CD上时,即1≤x≤2,S△AMN=×x×3=x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN=×x×(9-3x)=-x2+x,开口方向向下.选B.【答案】B二、填空题(本大题共18分,每小题3分):=________________.11. 分解因式:3a a【考点】因式分解【试题解析】原式=a(a²-1)=a(a+1)(a-1)【答案】a(a+1)(a-1)12.已知反比例函数的图象经过A(2,-3),那么此反比例函数的关系式为______. 【考点】反比例函数表达式的确定【试题解析】解析:设反比例函数解析式为把x=-2,y=-3代入得:k=-6【答案】13.3月12日“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,求这两种树苗的进价分别是多少元.如果设每棵柏树苗的进价是x元,那么可列方程为______________.【考点】一次方程(组)的应用【试题解析】根据题意,这道题的等量关系式是柏树苗的费用=枣树苗的费用200x=120(2x-5)【答案】14.关于x的一元二次方程mx2+4x+1=0有两个实数根,那么m的取值范围是 . 【考点】一元二次方程的根与系数的关系【试题解析】解析:m≠0△=16-4m≥0解得:m ≤4且m ≠0【答案】m ≤4且m ≠015. 二次函数y=ax 2+bx+c(a ≠0)图象经过A(-1,m),B(2,m).写出一组满足条件的a 、b 的值:a=_____,b=______.【考点】二次函数表达式的确定【试题解析】解析:a-b+c=m 4a+2b+c=m -3a-3b=0 a=-b所以a=1,b=-1【答案】a=1,b=-116.如图,已知∠AOB . 小明按如下步骤作图:① 以点O 为圆心,任意长为半径画弧,交OA 于点D ,交OB 于点E . ② 分别以D ,E 为圆心,大于12DE C .③ 画射线OC .所以射线OC 为所求∠AOB 的平分线.BACED根据上述作图步骤,回答下列问题:(1)写出一个正确的结论:________________________. (2)如果在OC 上任取一点M,那么点M到OA、OB的距离相等.依据是:_______________________________________________________.【考点】尺规作图【试题解析】(1)以同样长画弧,OD,OE 都是这个固定的长度,所以OD=OE(2)角平分线上的带你到角两边距离相等.【答案】(1) OD=OE (2)角平分线上的点到角两边距离相等.三、解答题(本大题共72分,其中第17—26题,每小题5分,第27题7分,第28题7分,第29题8分):17. 计算:10)21(31)-(2016+3tan30 -+-+︒π. 【考点】实数运算【试题解析】解析:== 【答案】18.已知07432=--a a ,求代数式22))(()12(b b a b a a --+--的值.【考点】代数式及其求值【试题解析】== = ∵,∴,当时原式==8【答案】819. 解分式方程:2212+=--x xx . 【考点】分式方程的解法【试题解析】解得:经检验是原方程的解.∴原方程的解是【答案】x=-120.已知:如图,在△ABC 中,∠ABC = 90°,BD 为AC 边的中线,过点C 作 CE ∥AB 与BD 延长线交于点E . 求证:∠A =∠E .【考点】平行线的判定及性质【试题解析】∵在△ABC 中, ∠ABC = 90°,BD 为AC 边的中线.∴BD = AD = AC.∴∠A= ∠ABD,∵CE ∥AB ,∴∠ABD =∠E.∴∠A=∠E.【答案】见解析21.列方程(组)解应用题:为提高饮用水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器共160台,A 型号家用净水器进价为每台150元,B 型号家用净水器进价为每台350元,购进两种型号的家用净水器共用去36000元.求A 、B 两种型号家用净水器各购进了多少台.EDB【考点】一次方程(组)的应用【试题解析】设购进A 型号净水器每台元,B 型号净水器每台元,根据题意,得:解得:答:A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.【答案】A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.22. 如图,在ABCD 中,E 为BC 中点,过点E 作AB EG ⊥于G ,连结DG ,延长DC ,交GE 的延长线于点H.已知10BC =,45GDH ∠=︒,DG 82=.求 CD 的长.【考点】平行四边形的性质【试题解析】∵四边形是平行四边形∴∥,∵EG ⊥于点,∴在△中,,,,∴.∵为中点,,∴.∵∴△≌△.∴.在△中,,,,∴.∴【答案】523 .如图,在平面直角坐标系中,点A(2,0),B(0,3),C(0,2),点D在第二象限,且△AOB≌△OCD.(1) 请在图中画出△OCD ,并直接写出点D的坐标;(2) 点P在直线AC上,且△PCD是等腰直角三角形.x yBCA11o求点P的坐标.【考点】平面直角坐标系及点的坐标【试题解析】(1)图1,正确画出△COD点D的坐标为:D(-3,2).(2) 由OC=OA=2,∠AOC=90°,∴∠OAC=45°.∵A(2,0),C(0,2)∴过A、C两点的一次函数的关系式为:①当CD为直角边时,如图2,此时,点P的横坐标为-3. ∴P(-3,5).②当CD为斜边时,如图,此时3,点P 的横坐标为.∴P().∴在直线AC上,使△PCD是等腰直角三角形的点P坐标为:(-3,5)或(,).【答案】见解析24.如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D为弧AB的中点,AC=43.求CD的长.【考点】与圆有关的计算【试题解析】连结BC∵AB为⊙O的直径,点C在⊙O上,∴∠ACB =90°∵∠CAB =30°,∴∠D =60°.∵点D为弧AB的中点,∴∠ACD =45°.CB AO过点A作AE⊥CD,∵AC=,∴AE=CE =.∴DE =.∴CD =.【答案】25.“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物.公众对于大气环境质量越来越关注,某市为了了解市民对于“PM 2.5浓度升高时,对于户外活动的影响”的态度,随机抽取了部分市民进行调查.根据调查的相关数据,绘制的统计图表如下:PM2.5浓度升高时,对于户外活动是百分比否有影响,您的态度是A.没有影响2%B.影响不大,还可以进行户外活动30%C.有影响,减少户外活动42%D.影响很大,尽可能不去户外活动mE .不关心这个问题6%根据以上信息解答下列问题:(1)直接写出统计表中m的值;(2)根据以上信息,请补全条形统计图;(3)如果该市约有市民400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.【考点】统计图的分析【试题解析】(1)1-2%-6%-30%-42%=20%;(2)如图2% 42% C6% E30% BDA PM2.5浓度升高时对于户外活动 公众的态度的扇形统计图12084040PM2.5浓度升高时对于户外活动 公众的态度的条形统计图C D E B A 公众的态度80160240320400480560640720800880o(3)400×20%=80(万人).【答案】见解析26.如图,在平面直角坐标系xOy 中,双曲线12y x=(1)当x 时,1y >0;(2)直线2y x b =-+,当22b =时,直线与双曲线有唯一公共点,问:b 时,直线与双曲线有两个公共点;(3)如果直线2y x b =-+与双曲线12y x=交于A 、B 两点,且点A 的坐标为(1,2),点B 的纵坐标为1.设E 为线段AB 的中点,过点E 作x 轴的垂线EF ,交双曲线于点F .求线段EF 的长.【考点】反比例函数的图像及其性质【试题解析】(1)>0(2)当<或>,(3)∵点B 的纵坐标为1,∴点B 的横坐标为2,∵点E 为AB 中点,xyy 1=2x12345–1–2–3–4–512345–1–2–3–4–5o∴点E 坐标为(∴点F 的坐标为(,)∴EF=【答案】见解析27. 如图,二次函数c bx x ++-=2y 的图象(抛物线)与x 轴交于A(1,0), 且当0x =和2x -=时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x 轴的另一交点为点B ,与y 轴交于点C ,在这条抛物线的对称轴上是否存在点D ,使得△DAC 的周长最小?如果存在,求出D 点的坐标;如果不存在,请说明理由. (3)设点M 在第二象限,且在抛物线上,如果△MBC 的面积最大,求此时点M 的坐标及△MBC 的面积.【考点】二次函数表达式的确定xy12345–1–2–3–4–512–1–2–3–4–5o【试题解析】(1)∵二次函数,当和时所对应的函数值相等,∴二次函数的图象的对称轴是直线.∵二次函数的图象经过点A(,),∴解得∴二次函数的表达式为:.(2)存在由题知A、B两点关于抛物线的对称轴x=﹣1对称∴连接BC,与x=﹣1的交于点D,此时△DAC周长最小∵∴C的坐标为:(0,3)直线BC解析式为:y=x+3∴D(﹣1,2);(3)设M点(x,)(﹣3<x<0)作过点M作ME⊥x轴于点E,则E(x,0)∵S△MBC=S四边形BMCO﹣S△BOC=S四边形BMCO﹣,S四边形BMCO=S△BME+S四边形MEOC=(x+3)()+(﹣x)(+3)=∵要使△MBC的面积最大,就要使四边形BMCO面积最大当x=时,四边形BMCO在最大面积=∴△BMC最大面积=当x=时,=∴点M坐标为(,)【答案】见解析28.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.①依题意补全图1;②试判断AE与BD的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.(图1)(图2)【考点】四边形综合题【试题解析】解析:如图3,连接AC∵BA=BC,且∠ABC=60°∴△ABC是等边三角形∴∠ACB=60°,且CA=CB将线段CF绕点C顺时针旋转60°得到线段CE,连接EF、EA ∴CE=CF,且∠FCE=60°,∴△CEF是等边三角形∴∠CFE=60°,且FE=FC∴∠BCF=∠ACE∴△BCF≌△ACE(SAS)∴AE=BF∵∠AFC=150°, ∠CFE=60°∴∠AFE=90°在Rt△AEF中,有:∴.【答案】见解析29.在平面直角坐标系xoy 中,对于任意三点A ,B ,C 给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在正方形的内部或边界上,那么称该正方形为点A ,B ,C 的外延正方形,在点A ,B ,C 所有的外延正方形中,面积最小的正方形称为点A ,B ,C 的最佳外延正方形.例如,图1中的正方形A 1B 1C 1D 1,A 2B 2C 2D 2 ,A 3B 3CD 3都是点A ,B ,C 的外延正方形,正方形A 3B 3CD 3是点A ,B ,C 的最佳外延正方形.xy12345–1–2–3–4–512345–1–2–3–4–5B 1C 1B 2C 2C B 3oA 2D 3A 1A 3D 1D 2A B(图1) (图2)(1)如图1,点A (-1,0),B (2,4),C (0,t )(t 为整数).① 如果t =3,则点A ,B ,C 的最佳外延正方形的面积是 ;② 如果点A ,B ,C 的最佳外延正方形的面积是25,且使点C 在最佳外延正方形的一边上,请写出一个符合题意的t 值 ;xy12345–1–2–3–4–512345–1–2–3–4–5Do(图3 ) (图4)(2)如图3,已知点M (3,0),N (0,4),P (x ,y )是抛物线y=x 2-2x -3上一点,求点M ,N ,P 的最佳外延正方形的面积以及点P 的横坐标x 的取值范围;(3)如图4,已知点E (m ,n )在函数x 6y(x >0)的图象上,且点D 的坐标为(1,1),设点O ,D ,E 的最佳外延正方形的边长为a ,请直接写出a 的取值范围.【考点】二次函数与几何综合【试题解析】(1)① 16 ;② 5或-1 ;(2)以ON 为一边在第一象限作正方形OKIN ,如图3①点M 在正方形OKIN 的边界上,抛物线一部分在正方形OKIN 内,P 是抛物线上一点,∴正方形OKIN 是点M ,N ,P 的一个面积最小的最佳外延正方形∴点M ,N ,P 的最佳外延正方形的面积的最小值是16;∴点M,N,P的最佳外延正方形的面积S的取值范围是:S 16满足条件的点P的横坐标的取值范围是 3(3)【答案】见解析。
平面几何1. (崇文·理·题3)已知PA 是O 的切线,切点为A ,2PA =,AC 是O 的直径,PC 交O 于点B ,30PAB ∠=,则O 的半径为 ( )PAA .1B .2CD .【解析】 C ;30,2tan30PAPCA PABCA ∠=∠===2. (东城·理·题3) 如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点,PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =,则PC 的长是( )A .3B .C .2 DOPCB A【解析】 B ;延长CP 交于圆上一点,得到一条圆的弦,易知P 点为该弦的中点,有28PC PA PB =⋅=.3. (丰台·理·题9)在平行四边形ABCD 中,点E 是边AB 的中点,DE 与AC 交于点F ,若AEF ∆的面积是12cm ,则CDF ∆的面积是 2cm . 【解析】 4;EB取CD 的中点G ,连结BG 交AC 于H ,则∵BE DG ∥且1122BE AB CD DG ===,∴四边形BEDG 为平行四边形 ∴AF FH HC == ∴44DFC AEF S S ==△△4. (海淀·理·题10) 如图,AB 为O 的直径,且8AB =,P 为OA 的中点,过P 作O 的弦CD ,且:3:4C PP D =,则弦CD 的长度为 .【解析】 7;由8AB =得2,6AP PB ==.由已知和相交弦定理得 :3:4CP PD AP PB CP PD ⋅=⋅⎧⎨=⎩,解得34CP PD =⎧⎨=⎩. 于是347CD CP PD =+=+=.5. (石景山·理·题10)已知曲线C 的参数方程为cos ,2sin ,x y θθ=⎧⎨=-+⎩()θ为参数,则曲线C 的普通方程是 ;点A 在曲线C 上,点(,)M x y 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,则AM 的最小值是 .【解析】22(2)1x y ++=,32; C 是圆22(2)1x y ++=;不等式组的可行域如图阴影所示,A 点为(0,1)-、M 为10,2⎛⎫⎪⎝⎭时,||AM 最短,长度是32.6. (西城·理·题12) 如图,PC 切O 于点C ,割线PAB 经过圆心O ,弦C D A B ⊥于点E .已知O 的半径为3,2PA =,则PC = .OE = .B【解析】 94,5; 22(26)164PC PA PB PC =⋅=⨯+=⇒=;连结OC ,知OC PC ⊥,于是5PO =,2239235CO OE OP PE =⋅⇒==+.BCOE PDA7. (宣武·理·题11)若,,A B C 是O ⊙上三点,PC 切O ⊙于点C ,110,40ABC BCP ∠=︒∠=︒,则AOB ∠的大小为 . 【解析】 60︒;如图,弦切角40PCB CAB ∠=∠=︒,于是18030ACB CAB ABC ∠=︒-∠-∠=︒,从而260AOB ACB ∠=∠=︒.POCBA8. (朝阳·理·题12)如图,圆O 是ABC ∆的外接圆,过点C 的切线交AB 的延长线于点D ,3CD AB BC ===,则BD 的长为 ;AC 的长为 .【解析】 4,()24CD DB DA DB AB BD BD =⋅=⋅+⇒=.又由DCB CAB∠=∠知BCD ACD∆≅∆.于是BC BD CDAC CD AD==.即3BD ACAC CD===9.(西城·理·题12)如图,PC切O于点C,割线PAB经过圆心O,弦C D A B⊥于点E.已知O的半径为3,2PA=,则PC=.OE=.B【解析】94,5;22(26)164PC PA PB PC=⋅=⨯+=⇒=;连结OC,知OC PC⊥,于是5PO=,2239235CO OE OP PE=⋅⇒==+.BCO EPDA坐标系与参数方程1.(海淀·理·题4)在平面直角坐标系xOy中,点P的直角坐标为(1,.若以原点O为极点,x轴正半轴为极轴建立极坐标系,则点P的极坐标可以是()A.π1,3⎛⎫-⎪⎝⎭B.4π2,3⎛⎫⎪⎝⎭C.π2,3⎛⎫-⎪⎝⎭D.4π2,3⎛⎫-⎪⎝⎭【解析】C;易知2ρ==,()π2π3k k θ=-∈Z .2. (朝阳·理·题9)已知圆的极坐标方程为2cos ρθ=,则圆心的直角坐标是 ;半径长为 . 【解析】 ()1,0,1;由22cos ρρθ=,有222x y x +=,即圆的直角坐标方程为()2211x y -+=.于是圆心坐标为()1,0,半径为1.3. (崇文·理·题11)将参数方程12cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数)化成普通方程为 .【解析】 ()2214x y -+=;由12cos ,2sin x y θθ-==知()2214x y -+=.4. (石景山·理·题11)如图,已知PE 是圆O 的切线.直线PB 交圆O 于A 、B 两点,4PA =,12AB =,AE =.则PE 的长为_____,ABE ∠的大小为________.POEBA【解析】 8,30︒;24(412)64PE PA PB =⋅=⨯+=,则8PE =;由222P EP A A E =+,可知90PAE ∠=︒,即90BAE ∠=︒,由tan AE ABE AB ∠=,得30ABE ∠=︒.5. (西城·理·题11)将极坐标方程2cos ρθ=化成直角坐标方程为 . 【解析】2220x y x +-=; 2222cos 2x y x ρρθ=⇒+=.6. (东城·理·题12)圆的极坐标方程为sin 2cos ρθθ=+,将其化成直角坐标方程为 ,圆心的直角坐标为 .【解析】 2215(1)()24x y -+-=,11,2⎛⎫⎪⎝⎭;222sin 2cos 2x y y x ρρθρθ=+⇒+=+.7. (东城·理·题12)圆的极坐标方程为sin 2cos ρθθ=+,将其化成直角坐标方程为 ,圆心的直角坐标为 .【解析】 2215(1)()24x y -+-=,11,2⎛⎫⎪⎝⎭;222sin 2cos 2x y y x ρρθρθ=+⇒+=+.8. (宣武·理·题12)若直线:0l x =与曲线:x a C y φφ⎧=⎪⎨=⎪⎩(φ为参数,0a >)有两个公共点,A B ,且||2AB =,则实数a 的值为 ;在此条件下,以直角坐标系的原点为极点,x 轴正方向为极轴建立坐标系,则曲线C 的极坐标方程为 . 【解析】22,4cos 20ρρθ-+=; 曲线C :22()2x a y -+=,点C 到l 的距离为2a=,因此||22A B a ==⇒=;222(2cos )(2sin )ρθθ-+=,即24cos 20ρρθ-+=.9. (丰台·理·题12)在平面直角坐标系xOy 中,直线l 的参数方程为11x y t =⎧⎨=+⎩(参数t ∈R ),圆C 的参数方程为cos 1sin x y θθ=+⎧⎨=⎩(参数[)0,2πθ∈),则圆心到直线l 的距离是 .直线方程为1y x =+,圆的方程为()2211x y -+=.于是圆心()1,0到直线10x y -+=.复数1. (海淀·理·题1)在复平面内,复数1iiz =-(i 是虚数单位)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【解析】 C ;()()1i 1i i 1i iz -==--=--,该复数对应的点位于第三象限.2. (丰台·理·题1)如果1i1ia z a -=+为纯虚数,则实数a 等于( )A .0B .1-C .1D .1-或1 【解析】 D ;设i z x =,0x ≠则1ii 1i a x a -=+()1i 0ax a x ⇔+-+=100ax a x +=⎧⇔⎨+=⎩11a x =⎧⇔⎨=-⎩或11a x =-⎧⎨=⎩.3. (石景山·理·题1)复数21i+等于( )A .2i -B .2iC .1i -D .1i + 【解析】 C ;22(1i)2(1i)1i 1i (1i)(1i)2--===-++-.4. (东城·理·题1)i 是虚数单位,若12ii(,)1ia b a b +=+∈+R ,则a b +的值是( ) A .12- B .2- C .2 D .12【解析】 C ;12i (12i)(1i)3i 1i (1i)(1i)2++-+==++-,于是31222a b +=+=. 5. (朝阳·理·题1)复数112i i ++等于 ( )A .12i +B .12i -C .12-D .12【解析】 D ;计算容易有1i 11i 22+=+.6. (海淀·文·题1)在复平面内,复数()i 1i -(i 是虚数单位)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【解析】 A ;()i 1i 1i -=+,对应的点为()1,1位于第一象限.7. (丰台·文·题1)复数1i1iz -=+化简的结果等于( )A .i -B .iC .2i -D .2i 【解析】 A ;1i1i z -=+()()()21i 2i i 1i 1i 2--===-+-.8. (石景山·文·题1)复数21i+等于( )A .2i -B .2iC .1i -D .1i + 【解析】 C ;22(1i)2(1i)1i 1i (1i)(1i)2--===-++-.9. (东城·文·题1)计算复数1i1i-+的结果为( )A .i -B .iC .1-D .1 【解析】 A ;21i (1i)i 1i 2--==-+.10. (朝阳·文·题1)复数22(1)i i+等于 ( ) A .2 B .-2 C .2i - D .2i 【解析】 C ;()221221i ii i +==--.11. (宣武·理·题3)若复数z 满足2i 1iz=+,则z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】 B ;2i(1i)22i z =+=-+.12. (宣武·文·题4)设i 是虚数单位,则复数(1i)2i z =+⋅所对应的点落在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】 B ;22i z =-+.13. (西城·文·题9)i 是虚数单位,1i 1i +=+ . 【解析】 11i 22+;11i 1ii i 1i 22-++=+=+.14. (西城·理·题9)若(2i)i i a b -=+,其中,a b ∈R ,i 为虚数单位,则a b += . 【解析】 3;2i i a b +=+1,2a b ⇒==.15. (崇文·理·题9)如果复数()()2i 1i m m ++(其中i 是虚数单位)是实数,则实数m =___________. 【解析】 1-;()()()()223i 1i 1mm m m i m ++=-++.于是有3101m m +=⇒=-.16. (崇文·文·题10)如果复数()()2i 1i m m ++(其中i 是虚数单位)是实数,则实数m =___________. 【解析】 -1;()()()()223i 1i 1m m m m m i ++=-++.于是有3101m m +=⇒=-.算法1. (丰台·文·题3)在右面的程序框图中,若5x =,则输出i 的值是( )A .2B .3C .4D .5 【解析】 C ;51337109325→→→→,对应的4i =.2. (石景山·理·题4)一个几何体的三视图如图所示,那么此几何体的侧面积(单位:2cm )为( ) A .80 B .60 C .40 D .20【解析】 A ;几何体如图,是正四棱锥,底边长8,侧面底边上的高为5,因此侧面积为1854802⨯⨯⨯=.3. (西城·理·题5)阅读右面的程序框图,运行相应的程序,输出的结果为( )A .1321B .2113C .813D .138【解析】 D ;1,1,220x y z ===<;1,2,320x y z ===<;,8,13,2120x y z ===>,故输出138.4. (东城·理·题5)如图是一个算法的程序框图,若该程序输出的结果为45,则判断框中应填入的条件是( )A .4?T >B .4?T <C .3?T >D .3?T <【解析】 B ;循环一次得:12,1,2i T S ===;两次得:1123,2,263i T S ===+=;三次得:2134,3,3124i T S ===+=;四次得:3145,4,4205i T S ===+=,此时需要跳出循环,故填4?T <.5. (东城·文·题5)按如图所示的程序框图运算,若输入6x =,则输出k 的值是( ) A .3 B .4 C .5 D .6【解析】 B ;6x =,0k =,13x =,1k =,27x =,2k =,55x =,3k =,111x =,4k =,111100x =>,跳出循环,输出4k =.6. (石景山·文·题6)已知程序框图如图所示,则该程序框图的 功能是( )A .求数列1n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NB .求数列12n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NC .求数列1n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈ND .求数列12n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N注意n 和k 的步长分别是2和1.7. (西城·文·题6)阅读右面的程序框图,运行相应的程序,输出的结果为( )A .1321B .2113C .813D .138【解析】 D ;1,1,220x y z ===<;1,2,320x y z ===<;,8,13,2120x y z ===>,故输出138.8. (海淀·理科·题7)已知某程序框图如图所示,则执行该程序后输出的结果是( )第 7 题A .1-B .1C .2D .12【解析】 A ;∵()20100mod 3i ==,∴对应的1a =-.9. (朝阳·文·题11)如图,下程序框图的程序执行后输出的结果是 .【解析】 55;10.(宣武·文·题12)执行如图程序框图,输出S的值等于.12题图【解析】20;运算顺序如下===→===→===→===>,1,1,23,4,36,10,410,20,54A S i A S i A S i A S i输出S,故20S=.11.(崇文·理·题12)(崇文·文·题12)某程序框图如图所示,该程序运行后输出,M N的值分别为.【解析】 13,21;n 4次运行后43i =>,于是有13,21M N ==.12. (丰台·理·题13)在右边的程序框图中,若输出i 的值是4,则输入x 的取值范围是 .【解析】 (]2,4;∵328228x x ->⇔>,322810x x ->⇔>,32104x x ->⇔>,3242x x ->⇔>∴要使得刚好进行4次运算后输出的82x>,则有24x<≤.13.(朝阳·理·题13)右边程序框图的程序执行后输出的结果是.【解析】625;将经过i次运行后的,n S值列表如下.i 1 2 3 4 5 ...m...25n 3 5 7 9 11 21m+51 S 1 4 9 16 25 2m625 于是625S=.14.(海淀·文·题13)已知程序框图如图所示,则执行该程序后输出的结果是_______________.【解析】12;∵()202mod 3i ==,∴对应的12a =.集合简易逻辑推理与证明1. (崇文·文·题1)已知全集U =R ,集合{}|12A x x =->,{}2|680B x x x =-+<,则集合()U A B =ð ( )A .{}|14x x -≤≤B .{}|23x x <≤C . {}|23x x <≤D .{}|14x x -<< 【解析】 D ;容易解得{3A x x x =>或者}0x <,{}26B x x =<<. 于是()U A B =ð{}23x x <≤.2. (西城·理·题1)设集合{|1}P x x =>,2{|0}Q x x x =->,则下列结论正确的是( ) A .P Q = B .P Q R = C .P Q Ü D .Q P Ü【解析】 C ;(1,)P =+∞,(,0)(1,)Q =-∞+∞.3. (宣武·理·题1)设集合20.3{|0},2P x x m =-=≤,则下列关系中正确的是( ) A .m P ⊂ B .m P ∉ C .{}m P ∈ D .{}m PÞ 【解析】 D ;{|0P x x =≤≤,0.3022m <=<<,故m P ∈,因此{}m P Þ4. (崇文·理·题1)已知全集U =R ,集合{}|12A x x =->,{}2|680B x x x =-+<,则集合()U A B =ð( )A .{}|14x x -≤≤B .{}|14x x -<<C .{}|23x x <≤D . {}|23x x <≤ 【解析】 D ;容易解得{3A x x x =>或者}0x <,{}26B x x =<<.于是()U A B =ð{}23x x <≤.5. (西城·文·题1)设集合{|1}P x x =>,{|(1)0}Q x x x =->,下列结论正确的是( ) A .P Q = B .P Q R = C .P Q Ü D .Q P Ü 【解析】 C ;(1,)P =+∞,(,0)(1,)Q =-∞+∞.6. (宣武·文·题1)设集合{|4},sin 40A x x m ==︒≤,则下列关系中正确的是( ) A .m A ⊂ B .m A ⊄ C .{}m A ∈ D .{}m A ∉ 【解析】 D ;正确的表示法,m A ∈,{}m A Þ,{}m A ∉.7. (东城·理·题2)设全集{33,}I x x x =-<<∈Z ,{1,2}A =,{2,1,2}B =--,则()I A B ð等于( ) A .{1} B .{1,2} C .{2} D .{0,1,2} 【解析】 D ;{2,1,0,1,2}I =--,{0,1}I B =ð,故(){0,1,2}I A B =ð.8. (石景山·文·题2)已知命题 :p x ∀∈R ,2x ≥,那么命题p ⌝为( ) A .,2x x ∀∈R ≤ B .,2x x ∃∈<R C .,2x x ∀∈-R ≤ D .,2x x ∃∈<-R 【解析】 B ;全称命题的否定是存在性命题,将∀改为∃,然后否定结论.9. (东城·文·题2)设集合{1,2,4,6}A =,{2,3,5}B =,则韦恩图中阴影部分表示的集合( ) A .{2} B .{3,5} C .{1,4,6} D .{3,5,7,8}【解析】 B ;阴影部分表示{3,5}U AB =ð.10. (丰台·理·题2)设集合[)1{|(),0,}2x M y y x ==∈+∞,(]2{|log ,0,1}N y y x x ==∈,则集合M N 是( )A .[)(,0)1,-∞+∞B .[)0,+∞C .(],1-∞D .(,0)(0,1)-∞ 【解析】 C ;(]0,1M =,(],0N =-∞,因此(],1MN =-∞.11. (石景山·理·题2)已知命题 :p x ∀∈R ,2x ≥,那么命题p ⌝为( ) A .,2x x ∀∈R ≤ B .,2x x ∃∈<RC .,2x x ∀∈-R ≤D .,2x x ∃∈<-R 【解析】 B ;全称命题的否定是存在性命题,将∀改为∃,然后否定结论.12. (朝阳·文·题2)命题:0p x ∀>,都有sin 1x -≥,则 ( ) A .:0p x ⌝∃>,使得sin 1x <- B .:0p x ⌝∀> ,使得sin 1x <- C .:0p x ⌝∃>,使得sin 1x >- D .:0p x ⌝∀>,使得sin 1x -≥ 【解析】 A ;由命题的否定容易做出判断.13. (海淀·文·题7) 给出下列四个命题:①若集合A 、B 满足A B A =,则A B ⊆;②给定命题,p q ,若“p q ∨”为真,则“p q ∧”为真; ③设,,a b m ∈R ,若a b <,则22am bm <;④若直线1:10l ax y ++=与直线2:10l x y -+=垂直,则1a =. 其中正确命题的个数是( )A .1B .2C .3D .4 【解析】 B ;命题①和④正确.14. (丰台·文·题7)若集合{}0,1,2P =,10(,),,20x y Q x y x y P x y ⎧⎫-+>⎧⎪⎪=∈⎨⎨⎬--<⎩⎪⎪⎩⎭,则Q 中元素的个数是( )A .3B .5C .7D .9 【解析】 B ;(){},|12,,Q x y x y x y P =-<-<∈,由{}0,1,2P =得x y -的取值只可能是0和1.∴()()()()(){}0,0,1,1,2,2,1,0,2,1Q =,含有5个元素.15. (崇文·文·题8)如果对于任意实数x ,[]x 表示不超过x 的最大整数. 例如[]3.273=,[]0.60=. 那么“[][]x y =”是“1x y -<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【解析】 A ;由[][][][]1,1x x x y y y <+<+≤≤.于是有[][]()[][]1111x y x y x y -=+<-<+-=-则1x y -<. 不妨设33,24x y ==,于是3331424x y -=-=<.但是[][]1,0.x y ==16. (东城·文·题9)已知命题3:(1,),log 0p x x ∀∈+∞>,则p †为 . 【解析】 030(1,),log 0x x ∃∈+∞≤;全称命题的否定为存在命题.17. (宣武·文·题10)命题“任意常数列都是等比数列”的否定形式是 . 【解析】 存在一个常数列不是等比数列; 全称命题的否定是存在性命题. 18. (海淀·理·题11) 给定下列四个命题:① “π6x =”是“1sin 2x =”的充分不必要条件;② 若“p q ∨”为真,则“p q ∧”为真;③ 若a b <,则22am bm <;④ 若集合A B A =,则A B ⊆.其中为真命题的是 (填上所有正确命题的序号). 【解析】 ①,④;19. (海淀·理·题14) 在平面直角坐标系中,点集(){}22,|1A x y xy =+≤,{(,)|4,0,340}B x y x y x y =-≤≥≥,则⑴点集(){}1111(,)3,1,,P x y x x y y x y A ==+=+∈所表示的区域的面积为_____; ⑵点集{}12121122(,),,(,),(,)Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为 .【解析】 π;18π+.;⑴如左图所示,点集P 是以()3,1为圆心1为半径的圆,其表示区域的面积为π; ⑵如右图所示,点集Q 是由三段圆弧以及连结它们的三条切线段围成的区域,其面积为()1π433451π18π2OPQ OABP PCDQ OFEQ S S S S ++++=⨯⨯+++⨯+=+△.20. (海淀·文·题14) 在平面直角坐标系中,点集(){}22,|1A x y xy =+≤,(){},|11,11B x y x y =--≤≤≤≤,则⑴点集(){}1111(,)3,1,,P x y x x y y x y A ==+=+∈所表示的区域的面积为_____; ⑵点集{}12121122(,),,(,),(,)Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为 .【解析】π,12π+;⑴如左图所示,点集P 是以()3,1为圆心1为半径的圆,其表示区域的面积为π;⑵ 如右图所示,点集Q 是由四段圆弧以及连结它们的四条切线段围成的区域,其面积为12π+.。
房山区2009—2010学年度第一学期终结性检测试卷九年级数学题号 一 二三四五总分得分一、选择题(本题共32分,每小题4分) 下列各题均有四个选项,其中有且只有一个..是符合题意的.请将正确选项前的字母填在下表中相应的位置上. 题号 1 2 3 4 5 6 7 8 答案1、二次函数y=x 2+2x+1与y 轴的交点坐标是 A.(0,-1) B.(0,1) C.(1,0) D.(-1,0) 2、已知1O ⊙与2O ⊙外切,它们的半径分别为2和3,则圆心距12O O 的长是A .12O O =5B .12O O =1C .1<12O O <5D .12O O >5 3、已知反比例函数ky x=(k 是常数,且0≠k ),x 与y 的部分对应值如表所示,那么m 的值等于 x -1 3y 1 mA .-3 B.13 C. 13- D. 3 4、一个袋子中装有2个黑球4个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为A .16B .13C .12 D .235、小明从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走 200m 到C 地,此时小明离A 地A.3100mB. 100 mC. 150mD. 350mBE6、如图,CD 为⊙A 的直径,B 、E 为⊙A 上的两个点CB DE =,∠23DCE =,则∠BCD 等于A.23ºB.46ºC.67ºD.90º7、⊙O 的半径为5,弦AB ∥CD ,AB=6,CD=8,则AB 和CD 的距离为 A. 1 B. 3 C. 7 D.1或78、如图,BC 是D 的直径,A 为圆上一点.点P 从点A 出发,沿AB 运动到B 点,然后从B点沿BC 运动到C 点.假如点P 在整个运动过程中保持匀速,则下面各图中,能反映点P 与点D 的距离随时间变化的图象大致是二、填空题(本题共16分,每小题4分) 9、如图,AB 为⊙O 的直径,CD 是弦,sin ∠CDB=53,BC=6,则AB= .10、在△ABC 中,若0)cos 23(1tan 2=-+-B A , 则∠A+∠B= .11、如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,若AB=8,AE=1,则CD= .A .B .C .D .12、如图,一块直角三角形木板△ABC ,将其在水平面上沿斜边AB 所在直线按顺时针方向翻滚,使它滚动到A B C ''''''∆的位置,若BC=1cm ,AC=3cm ,则顶点A 运动到A ''时,点A 所经过的路径是 cm .三、解答题(本题共30分,每小题5分)13、计算:101sin 60()tan 30(cos 452)3-+---.解:14、在Rt △ABC 中,∠C =90, AB =10,BC =8,求sin A 和tan B 的值. 解:15、已知抛物线2241y x x k =++-与x 轴有两个交点,求k 的取值范围. 解:16、如图,在Rt △ABC 中,∠ACB=900,CD ⊥AB 于D ,若BD :AD=1:3,求tan ∠BCD 的值. 解:17、已知点A (1,-2)在函数my x=的图象上. (1)求m 的值;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.比如点A 就是函数m y x =图象上的一个格点,请再写出函数m y x=图象上的三个格点的坐标( )、( )、( )(不包括点A ).解:CAB DCA B D 18、如图,已知是⊙O 的直径,点在⊙O 上,且,.(1)求的值; (2)如果,垂足为,求的长; (3)求图中阴影部分的面积(结果保留π). 解:四、解答题(本题共20分,每小题5分)19、如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,60B ∠=,2AD =42BC =求DC 的长. 解:20、如图,“元旦”期间,某商场的大楼上从点A 到点E 悬挂了一条宣传条幅.小明的家住在商场对面的家属楼上.小明在C 点测得条幅端点A 的仰角为30o,测得条幅端点E 的俯角为45o.若小明家所在楼层高度CF 为12米,请你根据小明测得的数据求出条幅AE 的长. 解:21、如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B .(1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为5,AB =6,求AD 的长.22、如图,第一象限内的点A 在反比例函数图象上,过点A 作AB ⊥x 轴,垂足为B 点,连结AO ,已知△AOB 的面积为4.(1)求反比例函数的解析式;(2)若点A 的纵坐标为4,过点A 的直线与x 轴相交于点P ,以A 、P 、B 为顶点的三角形与△AOB 相似,直接写出所有符合条件的点P 的坐标. 解:B C Oy x五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23、已知:抛物线223y x x =+-与x 轴的两个交点分别为A 、B,点A 在点B 的左侧,与y轴交于点C ,顶点为D ,直线y kx b =+经过点A 、C . (1)求点D 的坐标和直线AC 的解析式;(2)点P 为抛物线上的一个动点,求使得ACP ∆的面积与ACD ∆的面积相等的点P 的坐标. 解:24、如图,△ABC 内接于半圆,AB 为直径,过点A 作直线MN ,若∠MAC =∠ABC . (1)求证:MN 是半圆的切线;(2)设D 是AC 的中点,连结BD 交AC 于G ,过D 作DE ⊥AB 于E ,交AC 于F , 求证:FD =FG ;(3)在(2)的条件下,若△DFG 的面积为4.5,且DG =3,GC =4,试求△BCG 的面积.25、抛物线216y x bx c =++与x 轴交于A,B 两点,其中A 点坐标为A (2,0),与y 轴交于点C(0,2).(1)求抛物线的解析式; (2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值;(3)以点M (4,0)为圆心、2为半径,在x 轴下方作半圆, CE 是过点C 的半圆的切线,E 为切点,求OE 所在直线的解析式.解:房山区2009—2010学年度第一学期终结性检测九年级数学参考答案及评分标准一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分) 9、10 10、75 11、 12、86+ 三、解答题(本题共30分,每小题5分) 13、原式31=+- --------------------------------------------4分 26=+ --------------------------------------------------------5分14、由题意得,AC=6,-------------------------------------2分sin A =45,------------------------------------------4分tan B =34.------------------------------------------5分15、由题意得,△168=-(k-1)>0-----------------------3分∴3k <. --------------------------------------------------------------5分16、∵∠ACB=90°,CD ⊥AB 于D∴△BCD ∽△CAD -----------------------------------2分∴CD BDAD CD=即CD 2=BD ×AD -------------------------------------3分 ∵BD:AD=1:3∴设BD 为x 则AD 为3x∴ -------------------------------------4分∴tan ∠BCD=3BD CD =-------------------------------5分17、(1) 2m =-. ---------------------------------------------------------2分 (2)(-1,2),(2,-1),(-2,1)----------------------------------5分CBDCA BD18、(1)∵AB 是⊙O 的直径,点C 在⊙O 上,∠ACB = 90o--------------------------------------------1分 ∵AB =13,BC = 5.-----------------------------------2分(2)在Rt △ABC 中,.∵OD ⊥AC,∴162AD AC ==.-----------------------------------------4分 (3)1131169512302228S ππ=⨯-⨯⨯=-2阴影面积()(平方单位)------5分四、解答题(本题共20分,每小题5分)19、如图,分别过点A D ,作AE BC ⊥于点E ,DF BC ⊥于点F .--------------------------------------1分 ∴AE DF ∥. 又AD BC ∥,∴四边形AEFD 是矩形.2EF AD ∴==-------------------------------------2分AB AC ⊥,60B ∠=,42BC = 1cos6042222AB BC ∴=⋅==.2BE ∴=.3sin 60226AE AB ∴=⋅==. 6DF AE ∴==22CF BC BE EF =--=-------------------------------------------------4分在Rt DFC △中,90DFC ∠=,2222(6)(22)14DC DF CF ∴=+=+=------------------5分20、过点C 作CD ⊥AE 于D.则∠ACD=30,∠DCE=45.------------1分 ∵CF=12,∴DE=12.--------------------------------------2分 ∴CD=12.--------------------------------------3分 在Rt △ACD 中,∠ACD =30,CD=12, ∴AD=43分 ∴AE=AD+DE=3 -------------5分 21、(1)证明: 如图, 连接AO 并延长交⊙O 于点E , 连结BE , 则∠ABE =90°.∴ ∠EAB +∠E =90°. -------------------1分 ∵ ∠E =∠C , ∠C =∠BAD ,∴ ∠EAB +∠BAD =90°. ∴AD ⊥OA∴ AD 是⊙O 的切线. -------------------2分 (2)解:由(1)可知∠ABE =90°.∵ AE =2AO =10, AB =6,∴ 228BE AE AB =-=. ------------------------------------------------------3分∵BD ⊥AB , ∴∠ABD =90° ∴∠ABD =∠ABE ∵∠E=∠C =∠BAD ,∴△ABD ∽△EBA -------------------------------------------------------------------4分∴ .AD ABAE EB = 6.108AD =即∴ 152AD =. ---------------------------------------------------------------------------5分22、(1)设点A 的坐标为),(A A y x A ,0,0>>A A y x∴由421=A A y x ∴8=A A y x∴反比例函数解析式为xy 8=.---------------------------------2分 (2)所有符合条件的点P 的坐标为(4,0),(10,0),(-6,0).-----------5分OCB五、解答题(本题共22分,第23题7分,第24题23、(1)由抛物线解析式2223(1)y x x x =+-=+-得D (-1,-4).--------------------------1分点A 、C 的坐标分别是A (-3,0),C (0,-3), ∵直线y kx b =+经过A 、C 两点,3,330.b k =-⎧∴⎨--=⎩ 3,1.b k =-⎧∴⎨=-⎩∴ 直线AC 的解析式为3y x =--.----------2分(2)①过点D 作与直线3y x =--则ACP ACD S S ∆∆=.设直线DP 的解析式为y x t =-+, ∵ 点D 的坐标为(-1,-4). ∴ t=-5. ∴P (m ,-m-5), ∴ 2523m m m --=+-,解得 m=-1(舍去)或m=-2.∴ P (-2,-3). -----------------------------------------------------4分 ②直线DP:5y x =--与y 轴的交点坐标为(0,-5),则直线DP 关于直线3y x =--对称的直线l 的解析式为1y x =--,l 交抛物线于P ’,设P ’(m ’,-m ’-1). 由于点P ’在抛物线223y x x =+-上, ∴ 2'1'2'3m m m --=+-. 解得 33''22m m -+--==------------------------------------5分 ∴ P ’(3122-P ’(31,22--+). --------------7分∴ 所求点P 的坐标分别是(-2,-3),(31711722-),(31711722--+).24、(1):∵AB 是直径∴∠ACB=90º . ---------------------------1分∴∠CAB+∠ABC=90º∵∠MAC=∠ABC∴∠MAC+∠CAB=90º,∴∠MAB =90º,∴MN 是半圆的切线.-----------------------2分(2)∵D 是弧AC 的中点,∴∠DBC=∠ABD,----------------------------3分∵AB 是直径,∴∠ACB =90º∴∠CBG+∠CGB=90º∵DE⊥AB,∴∠FDG+∠ABD =90º∵∠DBC=∠ABD ,∴∠FDG=∠CGB=∠FGD ,∴FD=FG.---------------------------------4分(3)过点F 作FH⊥DG 于H ,----------------------5分又∵DF=FG,DG=3, S △DFG =4.5,∴HG=1.5, S △FGH =12S △DFG =12×4.5=94∵AB 是直径,FH⊥DG ,∴∠C=∠FHG=90º又∠HGF=∠CGB,∴△FGH∽△BGC .---------------------------6分 ∴221.59()()464FGH BGC S HG S CG ∆∆=== ∴S △BCG =9641649⨯= ------------------------7分 25、(1)∵ 抛物线216y x bx c =++过点A (2,0)和C (0,2),则 22,12206c b c =⎧⎪⎨⨯++=⎪⎩ 解得 4,32.b c ⎧=-⎪⎨⎪=⎩ ∴所求抛物线的解析式为 214263y x x =-+.-----2分(2)如图,抛物线对称轴l 是 x =4,点B 的坐标为B (6,0).∵ Q (8,m )抛物线上,∴ m =2.-----------------------------------3分过点Q 作QK ⊥x 轴于点K ,则K (8,0),QK =2,AK =6, ∴ AQ 22210AK QK +=又∵ B (6,0)与A (2,0)关于对称轴l 对称,∴ PQ +PB 的最小值=AQ =210-------------4分(3)连结EM 和CM ,设CE 交x轴于点D.由已知,得 EM =OC =2.∵CE 是⊙M 的切线,∴∠DEM =90º,则∠DEM =∠DOC .又∵∠ODC =∠EDM .故 △DEM ≌△DOC .--------------------------6分∴ OD =DE ,CD =MD .又在△ODE 和△MDC 中,∠ODE =∠MDC ,∠DOE =∠DEO =∠DCM =∠DMC . 则 OE ∥CM .设CM 所在直线的解析式为y =kx +n,CM 过点C (0,2),M (4,0),∴ 40,2,k n n +=⎧⎨=⎩ 解得 1,22,k n ⎧=-⎪⎨⎪=⎩直线CM 的解析式为122y x =-+.---------------7分 又∵ 直线OE 过原点O ,且OE ∥CM , 则直线OE 的解析式为 y =12-x . -------------8分。
高三数学(理科)参考答案及评分标准(2010.1)一、选择题1C 2A 3B 4D 5C 6A 7B 8D 二、填空题9.112-=n a n ,16- 10.1 11.5 12.32 , 232+ 13.22 ,0=+y x 14.5三、解答题15. (本小题满分14分)解:(1) 2a =,3=c ,60B ︒=,由余弦定理可得2222cos b a c ac B =+-. (2)32294⨯⨯-+=×217=∴ =b 7 (4)(2)在ABC ∆中,b =60=B ,2a =∴2sin 60sin A =°. (6)∴sin 7A =. (8)(3) a b <, ∴A 为锐角.∴cos 7A =. (10)180=++C B A ,60B ︒= ∴0120=+C A ,∴=+︒=++=+)120sin()sin()2sin(A A C A C A 1421sin 21cos 23=-A A (14)16. (本小题满分12分) 解:(1)4112887=++34112,2418=⨯=⨯ 所以从高一、高二、高三年级中应分别抽取3,2,2个班 (4)(2)设A 表示事件“这两个班都来自高三年级”;B 表示事件“这两个班来自不同年级” 从7个班中随机地抽取2个班共有27C 21=个等可能的结果, 其中这两个班都来自高三年级的共有23C 3=个结果,这两个班来自同年级的共有232222C C C ++=5个结果, 所以=)(A P 71213=; (8)=)(B P 21162151=- (12)17. (本小题满分13分)解:如图,建立空间直角坐标系D xyz -. 则 1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)D E D B == ,,,,,,11(224)(204)A C DA =--= ,,,,,(1) 解: ∵1AA ∥1BB∴D AA 1∠是异面直线D A 1与B B 1所成角 ………………………………………1 ∵在D AA Rt 1∆中,2,41==AD A A ∴21tan 1=∠D AA (3)即异面直线D A 1与B B 1所成角的正切值为21(2) 证明:∵,00441=++-=⋅DB C A ,04401=-+=⋅DE C A ∴1A C BD ⊥,1A C DE ⊥ 又DB DE D =∴1A C ⊥平面D B E (6)(3) 解:由(2)知向量C A 1为平面D B E 的一个法向量 …………………………………7 设平面1DA E 的法向量()x y z =,,n由DE ⊥n ,1D A ⊥ n 得20y z +=,240x z +=令2z =-,得4x =,1y =,∴ (412)=-,,n ………………………………………………………9 4214cos =∙=C A n (12)又 二面角1A DE B --为锐角∴二面角1A DE B --的余弦值为4214 (13)18. (本小题满分14分) 解:(1) 2()321f x x ax '=++ ………………………………………1 因为函数()f x 在1-=x 处取得极值 所以0)1('=-f解得a =2 (2)(2)由(1)知12)(23+++=x x x x f 143)('2++=x x x f 令143)('2++=x x x f =0 解得1,1-=-=x x从上表可以看出01)(,02723)(>=>=极大值极小值x f x f ,所以函数)(x f 有零点且只有一个 ………………………………………………………5 又函数)(x f 在]1,2[--上连续,且01)2(,01)1(<-=->=-f f ,所以函数)(x f 的零点介于2-和1-之间. …………………………………………………………7 (3)2()321f x x ax '=++)3(412422-=-=∆a a当23a ≤,即33<<-a 时,0∆≤,()0f x '≥,所以函数()f x 在R 上是增函数 …………………………………………………………9 当23a >,即33-<>a a 或时,∆0>, 解()0f x '= 得两根为 3321---=aa x ,3322-+-=a a x (显然21x x <)当),(1x x -∞∈时0)('>x f ;),(21x x x ∈时0)('<x f ;),(2+∞∈x x 时0)('>x f所以函数()f x 在3a ⎛---∞ ⎪⎝⎭,,3a ⎛⎫-++∞⎪ ⎪⎝⎭上是增函数;在33a a ⎛⎫---+ ⎪ ⎪⎝⎭,上是减函数 (14)综上:当33<<-a 时,函数()f x 在R 上是增函数;当33-<>a a 或时,函数()f x在3a ⎛⎫---∞ ⎪ ⎪⎝⎭,,3a ⎛⎫-++∞⎪ ⎪⎝⎭上是增函数;在33a a ⎛⎫---+ ⎪ ⎪⎝⎭,上是减函数19. (本小题满分14分) (1)证明:222)1(12)1(1=++=+++-+=++++na n a na n n a na n a n n n n n n ,n ∈*N又2112111=+-=+a ,所以数列}{n a n +是首项为21,且公比为2的等比数列 (3)(2)解:由(1)可知n a n +=21×2122--=n n于是数列{}n a 的通项公式为 n a n n -=-22 (4)所以数列{}n a 的前n 项和2)1(21)21(21nn S nn +---= (8)212)1(21-+-=-n n n(3)对任意的n ∈*N ,=-+n n S S 1)212)2)(1(2(-++-n n n)212)1(2(1-+---n n n)1(21+-=-n n1=n 时, 01)1(21<-=+--n n 所以12S S < 2=n 时, 01)1(21<-=+--n n 所以23S S <3=n 时, 0)1(21=+--n n 所以34S S = 4=n 时, 03)1(21>=+--n n 所以45S S >猜想“n ∈*N ,且4≥n 时, )1(21+>-n n ”下面用数学归纳法证明: ①当4=n 时,已证②假设当)4(≥=k k n 时,命题成立, 即 )1(21+>-k k 那么当1+=k n 时,1)1(2)2()1(22221++=+>++=+>⨯=-k k k k k k k这就是说,当1+=k n 时,命题也成立根据①和②,可知当n ∈*N 且4≥n 时, 不等式)1(21+>-n n 都成立 综上 <<<<<<=>>+1654321n n S S S S S S S S 所以当4,3==n n 时,n S 取到最小值25- (14)20. (本小题满分13分) 解:(1)①方法1:∵)10()1(f f < ∴)(x f 在[1,10]上不是减函数,∵)101()1001(f f > ∴)(x f 在[1,10]上不是增函数,∴函数)(x f 不是]10,1[上的单调函数∴xx x f 42)(+=不是闭函数. (3)方法2:222)2(242)('xx xx f -=-=令0)('=x f 解得2(2-==x x 舍)∵)2,1[∈x 时0)('<x f ;]10,2(∈x 时0)('>x f ∴)(x f 在)2,1[上是减函数,在]10,2(上是增函数 ∴函数)(x f 不是]10,1[上的单调函数 ∴xx x f 42)(+=不是闭函数. (3)②∵0)('2≤-=x x g ∴)(x g 3x -=在R 上是减函数, 设)(x g 在],[b a 上的值域也是],[b a ,则33b a a b a b ⎧=-⎪=-⎨⎪<⎩,解得⎩⎨⎧=-=11b a ∴存在区间R ⊆-]1,1[,使)(x f 在]1,1[-上的值域也是]1,1[-∴函数)(x g 3x -=是闭函数 (6)(2)函数k x x f ++=2)(在定义域上是增函数设函数)(x f 在],[b a 上的值域也是],[b a ,则a kb k ⎧=+⎪⎨=+⎪⎩ (7)故b a ,是方程x k =+22(21)202x k x k x x k ⎧-++-=⎪≥-⎨⎪≥⎩有两个不相等的实根,当2-≤k 时,22222122(21)4(2)02(21)20k k k k k k +⎧>-⎪⎪⎪+-->⎨⎪-++-≥⎪⎪⎩,解得94k >-,∴9(,2]4k ∈--.当2->k 时,2222212(21)4(2)0(21)20k k k k k k k k +⎧>⎪⎪⎪+-->⎨⎪-++-≥⎪⎪⎩,无解.∴k 的取值范围是]2,49(-- (13)。
本资料由教育城编辑整理 更多资料:/SearchDatum.aspxFE D CBA FED CBA CBO2010年房山区初三年级统一练习(一)数学学校 姓名 准考证号考生须知1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.13-的绝对值是 A . 3 B . -3 C .31 D . 31- 2. 上海世博会定于2010年5月1日至10月31日举行,这是继北京奥运会之后我国举办的又一世界盛事,主办机构预计这届世博会将吸引世界各地约69 000 000人次参观. 将69 000 000用科学记数法表示正确的是 A . 0.69×108B . 6.9×107C . 6.9×106D . 69×1063.如图,将一长方形纸条沿EF 折叠,若∠AFD=47︒,则∠CEB 等于A .47°B .86°C .94°D .133°4. 某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲x =82分,乙x =82分,甲2S =245,乙2S =190,那么成绩较为整齐的是 A 、甲班 B 、乙班 C 、两班一样整齐 D 、无法确定5. 如图,O 的半径为2,弦AB ⊥OC 于C, AB=23,则OC 等于 A .22 B .3本资料由教育城编辑整理 更多资料:/SearchDatum.aspxyx4O4xyOE C'A BCDPC . 1D .236. 如果正n 边形的一个外角与和它相邻的内角之比是1:3,那么n 的值是 A . 5 B . 6 C . 7 D . 87. 在一个不透明的口袋中装有2个红球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中一次摸出两个球,摸到两个球都是红球的概率是 A .112 B .16 C . 13 D . 128. 如图,矩形纸片ABCD 中,BC=4,AB=3,点P 是BC 边上的动点(点P 不与点B 、C 重合).现将△PCD 沿PD 翻折,得到△PC ’D ;作∠BPC ’的角平分线,交AB 于点E .设BP= x,BE= y,则下列图象中,能表示y 与x 的函数关系的图象大致是本资料由教育城编辑整理 更多资料:/SearchDatum.aspxD ECA BFAD-5-4-3-2-154321O A . B .C .D .二、填空题(本题共16分,每小题4分)9、分解因式:=++a ax ax 22. 10.在函数12-+=x x y 中,自变量x 的取值范围是 . 11. 如图,在等边△ABC 中,点D 、E 分别在AB 、AC 边上, 且DE ∥BC ,如果DE=1,AD:DB=1:3,那么△ABC 的 周长等于 .12.一组按规律排列的式子:2581114916,,,,...(0)a a a a a --≠,其中第8个式子是 ,第n 个式子是 (n 为正整数).三、解答题(本题共30分,每小题5分) 13. 计算:01112sin 60(1)()2π--+--.14. 解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来.15. 已知:如图,在△ABC 中,∠ABC=90,F 是AC 上一点,且FB=FC,延长BC 到点E 使BE=AC,过点E 作ED ⊥BF 交BF 的延长线于点D .求证:ED=AB .本资料由教育城编辑整理 更多资料:/SearchDatum.aspxOyx42BA16. 已知22150a a +-=,求221412213a a a a a a --⋅++-++的值. 17. 如图,直线AB 与y 轴交于点A ,与x 轴交于点B ,点A 的纵坐标、点B 的横坐标如图所示.(1)求直线AB 的解析式;(2)过原点O 的直线把△ABO 分成面积相等的两部分,直接写出这条直线的解析式.18. 列方程或方程组解应用题:上海世博园区中的中国馆、主题馆、世博中心、演艺中心非常引人注目, 已知“四馆”的总建筑面积约是55.51万平方米,世博中心比演艺中心的建筑面积多1.4万平方米.结合表中其它信息,求世博中心和演艺中心的建筑面积各是多少万平方米?场馆 中国馆 主题馆 世博中心演艺中心建筑面积(万平方米) 16.0112.9四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分) 19. 如图,在梯形ABCD 中,AD ∥BC ,AC ⊥AB, 30B ∠=,AD=DC, E 是AB 中点,本资料由教育城编辑整理 更多资料:/SearchDatum.aspxFE C B A DEF ∥AC 交BC 于点F,且EF=3,求梯形ABCD 的面积.20. 已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F . (1)求证:AC 与⊙O 相切;(2)当BD=2,sinC=12时,求⊙O 的半径.21. 2009年我区消费品市场吃、穿、用、烧类商品实现全面增长.下面是根据有关数据制作的2009年全区社会消费品零售额的统计图表.表1 2009年我区消费品市场吃、穿、用、烧类商品零售额的统计表(单位:亿元) 各类商品 吃类商品 穿类商品 用类商品 烧类商品 2009年零售额 20.97.247.923.1A F DO E B GC23.17.220.96050403020100零售额亿元各类商品烧类商品用类商品穿类商品 吃类商品本资料由教育城编辑整理 更多资料:/SearchDatum.aspx图1请根据以上信息解答下列问题: (1)补全图1;(2)求2009年我区消费品市场吃、穿、用、烧类商品零售额的平均数;(3)已知2009年“穿类商品”的零售额同比增长15%,若按照这个比例增长,估计2011年全年穿类商品的零售额可能达到多少亿元?22.阅读下列材料:小明遇到一个问题:如图1,正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 和DA 边上靠近A 、B 、C 、D 的n 等分点,连结AF 、BG 、CH 、DE ,形成四边形MNPQ .求四边形MNPQ 与正方形ABCD 的面积比(用含n 的代数式表示).小明的做法是:先取n=2,如图2,将△ABN 绕点B 顺时针旋转90゜至△CBN ′,再将△ADM 绕点D 逆时针旋转90゜至△CDM ′,得到5个小正方形,所以四边形MNPQ 与正方形ABCD 的面积比是15; 然后取n=3,如图3,将△ABN 绕点B 顺时针旋转90゜至△CBN ′,再将△ADM 绕点D 逆时针旋转90゜至△CDM ′,得到10个小正方形,所以四边形MNPQ 与正方形ABCD 的面积比是410,即25; ……请你参考小明的做法,解决下列问题:(1)在图4中探究n=4时四边形MNPQ 与正方形ABCD 的面积比(在图4上画图并直接写出结果);(2)图5是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图5中画出并指明拼接后的正方形).M’N’Q P N G H FED CBAM Q PN G H FED CBA M M’N’M A BCDEF HG N PQ DQ H M EA 图图图1图3本资料由教育城编辑整理 更多资料:/SearchDatum.aspx-6-6-1-2-3-5-412345-4876-5-3-2-1654321yxOMG FDAE五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 已知:抛物线1C : 2445y ax ax a =++-的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求抛物线的解析式和顶点P 的坐标;(2)将抛物线沿x 轴翻折,再向右平移,平移后的抛物线2C 的顶点为M ,当点P 、M 关于点B 成中心对称时,求平移后的抛物线2C 的解析式;(3)直线35y x m =-+与抛物线1C 、2C 的对称轴分别交于点E 、F ,设由点E 、P 、F 、M 构成的四边形的面积为s, 试用含m 的代数式表示s .24. 如图,在梯形ABCD 中,AD ∥BC ,∠B=90,AD=AB=2,点E 是AB 边上一动点(点E 不与点A 、B 重本资料由教育城编辑整理 更多资料:/SearchDatum.aspx合),连结ED ,过ED 的中点F 作ED 的垂线,交AD 于点G,交BC 于点K,过点K 作KM ⊥AD 于M .(1) 当E 为AB 中点时,求DMDG的值; (2) 若13AE AB =, 则DMDG 的值等于 ; (3) 若1AE AB n =(n 为正整数), 则DM DG的值等于 (用含n 的式子表示).25、如图,在平面直角坐标系xOy 中,直线l 1:363y x =-+交x 轴、y 轴于A 、B 两点,点M(m,n)是线段AB 上一动点, 点C 是线段OA 的三等分点. (1)求点C 的坐标;(2)连接CM ,将△ACM 绕点M 旋转180°,得到△A ’C ’M. ①当BM=12AM 时,连结A ’C 、AC ’,若过原点O 的直线l 2将四边形A ’CAC ’分成面积相等的两个四边形,确定此直线的解析式;②过点A ’作A ’H ⊥x 轴于H ,当点M 的坐标为何值时,由点A ’、H 、C 、M 构成的四边形为梯形?y xBO AM本资料由教育城编辑整理 更多资料:/SearchDatum.aspxFAC BED2010年房山区初三年级统一练习(一)数学试卷参考答案和评分标准一、选择题(本题共32分,每小题4分)1、C2、B3、A4、B5、C6、D7、B8、D 二、填空题(本题共16分,每小题4分)9. 2(1)a x + 10. x ≥-2且x ≠1 11. 12 12. 2364a - ;2131(1)n n n a +-- 三、解答题(本题共30分,每小题5分) 13. 原式=323122-+- ----------------------------------4分 =3312- ----------------------------------5分 14. 去分母,得 )15(3)12(2+--x x ≤6 --------------------1分去括号,得 31524---x x ≤6 ---------------------2分 移项,合并同类项,得 x 11-≤11 ----------------------3分 系数化为1,得 x ≥-1 ---------------------------------4分 不等式的解集在数轴上表示如下:------------------------------------------------------5分15. 证明:FB=FC∴∠FCB=∠FBC--------------------------1分 ED ⊥BF∴∠EDB=90° --------------------------2分 ∴∠ABC=∠EDB在△ABC 和△EDB 中ABC= EDB,,ACB EBD AC EB ∠∠⎧⎪∠=∠⎨⎪=⎩----------------------3分本资料由教育城编辑整理 更多资料:/SearchDatum.aspx∴△ABC ≌△EDB ----------------------4分 ∴ED=AB ---------------------5分 16.原式21(2)(2)12(1)3a a a a a a --+=⋅++-+------------------------------------1分 21213a a a -=+----------------------------+分(2)(3)1(1)(3)a a a a a -++-=-+ 261(1)(3)a a a a a +-+-=-+ 22723a a a a +-=+----------------------------------------------3分 因为22150a a +-=,所以2215a a +=--------------------4分所以原式=15782153123-==----------------------------------5分17. (1)根据题意得,A (0,2),B (4,0)------------------------2分 设直线AB 的解析式为(0)y kx b k =+≠则240b k b =⎧⎨+=⎩ ∴122k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为122y x =-+-------------------------------------4分 (2)12y x =----------------------------------------------------------------5分18. 列方程或方程组解应用题:解:设演艺中心的建筑面积是x 万平方米,则世博中心的建筑面积是(x+1.4)万平方米. ------------------------1分 依题意得16.01+12.9+x+(x+1.4)= 55.51 --------------2分本资料由教育城编辑整理 更多资料:/SearchDatum.aspx解得 x = 12.6 ---------------3分 ∴ x+1.4 = 14 -----------------4分答:演艺中心的建筑面积是12.6万平方米,世博中心的建筑面积是14万平方米. -------------------------5分四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分) 19. 过点A 作AG ⊥BC 于点G .--------------------1分E 是AB 中点,且EF ∥AC∴EF 是ΔABC 的中位线-----------------------2分EF=3∴AC=2EF=32∠B=30°且AC ⊥AB∴∠ACB=60°,BC=34AD ∥BC∴∠CAD=60° 又AD=DC∴ΔACD 是等边三角形∴AD=32 -------------------------------3分 在Rt ΔACG 中,∠AGC=90°,∠ACG=60°,AC=32, ∴AG=3 -----------------------------------4分 ∴S 梯形ABCD =21(32+34)·3=39.--------5分20.(1)证明:连接OE ,-----------------------------------1分∵AB=BC 且D 是BC 中点 ∴BD ⊥AC∵BE 平分∠ABD ∴∠ABE=∠DBE ∵OB=OE∴∠OBE=∠OEB ∴∠OEB=∠DBE ∴OE ∥BD ∴OE ⊥AC∴AC 与⊙O 相切--------------------2分 (2)∵BD=2,sinC=21,BD ⊥AC ∴BC=4 -----------------------------------3分 ∴AB=4GF EDCBA本资料由教育城编辑整理 更多资料:/SearchDatum.aspx设⊙O 的半径为r ,则AO=4-r ∵AB=BC ∴∠C=∠A ∴sinA=sinC=21 ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ∴sinA=OA OE =r r -4=21------------------------------------------4分 ∴r=34------------------------------------------------------5分21. (1)47.923.17.220.96050403020100零售额亿元各类商品烧类商品用类商品穿类商品吃类商品 --------2分(2)20.97.247.923.199.124.77544+++== -----------------------------------4分答:2009年我区消费品市场吃、穿、用、烧类商品零售额的平均数是24.775 . (3)27.2(115%)9.522⨯+= ------------------------------------------------------6分 答:2011年全年穿类商品的零售额可能达到9.522亿元. 22.本资料由教育城编辑整理 更多资料:/SearchDatum.aspxCP G DQH M N FBEA DCBA----------------------1分 ------------------3分四边形MNPQ 与正方形ABCD 的 拼接后的正方形是 正方形ABCD . 面积比是917. --------------------2分 -------------------4分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (1)由抛物线C 1:2445y ax ax a =++-得244(45)162,524a a a a a a---=-=- ∴顶点P 的坐标为(-2,-5) -------------------1分 ∵点B (1,0)在抛物线C 1上,∴a =59∴抛物线C 1的解析式为252025999y x x =+----------------------2分(2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G∵点P 、M 关于点B 成中心对称 ∴PM 过点B ,且PB =MB∴△PBH ≌△MBG --------------------------------------3分 ∴MG =PH =5,BG =BH =3∴顶点M 的坐标为(4,5)∴抛物线2C 的表达式为()54952+--=x y -----------------------4分 (3)依题意得,E(-2,65m +),F(4, 125m -+),HG=6 ① 当E 点的纵坐标小于-5时,PE=6315()55m m --+=--,MF=12375()55m m --+=-∴1313718()662555s m m m =--+-⨯=-+ -----------------5分 ② 当E 点的纵坐标大于-5且F 点的纵坐标小于5时,本资料由教育城编辑整理 更多资料:/SearchDatum.aspxMKGFB CDAEPE=631(5)55m m +--=+,MF=12375()55m m --+=- ∴2045s = --------------6分③ 当F 点的纵坐标大于5时,PE=631(5)55m m +--=+,MF=1237555m m -+-=-+ ∴1865s m =- ---------7分24.(1)连接GE .∵KM ⊥AD ,KG 是DE 的垂直平分线 ∴∠KMG=∠DFG=90° ∴∠GKM=∠GDF∵MK=AB=AD,∠KMG=∠DAE=90°∴ΔKMG ≌ΔDAE--------------1分 ∴MG = AE∵E 是AB 中点,且AB=AD=2 ∴AE=MG=1∵KG 是DE 的垂直平分线∴GE=GD --------------------2分 设GE=GD=x 则AG=2-x在Rt ΔAEG 中,∠E AG=90°,由勾股定理得(2-x )2+12=x 2∴x=45-----------------3分∴DM=GD-GM=41∴51=DG DM --------------------------------------4分 (2) 52----------------------------------------------5分本资料由教育城编辑整理 更多资料:/SearchDatum.aspxyxNC1'C2'A'C2C1BOAMyNC1'C2'A'BM(3) 1)1(22+-n n -----------------------------------------7分25.(1)根据题意:A (6,0),B (0,36) ∵C 是线段OA 的三等分点∴C (2,0)或C (4,0)---------------2分(2)①如图,过点M 作MN ⊥y 轴于点N , 则△BMN ∽△BAO∵BM=12AM ∴BM=13BA∴BN=13BO∴N(0, 43)∵点M 在直线363y x =-+上∴M(2, 43) ------------------------3分∵ΔA C M ''是由ΔACM 绕点M 旋转180°得到的 ∴A C ''∥AC∴无论是C1、C2点,四边形A CAC ''是平行四边形且M 为对称中心 ∴所求的直线2l 必过点M(2, 43)∴直线2l 的解析式为:23y x =----------------------4分 ② 当C1(2,0)时,第一种情况:H 在C 点左侧 若四边形1A HC M '是梯形 ∵A M '与1HC 不平行 ∴A H '∥1MC此时M(2, 43) ------------5分 第二种情况:H 在C 点右侧 若四边形1A C HM '是梯形 ∵A M '与1C H 不平行 ∴1A C '∥HM∵M 是线段AA '的中点 ∴H 是线段1AC 的中点本资料由教育城编辑整理 更多资料:/SearchDatum.aspx∴H (4,0) 由OA=6,OB=63 ∴∠OAB=60∴点M 的横坐标为5∴M(5, 3) ----------------6分 当C2(4,0)时,同理可得第一种情况:H 在C2点左侧时,M(4, 23) ---------7分第二种情况:H 在C2点右侧时,M(112, 32) --------8分 综上所述,所求M 点的坐标为:M(2, 43),M(5, 3),M(4, 23)或M(112, 32).。