数据通信系统模型
- 格式:ppt
- 大小:1.11 MB
- 文档页数:50
通信系统的简化模型通信系统的简化模型一、引言通信系统是指用于传输信息的设备和网络。
它由多个组成部分构成,包括发送器、接收器、信道和协议等。
通信系统的设计和优化是一个复杂的过程,需要考虑诸多因素。
为了更好地理解通信系统的工作原理,我们可以采用简化模型来描述其基本结构和功能。
二、通信系统的基本结构通信系统可以分为两个主要部分:发送端和接收端。
发送端负责将信息转换为适合传输的形式,并通过信道将其传输到接收端。
接收端则负责将传输过来的信息还原为原始形式,并进行相应处理。
1. 发送端发送端由三个主要组成部分构成:源、编码器和调制器。
(1)源源是指产生信息的设备或人类活动。
例如,语音、图像、文字等都可以作为信息源。
在通信系统中,这些不同类型的信息需要经过不同的处理方式才能被传输。
(2)编码器编码器是将源产生的原始信息转换为适合传输的格式或编码方式。
常见的编码方式包括数字化、压缩和加密等。
(3)调制器调制器是将编码后的数字信号转换为适合传输的模拟信号。
调制器的主要功能是将数字信号转换为模拟信号,并通过信道传输到接收端。
2. 接收端接收端由三个主要组成部分构成:解调器、译码器和目的地。
(1)解调器解调器是将模拟信号转换为数字信号。
其主要功能是将接收到的模拟信号转换为数字信号,并传递给译码器进行进一步处理。
(2)译码器译码器是将数字信号转换为原始信息。
其主要功能是将接收到的数字信号还原为原始信息,并进行相应处理。
(3)目的地目的地是指最终接收到信息的设备或人类活动。
例如,显示屏、扬声器、打印机等都可以作为信息的目的地。
三、通信系统中的信道通信系统中,信息需要通过一定类型的信道进行传输。
根据不同类型的传输媒介,可以将通信系统中使用的信道分为有线和无线两种类型。
1. 有线信道有线信道指通过电缆或光缆等物理媒介进行传输。
常见的有线通讯方式包括电话、电报、以太网等。
2. 无线信道无线通讯方式则使用了无线电波作为传输媒介。
辅以实例讲述数据通信系统模型的基本工作过程1. 回顾TCP/IP模型什么是数据网络(Data Network)?简单地说,数据网络就是一个由各种设备搭建起来的一张网,常见的设备有:路由器、交换机、防火墙、负载均衡器、IDS/IPS、VPN服务器等等。
数据网络最基本的功能就是实现不同节点之间的数据互通,也就是数据通信。
TCP/IP模型是当今IP网络的基础(也被称为DoD模型,上图我贴出的并不是标准的TCP/IP模型,为了方便下文的阐述,这里给出的是一个TCP/IP模型与OSI模型的对等模型),它将整个数据通信的任务划分成不同的功能层次(Layer),每一个层次有其所定义的功能,以及对应的协议。
打个比方,对于一家公司而言,一笔业务需要各个部门相互协同工作才能完成,部门与部门之间既相互独立,但是又需要相互配合,可以借用这种思路来理解TCP/IP参考模型。
分层参考模型的设计是非常经典的理念:(1)层次化的模型设计将网络的通信过程划分为更小、更简单的部件,因此有助于各个部件的独立开发、设计和故障排除;(2)层与层之间相互独立,又互相依赖,每一层都有该层的功能、以及定义的协议标准。
层层之间相互配合,共同完成数据通信的过程;(3)通过组件的标准化,允许多个供应商进行开发;(4)通过定义在模型的每一层实现什么功能,鼓励产业的标准化;(5)允许各种类型的网络硬件和软件相互通信。
上面这张图显示的就是每个层次对应的代表性协议。
2. 理解数据通信过程根据上图所示的网络拓扑(Topology),我们来分析一下PC访问Server的WEB服务的详细通信过程。
在阐述过程中,我们聚焦的重点是利用TCP/IP参考模型理解数据通信过程,因此可能会忽略部分技术细节,例如DNS、TCP三次握手等,这些技术细节这里暂不做讨论。
现在你要换一种视野来看待这个“世界”了,想象一下上图所示的终端以及路由器都是一个个的“TCP/IP通信模型”,事实上,整个过程在宏观层面体现如下:我们一步一步的来分析:1.PC的用户在WEB浏览器中访问Server的WEB服务(这里我们暂且不去关注HTTP交互、DNS交互等细节,重点看通信过程),PC的这次操作将触发HTTP应用为用户构造一个应用数据(如下图所示)。
简述通信系统的一般模型概述及解释说明1. 引言1.1 概述通信系统是现代社会中不可或缺的一部分,它在人们之间传递信息、交流思想起到了至关重要的作用。
随着科技的发展,各种通信系统得以建立和完善,从最初的传统有线电话到如今的移动通信网络,都为人们提供了全球范围内快速、可靠、安全的信息传输与沟通手段。
本文将简要介绍通信系统的一般模型,并对其组件、功能和工作原理进行解释说明。
同时,本文还将深入探讨通信系统中的关键要点,以便读者更好地理解和运用相关知识。
1.2 文章结构本文主要分为六个部分:引言、通信系统的一般模型、通信系统的要点一、通信系统的要点二、通信系统的要点三和结论。
在引言部分,我们将对整篇文章进行概述,并阐明文章目标与结构。
接下来,在通信系统的一般模型部分,我们将具体描述其定义、背景、组件和功能以及工作原理。
在接下来的三个部分中,我们将详细解释每个要点,并提供相关实例和说明。
最后,在结论部分,我们将对整篇文章进行总结并提出一些展望。
1.3 目的本文的主要目的是向读者介绍通信系统的一般模型,并解释其组成部分和工作原理。
通过详细说明每个关键要点,我们希望读者能够全面了解通信系统并理解其在现代社会中的重要性。
同时,通过阅读本文,读者还可以更好地应用和运用通信系统相关知识。
最终,我们期望本文能为读者提供一个全面、清晰且易于理解的概述,并为他们进一步学习和研究通信系统打下基础。
2. 通信系统的一般模型2.1 定义和背景:通信系统是指通过传送、交换和处理信息来完成信息传递的一组设备和技术的集合。
它可以实现人与人之间、人与机器之间以及机器与机器之间的信息传递。
通信系统在现代社会中扮演着非常重要的角色,广泛应用于电信、互联网、无线通信等领域。
2.2 组件和功能:通信系统由多个组件组成,每个组件都有特定的功能,协同工作以实现信息传递。
主要的组件包括发送端、接收端、传输介质和信号处理设备。
发送端将待传输的信息转化为适合在传输介质上进行传播的信号,并通过传输介质将信号发送给接收端。
《数据通信技术》课堂教学教案
数据解封
3.OSI 七层协议的功能
物理层:
物理层建立在物理通信介质的基础上,作为系统和通信介质的接口,用来实现数据链路实体间透明的比特(bit,01二进制数)流传输,只有该层为真实物理通信,其它各层为虚拟通信。
物理层实际上是设备之间的物理接口,物理层传输协议主要用于控制传输媒体。
简单来说物理层确定物理设备接口,提供点-点的比特流传输的物理链路。
数据链路层:
数据链路层为网络层相邻实体间提供传送数据的功能和过程;提供数据流链路控制;检测和校正物理链路的差错。
物理层不考虑位流传输的结构,而数据链路层主要职责是控制相邻系统之间的物理链路,传送数据以帧为单位,规定字符编码、信息格式,约定接收和发送过程,在一帧数据开头和结尾附加特殊二进制编码作为帧界识别符,以及发送端处理接收端送回的确认帧,保证数据帧传输和接收的正确性,以及发送和接收速度的匹配,流量控制等。
简言之数据链路层利用差错处理技术,提供高可靠传输的数据链路。
网络层:
网络层控制分组传送操作,即路由选择,拥塞控制、网络互连等功能,根据传输层的要求来选择服务质量,向传输层报告未恢复的差错。
网络层传输的信息以报文分组为单位,它将来自源的报文转换成包文,并经路径选择算法确定路径送往目的地。
网络层协议。
数字通信体系的模子数字通信体系的分类•数字通信体系可进一步细分为数字频带传输通信体系.数字基带传输通信体系.模仿旌旗灯号数字化传输通信体系.1. 数字频带传输通信体系数字通信的根本特点是,它的新闻或旌旗灯号具有“离散”或“数字”的特点,从而使数字通信具有很多特别的问题.例如前边提到的第二种变换,在模仿通信中强调变换的线性特点,即强调已调参量与代表新闻的基带旌旗灯号之间的比例特点;而在数字通信中,则强调已调参量与代表新闻的数字旌旗灯号之间的一一对应关系.别的,数字通信中还消失以下凸起问题:第一,数字旌旗灯号传输时,信道噪声或干扰所造成的错误,原则上是可以掌握的.这是经由过程所谓的错误掌握编码来实现的.于是,就须要在发送端增长一个编码器,而在吸收端响应须要一个解码器.第二,当须要实现保密通信时,可对数字基带旌旗灯号进行工资“捣乱”(加密),此时在收端就必须进行解密.第三,因为数字通信传输的是一个接一个按必定节奏传送的数字旌旗灯号,因而吸收端必须有一个与发端雷同的节奏,不然,就会因收发步伐不一致而造成凌乱.别的,为了表述新闻内容,基带旌旗灯号都是按新闻特点进行编组的,于是,在收发之间一组组的编码的纪律也必须一致,不然吸收时新闻的真正内容将无法恢复.在数字通信中,称节奏一致为“位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题.综上所述,点对点的数字通信体系模子一般可用图 1-3 所示.须要解释的是,图中调制器 / 解调器.加密器 / 解密器.编码器 / 译码器等环节,在具体通信体系中是否全体采取,这要取决于具体设计前提和请求.但在一个体系中,假如发端有调制 / 加密 / 编码,则收端必须有解调 / 解密 / 译码.平日把有调制器 / 解调器的数字通信体系称为数字频带传输通信体系.2. 数字基带传输通信体系与频带传输体系相对应,我们把没有调制器 / 解调器的数字通信体系称为数字基带传输通信体系,如图 1-4 所示.图中基带旌旗灯号形成器可能包含编码器.加密器以及波形变换等,吸收滤波器亦可能包含译码器.解密器等.3. 模仿旌旗灯号数字化传输通信体系上面阐述的数字通信体系中,信源输出的旌旗灯号均为数字基带旌旗灯号,现实上,在日常生涯中大部分旌旗灯号(如语音旌旗灯号)为持续变更的模仿旌旗灯号.那么要实现模仿旌旗灯号在数字体系中的传输,则必须在发端将模仿旌旗灯号数字化,即进行A/D 转换;在吸收端需进行相反的转换,即 D/A 转换.实现模仿旌旗灯号数字化传输的体系如图 1-5 所示.数字通信体系的优缺点•一.数字通信体系的长处1.抗干扰才能强因为在数字通信中,传输的旌旗灯号幅度是离散的,以二进制为例,旌旗灯号的取值只有两个,如许吸收端只需判别两种状况.旌旗灯号在传输进程中受到噪声的干扰,必定会使波形掉真,吸收端对其进行抽样判决,以分辩是两种状况中的哪一个.只要噪声的大小缺少以影响判决的精确性,就能精确吸收(再生).而在模仿通信中,传输的旌旗灯号幅度是持续变更的,一旦叠加上噪声,即使噪声很小,也很难清除它.数字通信抗噪声机能好,还表示在微波中继通信时,它可以清除噪声积聚.这是因为数字旌旗灯号在每次再生后,只要不产生错码,它仍然像信源中发出的旌旗灯号一样,没有噪声叠加在上面.是以中继站再多,数字通信仍具有优越的通信质量.而模仿通信中继时,只能增长旌旗灯号能量(对旌旗灯号放大),而不克不及清除噪声.2.错误可控数字旌旗灯号在传输进程中消失的错误(错误),可经由过程纠错编码技巧来掌握,以进步传输的靠得住性.3.易加密数字旌旗灯号与模仿旌旗灯号比拟,它轻易加密息争密.是以,数字通信保密性好.4.易于与现代技巧相联合因为盘算机技巧.数字存贮技巧.数字交流技巧以及数字处理技巧等现代技巧飞速成长,很多装备.终端接口均是数字旌旗灯号,是以极易与数字通信体系相衔接.二.数字通信体系的缺点1. 频带运用率不高体系的频带运用率,可用体系许可最大传输带宽(信道的带宽)与每路旌旗灯号的有效带宽之比来数字通信中,数字旌旗灯号占用的频带宽,以德律风为例,一路模仿德律风平日只占领 4kHz 带宽,但一路接近同样话音质量的数字德律风可能要占领 20 ~60kHz 的带宽.是以,假如体系传输带宽必定的话,模仿德律风的频带运用率要凌驾数字德律风的 5 ~ 15 倍.2.体系装备比较庞杂数字通信中,要精确地恢复旌旗灯号,吸收端须要严厉的同步体系,以保持收端和发端严厉的节奏一致.编组一致.是以,数字通信体系及装备一般都比较庞杂,体积较大.不过,跟着新的宽带传输信道(如光导纤维)的采取.窄带调制技巧和超大范围集成电路的成长,数字通信的这些缺点已经弱化.跟着微电子技巧和盘算机技巧的缓慢成长和广泛运用,数字通信在往后的通信方法中势必慢慢代替模仿通信而占主导地位.数字通信体系的各部分感化• 1.信源:把原始信息变换成原始电旌旗灯号.2.信源编码:①实现模仿旌旗灯号的数字化传输即完成A/D变更.②进步旌旗灯号传输的有效性.即在包管必定传输质量的情形下,用竟可能少的数字脉冲来暗示信源产生的信息.信源编码也称作频带紧缩编码或数据紧缩编码.3.信道编码:①信源编码的目标:信道编码重要解决数字通信的靠得住性问题.②信道编码的道理:对传输的信息码元按必定的规矩参加一些冗余码(监视码),形成新的码字,吸收端按照商定好的纪律进行检错甚至纠错.③信道编码又称为错误掌握编码.抗干扰编码.纠错编码 .4.数字调制①数字调制技巧的概念:把数字基带旌旗灯号的频谱搬移到高频处,形成合适在信道中传输的频带旌旗灯号.②数字调制的重要感化:进步旌旗灯号在信道上传输的效力,达到旌旗灯号远距离传输的目标.③根本的数字调制方法:振幅键控ASK.频移键控FSK.相移键控PSK.5.同步①同步的概念:指通信体系的收.发两边具有同一的时光尺度,使它们的工作“步伐一致”.②同步的感化:对于数字通信时是至关重要的.假如同步消失误差或掉去同步,通信进程中就会消失大量的误码,导致全部通信体系掉效.6.信道:信道是旌旗灯号传输序言的总称,传输信道的类型有无线信道(如电缆.光纤)和有线信道(如自由空间)两种.7.噪声源:通信体系中各类装备以及信道中所固有的,为了剖析便利,把噪声源视为遍地噪声的分散表示而抽象参加到信道.起首对模仿旌旗灯号进行采样(NYQUIST定理,抽样频率大于等于模仿旌旗灯号最高频率2倍),然后依据采样到的旌旗灯号的幅度(比地契位V)对应一个二进制值(比方0V对应00,1V对应01,2V对应10,只是理论,现实按工程须要或者相干协定),这个进程即为量化,然后输出如许的2进制BIT流,即数字旌旗灯号.(1)频分多路复用:用户在同样的时光占用不合的频率带宽(2)时分多路复用:所有效户在不合的时光占用同样的频带宽度,分为时分复用和统计时分复用两种.(3)波分复用:光的频分复用,用于光纤通信(4)码分复用:CDMA码分多址.多路复用是指两个或多个用户共享公用信道的一种机制.经由过程多路复用技巧,多个终端能共享一条高速信道,从而达到节俭信道资本的目标,多路复用有频分多路复用(FDMA),时分多路复用(TDMA),码分多路复用(CDMA)几种.频分多路复用(FDMA)频分制是将传输频带分成N部分,每一个部分均可作为一个自力的传输信道运用.,如图所示.如许在一对传输线路上可有N对话路信息传送,而每一对话路所占用的只是个中的一个频段.频分制通信又称载波通信,它是模仿通信的重要手腕.时分多路复用(TDMA)时分制是把一个传输通道进行时光朋分以传送若干话路的信息,如图所示.把N个话路装备接到一条公共的通道上,按必定的次序轮流的给各个装备分派一段运用通道的时光.当轮到某个装备时,这个装备与通道接通,履行操纵.与此同时,其它装备与通道的接洽均被割断.待指定的运用时光距离一到,则经由过程时分多路转换开关把通道联接到下一个要衔接的装备上去.时分制通信也称时光朋分通信,它是数字德律风多路通信的重要办法,因而PCM通信常称为时分多路通信.码分多路复用(CDMA)CDMA技巧不是一项新技巧,作为一种多址计划它已经成功地运用于卫星通信和蜂窝德律风范畴,并且显示出很多优于其他技巧的特色.但是,因为卫星通信和移动通信中带宽的限制,所以CDMA技巧尚未充分施展长处.光纤通信具有丰硕的带宽,可以或许很好地填补这个缺点.近年来,OCDMA已经成为一项备受注视标热门技巧.OCDMA技巧在道理上与电码分复用技巧类似.OCDMA通信体系给每个用户分派一个独一的光正交码的码字作为该用户的地址码.在发送端,对要传输的数据该地址码进行光正交编码,然后实现信道复用;在吸收端,用与发端雷同的地址码进行光正交解码.32|评论(8)microwave communication界说:运用波长为1~0.1m(频率为0.3~3GHz)的电磁波进行的通信.包含地面微波接力通信.对流层散射通信.卫星通信.空间通信及工作于微波频段的移动通信.无障碍时就可以运用微波传送.运用微波进行通信具有容量大.质量好并可传至很远的距离,是以是国度通信网的一种重要通信手腕,也广泛实用于各类专用通信网.采取中继方法的直接原因: 对于地面上的远距离微波通信,采取中继方法的直接原因有两个:起首是因为微波波长短,接近于光波,是直线传播具有视距传播特点,而地球概况是个曲面,是以若在通信两地直接通信,当通信距离超出必定命值时,电磁波传播将受到地面的阻拦,为了延伸通信距离,须要在通信两地之间设立若干中继站,进行电磁波转接.其次是因为微波传播有损耗,跟着通信距离的增长旌旗灯号衰减,有须要采取中继方法对旌旗灯号逐段吸收.放大后发送给下一段,延伸通信距离.(Geostationary Satellite),它的长处是运用者只要瞄准人造卫星就可进行沟通而不必再追踪卫星的轨迹.地球同步卫星是工资发射的一种卫星,它相对于地球静止于赤道上空.从地面上看,卫星保持不动,故也称静止卫星;从地球之外看,卫星与地球配合迁移转变,角速度与地球自转角速度雷同,故称地球同步卫星.运转周期24小时地球同步卫星距赤道的高度约为 36000千米,线速度的大小约为3.1公里每秒.卫星通信的特色是:通信范围大;只要在卫星发射的电波所笼罩的范围内,从任何两点之间都可进行通信;不轻易受陆地灾祸的影响(靠得住性高);只要设置地球站电路即可开通(开通电路敏捷);同时可在多处吸收,能经济地实现广播.多址通信(多址特色);电路设置异常灵巧,可随时疏散过于分散的话务量;同一信道可用于不合偏向或不合区间(多址联接).是运用光波在光导纤维中传输信息的通信方法.因为激光具有高偏向性.高相干性.高单色性等明显长处,光纤通信中的光波重要是激光,所以又叫做激光-光纤通信.光纤通信的道理是:在发送端起首要把传送的信息(如话音)变成电旌旗灯号,然后调制到激光器发出的激光束上,使光的强度随电旌旗灯号的幅度(频率)变更而变更,并经由过程光纤发送出去;在吸收端,检测器收到光旌旗灯号后把它变换成电旌旗灯号,经解调后恢回复复兴信息.单工通信数据信息在通信线上始终向一个偏向传输.数据信息永久从发送端传输到吸收端.列如,广播电视就是单工传输方法,收音机电视机只能分离接收来自电台电视台的旌旗灯号,不克不及进行相反偏向的信息传输.2)半双工通信数据信息可以双向传输,但必须瓜代进行,同一时刻一个信道只许可单向传送.半双工通信请求A B端都有发送装配和接收装配,若想转变信息的传输偏向,有开关K1 K2进行切换,再随意率性时刻包管A端发送装配与B端接收装配A端接收装配与B端发送装配介入信道.半双工通信因为通信中要濒反的更换信道的偏向,所以效力交底.如对讲机通信就是典范的半双工通信方法,在一方讲话的时刻另一方不克不及讲话,但经由过程开切换可以切换可以转变童话方法.全双工通信同时进行二个偏向的通信,既二个信道,可同时进行双向的数据传输.它相当于把二个相反偏向的单工通信方法组合起来.全双工通信效力高,掌握轻易,士与盘算机间的通信,通俗德律风是一种典范的全双工通信.界说:散布在不合地点的多个用户通信装备.传输装备.交流装备用通信线路互相衔接,在响应通信软件支撑下所构成的传递信息的体系.通信网是一种运用交流装备,传输装备,将地理上疏散用户终端装备互连起来实现通信和信息交流的体系.通信最根本的情势是在点与点之间树立通信体系,但这不克不及称为通信网,只有将很多的通信体系(传输体系)经由过程交流体系按必定拓扑构造组合在一路才干称之为通信.也就是说,有了交流体系才干使某一地区内随意率性两个终端用户互相接续,才干构成通信网.通信网由用户终端装备,交流装备和传输装备构成.交流装备间的传输装备称为中继线路(简称中继线),用户终端装备至交流装备的传输装备称为用户路线(简称用户线).通信网:在分处异地的用户之间传递信息的体系.属于电磁体系的也称电信网.它通信网是由互相依存.互相制约的很多要素所构成的一个有机整体,以完成划定的功效.通信网的功效就是要顺运用户呼叫的须要,以用户知足的程度沟通网中随意率性两个或多个用户之间的信息.离散信源: 指发出在时光和幅度上都是离散散布的离散新闻的信源,如文字.数字.数据等符号都是离散新闻.持续信源指发出在时光和幅度上都是持续散布的持续新闻(模仿新闻)的信源.离散旌旗灯号可分两类:1抽样旌旗灯号2数字旌旗灯号抽样旌旗灯号的特色是时光离散...幅值持续数字旌旗灯号的特色是时光..幅值均离散抽样旌旗灯号等于离散旌旗灯号吗?不克不及笼统的这么说,因为抽样旌旗灯号是离散旌旗灯号中的一种什么样的离散旌旗灯号才算抽样旌旗灯号?相符抽样旌旗灯号特色的离散旌旗灯号数字旌旗灯号和离散旌旗灯号有什么差别呢?数字旌旗灯号是离散旌旗灯号中的一种模仿旌旗灯号是指信息参数在给定范围内表示为持续的旌旗灯号. 或在一段持续的时光距离内,其代表信息的特点量可以在随意率性刹时呈现为随意率性数值的旌旗灯号.模仿旌旗灯号与数字旌旗灯号之间的互相转换模仿旌旗灯号和数字旌旗灯号之间可以互相转换:模仿旌旗灯号一般经由过程PCM脉码调制(Pulse Code Modulation)办法量化为数字旌旗灯号,即让模仿旌旗灯号的不合幅度分离对应不合的二进制值,例如采取8位编码可将模仿旌旗灯号量化为2^8=256个量级,实用中常采纳24位或30位编码;数字旌旗灯号一般经由过程对载波进行移相(Phase Shift)的办法转换为模仿旌旗灯号. 盘算机.盘算机局域网与城域网中均运用二进制数字旌旗灯号,今朝在盘算机广域网中现实传送的则既有二进制数字旌旗灯号,也有由数字旌旗灯号转换而得的模仿旌旗灯号.但是更具运用成长远景的是数字旌旗灯号.光纤是光导纤维的简写,是一种运用光在玻璃或塑料制成的纤维中的全反射道理而达成的光传导对象.前喷鼻港中文大学校长高锟和George A. Hockham起首提出光纤可以用于通信传输的假想,高锟是以获得2009年诺贝尔物理学奖一种传输光能的波导介质,一般由纤芯和包层构成.丝)和塑料呵护套管及塑料外皮构成,光缆内没有金.银.铜铝等金的线缆.界说1:以光纤为传输元件的缆(有时含有若干电线),一般都含有增强元件及须要的护套.运用学科:界说2:一种由单根光纤.多根光纤或光纤束加上外护套制成,知足光学特点.机械特点和情形机能指标请求的缆构造实体.运用学科:通信科技(一级学科);光纤传输与接入(二级学科)信体系是用以完成信息传输进程的技巧体系的总称.现代通信体系重要借助电磁波在自由空间的传播或在导引媒体中的传输机理来实现,前者称为无线通信体系,后者称为有线通信体系.通信网是一种运用交流装备,传输装备,将地理上疏散用户终端装备互连起来实现通信和信息交流的体系.通信最根本的情势是在点与点之间树立通信体系,但这不克不及称为通信网,只有将很多的通信体系(传输体系)经由过程交流体系按必定拓扑构造组合在一路才干称之为通信.也就是说,有了交流体系才干使某一地区内随意率性两个终端用户互相接续,才干构成通信网.通信网由用户终端装备,交流装备和传输装备构成.交流装备间的传输装备称为中继线路(简称中继线),用户终端装备至交流装备的传输装备称为用户路线(简称用户线).。
第一章绪论1.什么是通信系统?画出数据通信系统的一般模型图,并简要介绍。
(1)通信系统是实现信息传递所需的一切技术设备和传输媒介的总和(2)信源→发送设备→传输系统→接收设备→信宿↑噪声源源系统→→→传输系统→→→目的系统(3)信源:把各种消息转换为原始电信号信宿:把电信号还原成消息发送设备:匹配信源与传输媒介:调制接收设备:完成发送设备的反变换:解调信道:信号传输媒介噪声源:集中表示分布于通信系统中各处的噪声2.试分析数字通信和模拟通信的优缺点。
(1)模拟通信系统:以模拟信号为传输对象的传输方式称为模拟传输,以模拟信号来传达消息的通信方式称为模拟通信,传输模拟信号的通信系统称为模拟传输系统。
缺点:抗干扰能力差保密性差不能适应计算机通信的需求(2)数字通信系统:以数字信号为传输对象的传输方式称为数字传输,以数字信号来传达消息的通信方式称为数字通信,传输数字信号的通信系统称为模拟数字系统。
优越性:抗干扰能力强{数字信号可多次再生,自动检错、纠错}具有良好的灵活性和通用性便于加密数字通信设备易于大规模集成什么是消息?什么是信息?什么是信息技术(Information technology,IT)?基本概念:1.1948年,晶体管的发明与香农定理的提出激起了数字通信系统的发展2.按照信号特征分类,通信系统可分为模拟通信系统和数字通信系统。
第二章 练习题1. 信息的概念a) 信息和消息的区别是什么?解:消息具有两个特点:一是能被通信双方所理解,二是可以相互传递信息是指包含在消息中对通信者有意义的那部分内容消息是信息的载体b) 信息量的定义和单位是什么?解:一条消息包含信息的多少称为信息量定义:当底数分别为2,e 和10时,单位为比特,奈特和哈特莱c)设某信源产生a 、b 、c 、d 四个符号,若各符号的出现相互独立,且其出现概率分别为1/2、1/4、1/8、1/8,试求该信源的平均信息量。
解:H =−12log 212−14log 214−18log 218−18log 218=2.5(b)d) 一个离散信号源每毫秒发出4种符号中的一个,各相互独立符号出现的概率分别为0.4、0.3、0.2、0.1,求该信号源的平均信息量与信息速率。
OSI七层模型每层的作用,超详细OSI共7层,应用层,表示层,会话层,传输层,数据链路层,物理层。
应用层应用层是网络可向最终用户提供应用服务的唯一窗口,其目的是支持用户联网的应用的要求。
由于用户的要求不同,应用层含有支持不同应用的多种应用实体,提供多种应用服务,如电子邮(MHS)、文件传输(FTAM)、虚拟终端(VT)、电子数据交换(EDI)等。
主要协议有:FTP(21端口),SMTP(25端口),DNS,HTTP(80端口)表示层表示层的作用之一是为异种机通信提供一种公共语言,以便能进行互操作。
这种类型的服务之所以需要,是因为不同的计算机体系结构使用的数据表示法不同。
例如,IBM主机使用EBCDIC编码,而大部分PC机使用的是ASCII码。
在这种情况下,便需要会话层来完成这种转换。
其他功能例如数据加密,数据压缩。
会话层会话层提供的服务可使应用建立和维持会话,并能使会话获得同步。
会话层使用校验点可使通信会话在通信失效时从校验点继续恢复通信,即对信息的交互实现控制。
这种能力对于传送大的文件极为重要。
传输层传输层是两台计算机经过网络进行数据通信时,第一个端到端的层次,具有缓冲作用。
当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。
传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。
传输层也称为运输层。
传输层只存在于端开放系统中,是介于低3层通信子网系统和高3层之间的一层,但是很重要的一层。
因为它是源端到目的端对数据传送进行控制从低到高的最后一层。
提供端到端的服务,所谓端到端,指的是协议里面标示了一个源端口号和目的端口号,用源端口号和目的端口号可以唯一的而且在全网内标示一个进程。
协议有:UDP/TCP。
网络设备:传输层及传输层以上都用网关进行互联。
网络层网络层的产生也是网络发展的结果。
在联机系统和线路交换的环境中,网络层的功能没有太大意义,当数据终端增多时,它们之间有中继设备相连。
通俗讲解OSI七层模型国际标准化组织 ISO 于 1983 年正式提出了开放式系统互联模型(通称 ISO/OSI)。
将整个⽹络通信的功能划分为 7 个层次OSI参考模型将整个⽹络通信的功能划分为 7 个层次,这些层就像我们吃的洋葱、卷⼼菜的⼀样:每⼀层都将其下⾯的层遮起来。
下⼀层次的细节被隐藏起来。
如果你将洋葱⽪剥开往⾥看,你⼀定会流下许多眼泪,OSI模型也是如此,越往下看越难理解,只要你不怕流泪、⿇烦,不放弃你就会成功。
物理层:⽹卡,⽹线,集线器,中继器,调制解调器数据链路层:⽹桥,交换机⽹络层:路由器⽹关⼯作在第四层传输层及其以上集线器是物理层设备,采⽤⼴播的形式来传输信息。
交换机就是⽤来进⾏报⽂交换的机器。
多为链路层设备(⼆层交换机),能够进⾏地址学习,采⽤存储转发的形式来交换报⽂.。
路由器的⼀个作⽤是连通不同的⽹络,另⼀个作⽤是选择信息传送的线路。
选择通畅快捷的近路,能⼤⼤提⾼通信速度,减轻⽹络系统通信负荷,节约⽹络系统资源,提⾼⽹络系统畅通率。
交换机和路由器的区别交换机拥有⼀条很⾼带宽的背部总线和内部交换矩阵。
交换机的所有的端⼝都挂接在这条总线上,控制电路收到数据包以后,处理端⼝会查找内存中的地址对照表以确定⽬的MAC(⽹卡的硬件地址)的NIC(⽹卡)挂接在哪个端⼝上,通过内部交换矩阵迅速将数据包传送到⽬的端⼝,⽬的MAC若不存在则⼴播到所有的端⼝,接收端⼝回应后交换机会“学习”新的地址,并把它添加⼊内部MAC地址表中。
使⽤交换机也可以把⽹络“分段”,通过对照MAC地址表,交换机只允许必要的⽹络流量通过交换机。
通过交换机的过滤和转发,可以有效的隔离⼴播风暴,减少误包和错包的出现,避免共享冲突。
交换机在同⼀时刻可进⾏多个端⼝对之间的数据传输。
每⼀端⼝都可视为独⽴的⽹段,连接在其上的⽹络设备独⾃享有全部的带宽,⽆须同其他设备竞争使⽤。
当节点A向节点D发送数据时,节点B可同时向节点C发送数据,⽽且这两个传输都享有⽹络的全部带宽,都有着⾃⼰的虚拟连接。
OSI参考模型OSI是Open System Interconnection的缩写,意为开放式系统互联。
国际标准化组织(ISO)制定了OSI模型,该模型定义了不同计算机互联的标准,是设计和描述计算机网络通信的基本框架。
OSI模型把网络通信的工作分为7层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
OSI起源1969年12月,美国国防部高级计划研究署的分组交换网ARPANET投入运行,从此计算机网络发展进入新纪元。
ARPANET当时仅有4个结点,分别在美国国防部、原子能委员会、麻省理工学院和加利福利亚。
这4台计算机之间进行数据通信仅有传送数据的通路是不够的,还必须遵守一些事先约定好的规则,由这些规则明确所交换数据的格式及有关同步问题。
ARPANT的实践经验表明对于非常复杂的计算机网络而言,其结构最好是采用层次型的。
在OSI模型中层与层之间进行对等通信,且这种通信只是逻辑上的,真正的通信都是在最底层-物理层实现的,每一层要完成相应的功能,下一层为上一层提供服务,从而把复杂的通信过程分成了多个独立的、比较容易解决的子问题。
OSI模型把网络通信的工作分为7层,它们由低到高分别是物理层,数据链路层,网络层,传输层,会话层,表示层和应用层。
第一层到第三层属于OSI参考模型的低三层,负责创建网络通信连接的链路;第五层到第七层为OSI参考模型的高三层,具体负责端到端的数据通信;第四层负责高低层的连接。
每层完成一定的功能,每层都直接为其上层提供服务,并且所有层次都互相支持。
OSI参考模型中,对等层协议之间交换的信息单元统称为协议数据单元PDU。
而传输层及以下各层的PDU另外还有各自特定的名称:传输层——数据段(Segment)网络层——分组(数据包)(Packet)数据链路层——数据帧(Frame)物理层——比特(Bit)接下来分别介绍各层功能:1.物理层物理层是OSI分层结构体系中最重要、最基础的一层,它建立在传输媒介基础上,起建立、维护和取消物理连接作用,实现设备之间的物理接口。
数字通信系统的模型∙数字通信系统的分类∙数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。
1. 数字频带传输通信系统数字通信的基本特征是,它的消息或信号具有“离散”或“数字”的特性,从而使数字通信具有许多特殊的问题。
例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。
另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。
这是通过所谓的差错控制编码来实现的。
于是,就需要在发送端增加一个编码器,而在接收端相应需要一个解码器。
第二,当需要实现保密通信时,可对数字基带信号进行人为“扰乱”(加密),此时在收端就必须进行解密。
第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。
另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。
在数字通信中,称节拍一致为“位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题。
综上所述,点对点的数字通信系统模型一般可用图 1-3 所示。
需要说明的是,图中调制器 / 解调器、加密器 / 解密器、编码器 / 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。
但在一个系统中,如果发端有调制 / 加密 / 编码,则收端必须有解调 / 解密 / 译码。
通常把有调制器 / 解调器的数字通信系统称为数字频带传输通信系统。
2. 数字基带传输通信系统与频带传输系统相对应,我们把没有调制器 / 解调器的数字通信系统称为数字基带传输通信系统,如图 1-4 所示。