专题二 第3讲 三角恒等变换与解三角形
- 格式:docx
- 大小:78.42 KB
- 文档页数:12
三角恒等变换与解三角形三角恒等变换(Trigonometric Identities)是数学中重要的基本概念之一,它们在解三角形等相关问题中发挥着重要的作用。
在本文中,我们将探讨三角恒等变换的基本概念以及如何利用它们解决三角形的问题。
1. 引言三角恒等变换是指在三角函数之间的相等关系。
通过运用这些恒等变换,我们可以简化和变换三角函数的表达式,从而更容易解决与三角函数相关的问题。
2. 基本的三角恒等变换2.1 正弦函数的平方和余弦函数的平方等于1对于任意角θ,有sin^2θ + cos^2θ = 1。
这个恒等变换被称为三角函数的基本恒等变换,它表明正弦函数的平方与余弦函数的平方之和等于1。
2.2 余弦函数与正弦函数的互补关系对于任意角θ,有sin(π/2 - θ) = cosθ 和cos(π/2 - θ) = sinθ。
这表明余弦函数与正弦函数在π/2之间具有互补关系。
2.3 正切函数与余切函数的互补关系对于任意角θ,有tan(π/2 - θ) = cotθ 和cot(π/2 - θ) = tanθ。
这表明正切函数与余切函数在π/2之间具有互补关系。
3. 利用三角恒等变换解三角形利用三角恒等变换,我们可以简化和变换三角函数的表达式,从而解决与三角形相关的问题。
以下是一些常用的例子:3.1 例子1:已知一个角的正弦值,求解这个角的余弦值和正切值。
假设已知角θ的正弦值为sinθ = 3/5。
根据正弦函数的平方和余弦函数的平方等于1,我们可以得到cos^2θ = 1 - (sinθ)^2 = 1 - (3/5)^2 = 16/25。
因此,cosθ = ±4/5,取决于角θ的实际情况。
同样地,根据正切函数的定义,我们可以得到tanθ = sinθ/cosθ = (3/5)/ (±4/5) = 3/4。
3.2 例子2:已知一个角的余弦值,求解这个角的正弦值和余切值。
假设已知角θ的余弦值为cosθ = 4/5。
三角恒等变换与解三角形三角恒等变换是解决三角形相关问题中常用的工具。
通过利用三角函数之间的关系,可以在一些情况下简化问题的求解,或者将复杂的三角形相关问题转化为更简单的形式。
本文将介绍一些常见的三角恒等变换,并结合实例说明其在解三角形问题中的应用。
1. 正弦定理正弦定理是三角形中常用的定理之一,用于求解三角形的边或角。
假设有一个三角形ABC,边长分别为a、b、c,对应的内角为A、B、C,正弦定理的数学表达式为:```a/sinA = b/sinB = c/sinC```其中,等式两边都表示边与对应角的正弦值的比例关系。
举例:已知三角形的两边a、b和它们夹角C,求第三边c。
根据正弦定理可得```c/sinC = a/sinA = b/sinB```通过这个等式可以解出c的值,进而求得整个三角形的相关信息。
2. 余弦定理余弦定理也是解决三角形问题时常用的定理之一,可以用于求解三角形的边或角。
假设有一个三角形ABC,边长分别为a、b、c,对应的内角为A、B、C,余弦定理的数学表达式为:```c^2 = a^2 + b^2 - 2*a*b*cosC```其中,等式右侧表示边长和夹角的余弦值的比例关系。
举例:已知三角形的两边a、b和它们的夹角C,求第三边c。
根据余弦定理可得```c^2 = a^2 + b^2 - 2*a*b*cosC```通过解这个方程可以求得c的值。
3. 正切定理正切定理是利用正切函数关系来解决三角形问题的定理,可以用于求解三角形的边或角。
假设有一个三角形ABC,边长分别为a、b,对应的内角为A、B,正切定理的数学表达式为:```tanA = (b*sinA)/(a - b*cosA)```其中,等式右侧表示两个边长度和夹角的正切值的比例关系。
举例:已知三角形的一边a和它的内角A,求另一边b。
根据正切定理可得```tanA = (b*sinA)/(a - b*cosA)```通过这个等式可以解出b的值。
微专题2 三角恒等变换与解三角形高考定位 1.三角函数的化简与求值是高考的命题重点,其中关键是运用倍角公式、两角和与差公式进行恒等变换,“角”的变换是三角恒等变换的核心; 2.正、余弦定理及应用是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题,常与三角恒等变换交汇融合,注重基础知识、基本能力的考查.1.(2021·全国乙卷)cos 2π12-cos 25π12=( ) A.12B.33C.22D.32答案 D解析 因为cos 5π12=sin ⎝ ⎛⎭⎪⎫π2-5π12=sin π12,所以cos 2π12-cos 25π12=cos 2π12-sin 2π12=cos π6=32.故选D.2.(2022·新高考Ⅱ卷)若sin(α+β)+cos(α+β)=22cos ⎝ ⎛⎭⎪⎫α+π4sin β,则( ) A.tan(α-β)=1 B.tan(α+β)=1 C.tan(α-β)=-1 D.tan(α+β)=-1 答案 C解析 由题意得sin αcos β+sin βcos α+cos αcos β-sin αsin β =22×22(cos α-sin α)sin β,整理,得sin αcos β-sin βcos α+cos αcos β+sin αsin β=0, 即sin(α-β)+cos(α-β)=0, 所以tan(α-β)=-1,故选C.3.(2021·全国甲卷)在△ABC 中,已知B =120°,AC =19,AB =2,则BC =( ) A.1 B. 2 C. 5 D.3答案 D解析 法一 由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC 2+2BC -15=0,解得BC =3或BC =-5(舍去). 故选D.法二 由正弦定理AC sin B =AB sin C ,得sin C =AB ·sin B AC =5719,从而cos C =41919(C 是锐角),所以sin A =sin [π-(B +C )]=sin (B +C ) =sin B cos C +cos B sin C =32×41919-12×5719=35738. 又AC sin B =BC sin A ,所以BC =AC ·sin Asin B =3.故选D.4.(2021·浙江卷)在△ABC 中,B =60°,AB =2,M 是BC 的中点,AM =23, 则AC =________;cos ∠MAC =________. 答案 21323913解析 由B =60°,AB =2,AM =23,及余弦定理可得BM =4, 因为M 为BC 的中点,所以BC =8. 在△ABC 中,由余弦定理可得AC 2=AB 2+BC 2-2BC ·AB ·cos B =4+64-2×8×2×12=52, 所以AC =213,所以在△AMC中,由余弦定理得cos∠MAC=AC2+AM2-MC22AC·AM=52+12-162×213×23=23913.5.(2022·全国乙卷)设△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A -B)=sin B sin(C-A).(1)若A=2B,求C;(2)证明:2a2=b2+c2.(1)解由A=2B,A+B+C=π,可得A=2π-2C3.将A=2B代入sin C sin(A-B)=sin B sin(C-A),可得sin C sin B=sin B sin(C-A).因为B∈(0,π),所以sin B≠0,所以sin C=sin(C-A).又A,C∈(0,π),所以C+C-A=π,即A=2C-π,与A=2π-2C3联立,解得C=5π8.(2)证明法一由sin C sin(A-B) =sin B sin(C-A),可得sin C sin A cos B-sin C cos A sin B =sin B sin C cos A-sin B cos C sin A,结合正弦定理可得,ac cos B-bc cos A=bc cos A-ab cos C,即ac cos B+ab cos C=2bc cos A(*).由余弦定理得,ac cos B=a2+c2-b22,ab cos C=a2+b2-c22,2bc cos A=b2+c2-a2,将上述三式代入(*)式并整理,得2a2=b2+c2.法二因为A+B+C=π,所以sin C sin(A-B)=sin(A+B)sin(A-B)=sin2A cos2B-cos2A sin2B=sin2A(1-sin2B)-(1-sin2A)sin2B=sin2A-sin2B,同理有sin B sin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A.又sin C sin(A-B)=sin B sin(C-A),所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C,故由正弦定理可得2a2=b2+c2.热点一三角恒等变换1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”.2.三角恒等变换“四大策略”(1)数值代换:常用到“1”的代换,1=sin2θ+cos2θ=tan 45°等.(2)项的拆分与角的配凑:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化,实现角和函数名的统一.例1 (1)(2022·长沙长郡中学调研)已知α∈⎝ ⎛⎭⎪⎫0,π2且12cos 2α+7sin 2α-4=0,若tan(α+β)=3,则tan β=( ) A.-113或-7 B.-711或1 C.1D.-113(2)(2022·深圳质检)已知α,β∈(0,π)且tan α=12,cos β=-1010,则α+β=( ) A.π4 B.3π4 C.5π6 D.5π4 答案 (1)D (2)B解析 (1)由12cos 2α+7sin 2α-4=0,得4cos 2α+7sin αcos α-2sin 2α=0, ∴2tan 2α-7tan α-4=0, 由α∈⎝ ⎛⎭⎪⎫0,π2,得tan α=4. 又∵tan(α+β)=3, ∴tan β=tan(α+β-α)=tan (α+β)-tan α1+tan (α+β)tan α=3-41+3×4=-113,故选D.(2)因为α,β∈(0,π)且tan α=12, cos β=-1010,所以α∈⎝ ⎛⎭⎪⎫0,π6,β∈⎝ ⎛⎭⎪⎫π2,23π,sin β=1-cos 2β=31010,tan β=sin βcos β=-3,α+β∈⎝ ⎛⎭⎪⎫π2,56π,因为tan(α+β)=tan α+tan β1-tan αtan β=12+(-3)1-12×(-3)=-1,所以α+β=3π4.故选B.易错提醒 (1)求三角函数值时,要注意根据角的范围判断三角函数值的符号来确定其值.(2)对于给值求角问题,要根据已知角求这个角的某个三角函数值,然后结合角的范围求出角的大小,求解时,要尽量缩小角的取值范围,避免产生增解. 训练1 (1)(2022·重庆诊断)已知α∈⎝ ⎛⎭⎪⎫0,π2,若sin α=45,则cos ⎝ ⎛⎭⎪⎫α-π6=( )A.4-3310 B.33-410C.43-310D.4+3310(2)(2022·盐城二模)计算2cos 10°-sin 20°cos 20°所得的结果为( ) A.1 B. 2 C. 3D.2 答案 (1)D (2)C解析 (1)由α∈⎝ ⎛⎭⎪⎫0,π2且sin α=45, 得cos α=35,则cos ⎝ ⎛⎭⎪⎫α-π6=cos αcos π6+sin αsin π6=4+3310.故选D.(2)原式=2cos (30°-20°)-sin 20°cos 20°=3cos 20°+sin 20°-sin 20°cos 20°= 3.热点二 正弦定理和余弦定理1.正弦定理:在△ABC 中,a sin A =b sin B =csin C =2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c2R ,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A . 变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc .例2 (1)(2022·邢台联考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a +b )·(sin A -sin B )=c sin C +b (1+cos A )·sin C ,则cos A =( ) A.-13 B.-23 C.13D.23(2)(2022·烟台模拟)在△ABC 中,已知C =120°,sin B =2sin A ,且△ABC 的面积为23,则AB 的长为________. 答案 (1)A (2)27解析 (1)由题意及正弦定理可得(a +b )(a -b )=c 2+bc (1+cos A ), 整理得a 2=b 2+c 2+bc (1+cos A ), 因为a 2=b 2+c 2-2bc cos A , 所以-2cos A =1+cos A , 解得cos A =-13.(2)设角A ,B ,C 的对边分别为a ,b ,c . 由sin B =2sin A 及正弦定理可得b =2a , ∴S △ABC =12ab sin C =12a ×2a ×32=23,∴a =2,b =4,由余弦定理可得c 2=4+16-2×2×4×⎝ ⎛⎭⎪⎫-12=28,∴c =27.规律方法 (1)利用正、余弦定理解三角形时,涉及边与角的余弦的积时,常用正弦定理将边化为角,涉及边的平方时,一般用余弦定理.(2)涉及边a ,b ,c 的齐次等式时,常用正弦定理转化为角的正弦值,再利用三角公式进行变形.训练2 (1)(2022·泰安三模)在△ABC 中,AC =3,BC =2,cos C =34,则tan A =( ) A.56B.76C.53D.73(2)在△ABC 中,cos C =23,AC =4,BC =3,则cos B 等于( ) A.19 B.13 C.12 D.23 答案 (1)D (2)A 解析 (1)由余弦定理得AB 2=AC 2+BC 2-2BC ·AC cos C =32+22-2×3×2×34=4, 所以AB =2,所以AB =BC , 所以A =C ,所以cos A =cos C =34, 则sin A =74,故tan A =73.故选D.(2)由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9, 所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.故选A.热点三 正弦定理、余弦定理的综合应用1.利用正、余弦定理解决实际问题的一般流程:分析→列关系式→求解→检验2.涉及正、余弦定理与三角形面积的综合问题求三角形面积时常用S=12ab sin C形式的面积公式.3.在△ABC中,有a=b cos C+c cos B,b=a cos C+c cos A,c=a cos B+b cos A,称为射影定理,在小题中使用可快速化简,大题解答时需有简单证明过程.K例3 (2021·全国甲卷)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8 848.86(单位:m).三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影A′,B′,C′满足∠A′C′B′=45°,∠A′B′C′=60°.由C点测得B点的仰角为15°,BB′与CC′的差为100;由B点测得A点的仰角为45°,则A,C两点到水平面A′B′C′的高度差AA′-CC′约为(3≈1.732)()A.346B.373C.446D.473答案 B解析如图所示,根据题意过C作CE∥C′B′,交BB′于E,过B作BD∥A′B′,交AA′于D,则BE=100,C′B′=CE=100tan 15°.在△A′C′B′中,∠C′A′B′=180°-∠A′C′B′-∠A′B′C′=75°,则BD=A′B′=C′B′·sin 45°sin 75°,又在B 点处测得A 点的仰角为45°, 所以AD =BD =C ′B ′·sin 45°sin 75°,所以高度差AA ′-CC ′=AD +BE =C ′B ′·sin 45°sin 75°+100=100tan 15°·sin 45°sin 75°+100 =100sin 45°sin 15°+100=100×2222×⎝ ⎛⎭⎪⎫32-12+100=100(3+1)+100≈373.例4 (2022·北京海淀区模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin B =3b cos A . (1)求A ;(2)从以下三组条件中选择一组条件作为已知条件,使△ABC 存在且唯一确定,并求△ABC 的面积.第①组条件:a =19,c =5. 第②组条件:cos C =13,c =4 2. 第③组条件:AB 边上的高h =3,a =3.注:如果选择多种情形分别解答,按第一个解答计分.解 (1)因为a sin B =3b cos A ,由正弦定理可得sin A sin B =3sin B cos A , 又B ∈(0,π),所以sin B ≠0, 则sin A =3cos A ,即tan A =3,又A ∈(0,π),所以A =π3.(2)若选择第①组条件,由余弦定理可得 a 2=b 2+c 2-2bc cos A , 即19=b 2+25-5b ,解得b =2或3,不符合题意, 故不能选第①组条件.若选择第②组条件,因为C ∈(0,π), cos C =13,所以sin C =223,由正弦定理a sin A =c sin C 可得a =c sin Asin C =42×32223=33,则sin B =sin(A +C )=sin A cos C +cos A sin C =32×13+12×223=22+36,此时△ABC 的面积S =12ac sin B=12×33×42×22+36=43+3 2.若选择第③组条件,因为AB 边上的高h =3, 所以b sin π3=3, 则b =332=2, 由余弦定理a 2=b 2+c 2-2bc cos A , 得9=4+c 2-2c ,解得c =1+6(舍负),此时△ABC 的面积S =12bc sin A =12×2×(1+6)×32=3+322.规律方法 (1)对于解三角形的开放性问题,要根据自己的实际情况,选择自己最熟悉,易转化的条件用以求解.(2)与面积有关的问题,一般要根据已知角来选择三个面积公式(S =12ab sin C bc sin A =12ac sin B )中的一个,同时再用正、余弦定理进行边角转化.训练3 (1)(2022·湖南三湘名校联考)如图是2021年9月17日13时34分神舟十二号返回舱(图中C )接近地面的场景.伞面是表面积为1 200 m 2的半球面(不含底面圆),伞顶B 与返回舱底端C 的距离为半球半径的5倍,直线BC 与水平地面垂直于D ,D 和观测点A 在同一水平线上,在A 测得点B 的仰角∠DAB =30°,且sin ∠BAC =732247,则此时返回舱底端离地面的距离CD =______(π=3.14,sin ∠ACB =93247,计算过程中,球半径四舍五入保留整数).答案 20 m解析 设半球的半径为r m , 则2πr 2=1 200,∴r ≈14, ∴BC =5r =70 m.在△ABC 中,由正弦定理得AB sin ∠ACB =BCsin ∠BAC,则AB =BC sin ∠ACB sin ∠BAC =70×93247×224773=180(m),∴BD =90 m ,则CD =BD -BC =20(m).(2)(2022·青岛调研)从①2b sin A =a tan B ,②a 2-b 2=ac -c 2,③3sin B =cos B +1这三个条件中任选一个,补充在下面横线上,并解答.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且________. (ⅰ)求B 的大小;(ⅱ)若b =2,S △ABC =32,求△ABC 的周长.注:如果选择多个条件分别解答,按第一个解答计分.解 (ⅰ)若选①:因为2b sin A =a tan B =a sin B cos B ,所以2ab =abcos B , 所以cos B =12,因为B ∈(0,π),所以B =π3.若选②:因为a 2-b 2=ac -c 2, 所以a 2+c 2-b 2=ac , 所以2ac cos B =ac , 所以cos B =12,因为B ∈(0,π),所以B =π3. 若选③:因为3sin B =cos B +1, 所以3sin B -cos B =1, 所以2sin ⎝ ⎛⎭⎪⎫B -π6=1,所以sin ⎝ ⎛⎭⎪⎫B -π6=12,因为B -π6∈⎝ ⎛⎭⎪⎫-π6,5π6,所以B -π6=π6,所以B =π3.(ⅱ)因为b 2=a 2+c 2-2ac cos B , 所以a 2+c 2-ac =4,又S △ABC =12ac sin B =32,所以ac =2, 所以(a +c )2-3ac =4,所以(a +c )2=10, 所以a +c =10,所以△ABC 的周长为2+10.一、基本技能练1.(2022·河北省级联测)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,B =135°,b =15,c =3,则a =( ) A.2 B. 6 C.3 D.2 6答案 B解析 由余弦定理得b 2=a 2+c 2+2ac ,即15=a 2+6a +3,解得a =6(舍负).故选B.2.(2022·山东新高考联考)已知sin ⎝ ⎛⎭⎪⎫θ-π12=13,则sin ⎝ ⎛⎭⎪⎫2θ+π3=( )A.-29B.29C.-79D.79 答案 D解析 设α=θ-π12,则θ=α+π12,sin α=13,从而sin ⎝ ⎛⎭⎪⎫2θ+π3=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π12+π3=sin ⎝ ⎛⎭⎪⎫2α+π2=cos 2α=1-2sin 2α=79. 故选D.3.(2022·贵阳质检)在△ABC 中,若3a sin B =c -b cos A ,则B =( ) A.π12 B.π6 C.π4 D.π3 答案 B解析 由3a sin B =c -b cos A 及正弦定理, 得3sin A sin B =sin C -sin B cos A ,又sin C =sin(A +B )=sin A cos B +cos A sin B , 则3sin A sin B =sin A cos B , ∵sin A ≠0,∴sin B cos B =tan B =33,又B ∈(0,π),则B =π6.4.(2022·深圳六校联考)已知△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,则根据条件解三角形时有两解的一组条件是( ) A.a =1,b =2,A =π4 B.a =2,b =1,A =π4 C.a =2,b =3,A =π6 D.a =4,b =3,A =2π3答案 C解析 对于A ,由a sin A =b sin B 且a =1,b =2,A =π4, 得1sin π4=2sin B ,sin B =2>1, 所以△ABC 无解.对于B ,由a sin A =b sin B 且a =2,b =1,A =π4,得2sin π4=1sin B ,sin B =24<1,又b <a ,所以B 唯一确定,△ABC 有一解.对于C ,由a sin A =b sin B 且a =2,b =3,A =π6,得2sin π6=3sin B ,sin B =34,又b >a ,B ∈(0,π), 所以B 的值有2个,△ABC 有两解.对于D ,由a sin A =b sin B 且a =4,b =3,A =23π,得4sin 23π=3sin B ,sin B =338<1,又b <a ,所以B 唯一确定,△ABC 有一解. 5.(2022·辽宁百校联盟质检)如图,无人机在离地面高300 m 的M 处,观测到山顶A 处的俯角为15°,山脚C 处的俯角为60°,已知AB =BC ,则山的高度AB 为( )A.150 2 mB.200 mC.200 2 mD.300 m答案 B解析 在Rt △MNC 中,∠MCN =60°, MN =300 m , 所以MC =MNsin 60°=200 3 m. 在△ACM 中,由已知得∠MAC =15°+45°=60°,∠AMC =60°-15°=45°, 由正弦定理得MC sin 60°=AC sin 45°, 故AC =2003×2232=200 2 m.在Rt △ABC 中,AB =BC =AC sin 45° =2002×22=200 m , 所以山的高度AB =200 m.故选B.6.(2022·郑州二模)已知函数f (x )=sin(πx +φ)在某个周期内的图象如图所示,A ,B 分别是f (x )图象的最高点与最低点,C 是f (x )的图象与x 轴的交点,则tan ∠BAC =( )A.12B.47C.255D.76565答案 B解析 过A 作AD 垂直于x 轴于点D ,设AB 与x 轴交于E ,由题意可得函数的周期为2,设C (a ,0),则B ⎝ ⎛⎭⎪⎫a +12,-1,A ⎝ ⎛⎭⎪⎫a +32,1,所以CD =32,AD =1,DE =12,tan ∠CAD =CD AD =32,tan ∠EAD =ED AD =12,所以tan ∠BAC =tan(∠CAD -∠EAD )=tan ∠CAD -tan ∠EAD 1+tan ∠CAD ·tan ∠EAD =32-121+32×12=47.故选B.7.(2022·皖南八校联考)已知sin ⎝ ⎛⎭⎪⎫α+π12=35,则sin ⎝ ⎛⎭⎪⎫2α-π3=________. 答案 -725解析 因为sin ⎝ ⎛⎭⎪⎫α+π12=35,所以sin ⎝ ⎛⎭⎪⎫2α-π3=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π12-π2=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π12=2sin 2⎝ ⎛⎭⎪⎫α+π12-1 =-725.8.(2022·山东省实验中学二诊)已知cos α-cos β=12,sin α-sin β=13,则cos(α-β)=________. 答案 5972 解析由⎩⎪⎨⎪⎧cos α-cos β=12,sin α-sin β=13得⎩⎪⎨⎪⎧cos 2α-2cos αcos β+cos 2β=14, ①sin 2α-2sin αsin β+sin 2β=19, ②①+②得2-2cos(α-β)=1336, 则cos(α-β)=5972.9.(2022·济宁二模)已知tan ⎝ ⎛⎭⎪⎫π4-α=12,则cos 2α=________.答案 45解析 ∵tan ⎝ ⎛⎭⎪⎫π4-α=1-tan α1+tan α=12,∴tan α=13,因此cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-191+19=45. 10.(2022·长沙长郡中学质检)《易经》中记载着一种几何图形——八卦图,图中正八边形代表八卦,中间的圆代表阴阳太极图,图中八块面积相等的曲边梯形代表八卦田.某中学开展劳动实习,去测量当地八卦田的面积,如图,现测得正八边形的边长为8 m ,代表阴阳太极图的圆的半径为2 m ,则每块八卦田的面积为________ m 2.答案 162+16-π2解析 由题图可知,正八边形被分割成8个全等的等腰三角形,顶角为360°8=45°, 设等腰三角形的腰长为a m , 由正弦定理可得a sin 135°2=8sin 45°,解得a =82sin 135°2,所以等腰三角形的面积S =12⎝ ⎛⎭⎪⎫82sin 135°22sin 45°=322·1-cos 135°2=16(2+1)(m 2),则每块八卦田的面积为16(2+1)-18×π×22=⎝ ⎛⎭⎪⎫162+16-π2(m 2).11.在平面直角坐标系xOy 中,锐角α的顶点为坐标原点O ,始边为x 轴的非负半轴,终边上有一点P (1,2). (1)求cos 2α+sin 2α;(2)若sin(α-β)=1010,且β∈⎝ ⎛⎭⎪⎫0,π2,求角β的值.解 (1)∵锐角α的终边上有一点P (1,2), ∴sin α=25=255,cos α=15=55, ∴sin 2α=2sin αcos α=2×255×55=45, cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫552-1=-35,∴cos 2α+sin 2α=-35+45=15.(2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得α-β∈⎝ ⎛⎭⎪⎫-π2,π2,∵sin(α-β)=1010, ∴cos(α-β)=1-sin 2(α-β)=1-⎝⎛⎭⎪⎫10102=31010, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22,因为β∈⎝ ⎛⎭⎪⎫0,π2,所以β=π4.12.(2022·北京卷)在△ABC 中,sin 2C =3sin C . (1)求C ;(2)若b =6,且△ABC 的面积为63,求△ABC 的周长. 解 (1)因为sin 2C =3sin C , 所以2sin C cos C =3sin C . 因为C ∈(0,π),所以sin C ≠0, 所以cos C =32, 又C ∈(0,π),故C =π6.(2)因为△ABC 的面积S =12ab sin C =12×a ×6×12=63,所以a =4 3. 由余弦定理可得c 2=a 2+b 2-2ab cos C =48+36-72=12,所以c =23, 所以△ABC 的周长为a +b +c =43+6+23=6(3+1). 二、创新拓展练13.若α∈⎝ ⎛⎭⎪⎫0,π2,且cos 2α=25sin ⎝ ⎛⎭⎪⎫α+π4,则tan α=________. 答案 34解析 因为α∈⎝ ⎛⎭⎪⎫0,π2,所以sin α+cos α>0. 因为cos 2α=25sin ⎝ ⎛⎭⎪⎫α+π4,所以(cos α+sin α)(cos α-sin α) =15(sin α+cos α),所以cos α-sin α=15>0,可得α∈⎝ ⎛⎭⎪⎫0,π4. 所以sin αcos α=1225,所以sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1225, 整理得tan α=34或tan α=43,又α∈⎝ ⎛⎭⎪⎫0,π4,所以tan α=34. 14.(2022·浙江卷)若3sin α-sin β=10,α+β=π2,则sin α=________,cos 2β=________.答案 31010 45解析 因为α+β=π2,所以β=π2-α,所以3sin α-sin β=3sin α-sin ⎝ ⎛⎭⎪⎫π2-α=3sin α-cos α=10sin(α-φ)=10,其中sin φ=1010,cos φ=31010.所以α-φ=π2+2k π,k ∈Z , 所以α=π2+φ+2k π,k ∈Z ,所以sin α=sin ⎝ ⎛⎭⎪⎫π2+φ+2k π=cos φ=31010,k ∈Z . 因为sin β=3sin α-10=-1010,所以cos 2β=1-2sin 2β=1-15=45.15.(2022·沈阳市郊联体一模)滕王阁,江南三大名楼之一,因初唐诗人王勃所作《滕王阁序》中的“落霞与孤鹜齐飞,秋水共长天一色”而名传千古.如图,在滕王阁旁水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且AB =BC =75米,则滕王阁的高度OP =________米.答案 1515解析 设OP =3h ,由题意知∠P AO =30°,∠PBO =60°,∠PCO =45°,所以OA =PO tan 30°=3h 33=3h ,OB =PO tan 60°=3h 3=h ,OC =PO tan 45°=3h . 在△OBC 中,由余弦定理OC 2=OB 2+BC 2-2OB ·BC ·cos ∠OBC ,得3h 2=h 2+752-2×75h cos ∠OBC ,①在△OAB 中,由余弦定理OA 2=OB 2+AB 2-2OB ·AB ·cos ∠OBA ,得9h 2=h 2+752-2×75h cos ∠OBA ,②因为cos ∠OBC +cos ∠OBA =0,所以①+②,得12h 2=2h 2+2×752,解得h =155,所以OP =3h =1515(米).16.(2022·北京昌平区调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,b =3c ,a =6.(1)若A =π6,求c 的值;(2)在下面三个条件中选择一个作为已知,求△ABC 的面积.①3cos B =cos C ,②cos B =sin C ,③B =2C .注:如果选择多个条件分别解答,按第一个解答计分.解(1)在△ABC中,由余弦定理得a2=b2+c2-2bc cos A,因为b=3c,a=6,A=π6,所以36=3c2+c2-23c2·32,解得c2=36,所以c=6.(2)若选条件①:3cos B=cos C.b=3c,由正弦定理可得sin B=3sin C,又3cos B=cos C,所以sin B cos B=sin C cos C,所以sin 2B=sin 2C,因为0<B+C<π,0<2B+2C<2π,所以2B=2C或2B+2C=π,因为b=3c,所以B>C,所以2B=2C不成立,所以2B+2C=π,所以B+C=π2,所以A=π2.则在Rt△ABC中,36=3c2+c2,解得c=3,所以b=33,所以S△ABC=12bc=93 2.若选条件②:cos B=sin C.在△ABC中,因为b=3c,由正弦定理可得sin B=3sin C,又cos B =sin C ,所以sin B cos B =3sin C sin C =3, 所以tan B =3,因为0<B <π,所以B =π3,所以sin C =cos B =12,因为0<C <π,且b =3c , 所以C =π6,所以A =π2.后同选择条件①.若选条件③:B =2C .在△ABC 中,因为b =3c ,由正弦定理得sin B =3sin C , 因为B =2C ,所以sin B =2sin C cos C ,所以2sin C cos C =3sin C ,又sin C ≠0,所以cos C =32,因为0<C <π,所以C =π6,所以B =2C =π3, 所以A =π2. 后同选择条件①.。
三角恒等变换与解三角形综合问题1.三角恒等变换与解三角形的综合问题是高考的热门考点,涉及的公式多、性质繁,知识点较为综合,主要涉及三角恒等变换、解三角形及三角函数与解三角形的开放、探究问题。
2.三角恒等变换与解三角形综合问题的答题模板第一步 利用正弦定理、余弦定理对条件式进行边角互化第二步 由三角方程或条件式求角第三步 利用条件式或正、余弦定理构建方程求边长第四步 检验易错易混、规范解题步骤得出结论3.常用的几个二级结论(1)降幂扩角公式()()221cos =1+cos2,21sin =1cos2.2ααα−α⎧⎪⎪⎨⎪⎪⎩(2)升幂缩角公式221+cos2=2cos ,1cos2=2sin .αα−αα⎧⎨⎩(3)正切恒等式tan tan tan tan tan tan ++=A B C A B C若△为斜三角形,则有tan tan tan tan tan tan ++=A B C A B C (正切恒等式).(4)射影定理在ABC 中,cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+.【典例】(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A 1+sin A =sin 2B 1+cos 2B. (1)若C =2π3,求B ;[切入点:二倍角公式化简] (2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系] 思路引导母题呈现三角恒等变换与解三角形综合问题的一般步骤方法总结1.(2023·河北石家庄·统考模拟预测)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,3sin cos c a C c A =−.(1)求A ;(2)若2a =,ABC 的面积为3,求b ,c .2.(2023·安徽宿州·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且()(sin sin )sin sin b c B C a A b C −−=−.(1)求角A 的大小;(2)求sin sin B C +的取值范围.3.(2023·全国·模拟预测)在①33cos sin c a B b A =+,②()()()sin sin sin sin b a B A c B C +−=−,③221cos 2a b ac B bc −=−这三个条件中任选一个,补充在下面的问题中,并解答问题. 在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.(1)求A ;(2)若6a =,2BD DC =,求线段AD 长的最大值.注:如果选择多个条件分别解答,按第一个解答计分.4.(2023·贵州毕节·统考一模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cossin 2A B b c B +=. (1)求角C ;(2)若3c =,求BC 边上的高的取值范围.模拟训练5.(2023·全国·模拟预测)已知在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的三边,若222sin 6sin 3sin 63sin sin sin A B C A B C ++=(1)求∠C 的大小;(2)求233ab 的值.6.(2023·山东潍坊·统考一模)在①tan tan 3tan 13tan A C A C −=+;②()23cos 3cos c a B b A −=;③()3sin sin sin a c A c C b B −+=这三个条件中任选一个,补充在下面问题中并作答.问题:在ABC 中,角,,A B C 所对的边分别为,,a b c ,且__________. (1)求角B 的大小;(2)已知1c b =+,且角A 有两解,求b 的范围.7.(2023·全国·模拟预测)在①()cos 2cos 0c B b a C +−=,②cos 3sin +=+a b c B c B ,③()3cos cos cos sin C a B b A c C +=这三个条件中任选一个,补充在下面的横线上,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知______.(1)求角C 的值;(2)若ABC 的面积()2238912S b c =−,试判断ABC 的形状.注:如果选择多个条件分别解答,按第一个解答计分.8.(2023·安徽蚌埠·统考二模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫−+= ⎪ ⎪⎝⎭⎝⎭. (1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.9.(2023·广东惠州·统考模拟预测)条件①1cos 2a B cb =+, 条件②sin sin sin sin A C B C b a c−+=+, 条件③3sinsin 2B C b a B +=. 请从上述三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且满足________,(1)求A ;(2)若AD 是BAC ∠的角平分线,且1AD =,求2b c +的最小值.10.(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.1.(2023·河北石家庄·统考模拟预测)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,3sin cos c a C c A =−.(1)求A ;(2)若2a =,ABC 的面积为3,求b ,c .【分析】(1)利用正弦定理把已知等式中的边转化为角的正弦,化简整理可求得πsin 6A ⎛⎫− ⎪⎝⎭的值,进而求得A ;(2)利用三角形面积公式求得bc 的值进而根据余弦定理求得22b c +的值,最后联立方程求得b 和c .【详解】(1)解:因为3sin cos c a C c A =−,由正弦定理sin sin sin a b c A B C ==得:sin 3sin sin sin cos C A C C A =−,∴3sin cos 1A A −=,π2sin 16A ⎛⎫∴−= ⎪⎝⎭,π1sin 62A ⎛⎫−= ⎪⎝⎭, ()0,πA ∈,ππ5π,666A ⎛⎫∴−∈− ⎪⎝⎭,ππ66A ∴−=, π3A ∴=. (2)解:113sin 3222ABC S bc A bc ==⋅=,4bc ∴=, 由余弦定理得:2221cos 22b c a A bc +−==,2244b c ∴+−=, 联立2284b c bc ⎧+=⎨=⎩,解得2,2b c ==. 2.(2023·安徽宿州·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且()(sin sin )sin sin b c B C a A b C −−=−.(1)求角A 的大小;(2)求sin sin B C +的取值范围.【分析】(1)由正弦定理,将角化边,再根据余弦定理,求解即可.(2)由(1)可知,π3A =,则πsin sin 3sin 6B C B ⎛⎫+=+ ⎪⎝⎭π3sin 6A ⎛⎫=+ ⎪⎝⎭,根据正弦型三角函数的图象和性质,求解即可.模拟训练【详解】(1)由正弦定理可得()()b c b c a a bc −−=⋅−,即222b c a bc +−=,由余弦定理的变形得2221cos 22b c a A bc +−==, 又()0,πA ∈,所以π3A =.(2)由πA B C ++=得2π3C B =−,且2π0,3B ⎛⎫∈ ⎪⎝⎭, 所以2πππsin sin sin πsin 333C B B B ⎡⎤⎛⎫⎛⎫⎛⎫=−=−+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以π33πsin sin sin sin sin cos 3sin 3226B C B B B B B ⎛⎫⎛⎫+=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 因为20,π3B ⎛⎫∈ ⎪⎝⎭,从而ππ5,π666B ⎛⎫+∈ ⎪⎝⎭, 所以π1sin ,162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,从而3sin sin ,32B C ⎛⎤+∈ ⎥ ⎝⎦. 即sin sin B C +的取值范围为3,32⎛⎤ ⎥ ⎝⎦. 3.(2023·全国·模拟预测)在①33cos sin c a B b A =+,②()()()sin sin sin sin b a B A c B C +−=−,③221cos 2a b ac B bc −=−这三个条件中任选一个,补充在下面的问题中,并解答问题. 在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.(1)求A ;(2)若6a =,2BD DC =,求线段AD 长的最大值.注:如果选择多个条件分别解答,按第一个解答计分.【分析】(1)先选条件,并利用正弦定理或余弦定理将已知条件转化,得到角A 的三角函数值,再结合角A 的取值范围即可求得角A 的大小;(2)先利用余弦定理建立关于,b c 的方程,再利用向量的线性运算将2BD DC =转化为AD 与AB ,AC 的关系,两边同时平方即可将2AD 用,b c 表示,最后利用ABC 是锐角三角形及换元法,利用基本不等式求AD 长的最大值即可.【详解】(1)方案一:选条件①.由正弦定理得()sin si 33sin 3sin s s i n n co C A A B B B A =+=+,∴3cos sin sin sin A B B A =,∵sin 0B >,∴sin 3cos A A =,即tan 3A =,∵02A π<<,∴3A π=.方案二:选条件②.由正弦定理得()()()b a b a c b c +−=−,即222b c a bc +−=,∴2221cos 22b c a A bc +−==,∵02A π<<,∴3A π=.方案三:选条件③.由余弦定理得22222122a c b a b ac bc ac +−−=⋅−,∴222b c a bc +−=,∴2221cos 22b c a A bc +−==,∵02A π<<,∴3A π=.(2)由2222cos a b c bc A =+−,得2236b c bc =+−,∵2BD DC =,∴22AD AB AC AD −=−,即32AD AB AC =+,两边同时平方得2222294442AD AB AC AB AC c b bc =++⋅=++,2236b c bc =+−∴()22222221424249b c bcAD b c bc b c bc ++=++=⨯+−.令b t c =,则0t >,()()2222424121411t t t AD t t t t +++==+−+−+,令1t u +=,则1u >,221212443333AD u u u u =+=+−++−,在锐角ABC 中2222222222222222222222222a b c b c bc b c b bca cb bc bc c b c bc b c a b c b c bc ⎧⎧+>+−+>⎧>⎪⎪+>⇒+−+>⇒⎨⎨⎨>⎩⎪⎪+>+>+−⎩⎩,∴122bc <<,∴31,32u b c ⎛⎫=+∈ ⎪⎝⎭,∴21241683233AD ≤+=+−,∴223AD ≤+,当且仅当3u =时取等号,∴线段AD 长的最大值为223+.4.(2023·贵州毕节·统考一模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cossin 2A B b c B +=. (1)求角C ;(2)若3c =,求BC 边上的高的取值范围.【分析】(1)根据给定条件,利用正弦定理边化角,再利用二倍角的正弦求解作答. (2)由(1)可得π(0,)3B ∈,再利用三角形面积公式计算作答.【详解】(1)在ABC 中,由正弦定理及A B C π+=−,得πsin cossin sin 2C B C B −=, 即有sin sin2sin cos sin 222C C C B B =,而(),0,A B π∈,0,22C π⎛⎫∈ ⎪⎝⎭,即sin 0B ≠,sin 02C ≠, 因此1cos 22C =,π23C =,所以2π3C =. (2)令ABC 边BC 上的高为h ,由11sin 22ABC S ah ac B ==,得3sin h B =, 由(1)知,π(0,)3B ∈,即3sin (0,)2B ∈,则33sin (0,)2h B =∈, 所以BC 边上的高的取值范围是3(0,)2. 5.(2023·全国·模拟预测)已知在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的三边,若222sin 6sin 3sin 63sin sin sin A B C A B C ++=(1)求∠C 的大小;(2)求233a b的值. 【分析】(1)根据正弦定理化角为边,将2c 表示出来,再利用余弦定理化简,再结合三角函数的性质及基本不等式即可得出答案;(2)直接利用(1)中的结论即可得解.【详解】(1)因为222sin 6sin 3sin 63sin sin sin A B C A B C ++=,所以2226363sin a b c ab C ++=,则22223sin 23a c ab C b =−−, 又222224323sin 233cos 3sin 2232a b ab C a b c a b C C ab ab b a +−+−===+−, 所以233sin cos 32a b C C b a+=+,因为2323223232a b a b b a b a+≥⋅=,当且仅当2332a b b a =,即23a b =时,取等号, π3sin cos 2sin 26C C C ⎛⎫+=+≤ ⎪⎝⎭,当且仅当ππ62C +=,即π3C =时,取等号, 所以233sin cos 232a b C C b a +=+=,所以π3C =; (2)由(1)可得23a b =,所以2333a b=. 6.(2023·山东潍坊·统考一模)在①tan tan 3tan 13tan A C A C −=+;②()23cos 3cos c a B b A −=;③()3sin sin sin a c A c C b B −+=这三个条件中任选一个,补充在下面问题中并作答. 问题:在ABC 中,角,,A B C 所对的边分别为,,a b c ,且__________.(1)求角B 的大小;(2)已知1c b =+,且角A 有两解,求b 的范围.【分析】(1)若选①,由两角和的正切公式化简即可求出求角B 的大小;若选②,利用正弦定理统一为角的三角函数,再由两角和的正弦公式即可求解;若选③,由余弦定理代入化简即可得出答案. (2)将1c b =+代入正弦定理可得1sin 2b C b +=,要使角A 有两解,即1sin 12C <<,解不等式即可得出答案. 【详解】(1)若选①:整理得()1tan tan 3tan tan A C A C −=−+,因为A B C π++=, 所以()tan tan 3tan tan 1tan tan 3A CB AC A C +=−+=−=−,因为()0,B π∈,所以6B π=; 若选②:因为()23cos 3cos c a B b A −=,由正弦定理得()2sin 3sin cos 3sin cos C A B B A −=,所以()2sin cos 3sin 3sin ,sin 0C B A B C C =+=>,所以3cos 2B =,因为()0,B π∈,所以6B π=; 若选③:由正弦定理整理得2223a c b ac +−=,所以222322a cb ac +−=, 即3cos 2B =,因为()0,B π∈,所以6B π=; (2)将1c b =+代入正弦定理sin sin b c B C =,得1sin sin b b B C +=,所以1sin 2b C b +=, 因为6B π=,角A 的解有两个,所以角C 的解也有两个,所以1sin 12C <<, 即11122b b+<<,又0b >,所以12b b b <+<,解得1b >. 7.(2023·全国·模拟预测)在①()cos 2cos 0c B b a C +−=,②cos 3sin +=+a b c B c B ,③()3cos cos cos sin C a B b A c C +=这三个条件中任选一个,补充在下面的横线上,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知______.(1)求角C 的值;(2)若ABC 的面积()2238912S b c =−,试判断ABC 的形状. 注:如果选择多个条件分别解答,按第一个解答计分.【分析】(1) 方案一:选条选①,根据正弦定理和两角和的正弦公式得到()sin 2sin cos 0B C A C +−=,再利用诱导公式和三角形内角和定理即可求解;方案二:选条选②,先利用正弦定理、诱导公式和三角形内角和定理得到sin cos sin 3sin sin B C B C B +=,再利用两角和的正弦公式即可求解;方案三:选条件③,利用正弦定理、诱导公式和两角和的正弦公式得出3cos sin C C =,然后利用同角三角函数的基本关系即可求解;(2)结合(1)的结论利用余弦定理和三角形面积可得3b a =,然后代入即可求解.【详解】(1)方案一:选条选①.由()cos 2cos 0c B b a C +−=,得sin cos sin cos 2sin cos 0C B B C A C +−=,得()sin 2sin cos 0B C A C +−=,即sin 2sin cos 0A A C −=.∵0A π<<,∴sin 0A >,∴1cos 2C =,又0πC <<,∴π3C =. 方案二:选条件②.由cos 3sin +=+a b c B c B ,得sin sin sin cos 3sin sin +=+A B C B C B ,即()sin sin sin cos 3sin sin B C B C B C B ++=+,于是sin cos cos sin sin sin cos 3sin sin B C B C B C B C B ++=+,因此sin cos sin 3sin sin B C B C B +=,∵()0,B π∈,∴sin 0B ≠,∴3sin cos 1C C −=,即π1sin 62C ⎛⎫−= ⎪⎝⎭, ∵()0,πC ∈,∴ππ5π,666C ⎛⎫−∈− ⎪⎝⎭,∴ππ66C −=,故π3C =. 方案三:选条件③.由正弦定理,得()23cos sin cos sin cos sin C A B B A C +=,即()23cos sin sin C A B C +=,∴23sin cos sin C C C =,又0πC <<,∴sin 0C ≠,∴3cos sin C C =,即tan 3C =,∴π3C =. (2)在ABC 中,π3C =,由余弦定理得222222cos c a b ab C a b ab =+−=+−, 又()223189sin 122S b c ab C =−=,∴()2223389124b a b ab ab ⎡⎤−+−=⎣⎦, 整理得22960a ab b −+=,得3b a =,此时227c a b ab a =+−=,∴2227cos 214a cb B ac +−==−,∴B 为钝角,故ABC 是钝角三角形. 【点睛】方法点睛:判断三角形形状的方法:(1)角化边,通过正、余弦定理化角为边,通过因式分解、配方等方法得出边与边之间的关系,进行判断;(2)边化角,通过正、余弦定理化边为角,利用三角恒等变换、三角形内角和定理及诱导公式等推出角与角之间的关系,进行判断.无论使用哪种方法,都不要随意约掉公因式,要移项、提取公因式,否则会有遗漏一种情况的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.8.(2023·安徽蚌埠·统考二模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫−+= ⎪ ⎪⎝⎭⎝⎭. (1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.【分析】(1)已知等式利用诱导公式和倍角公式化简,可求A 的大小;(2)条件中的等式,利用正弦定理角化边,再用余弦定理求得c 边,用面积公式计算面积.【详解】(1)πππππ2sin cos cos cos 3636A A A A ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−+=−−+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2πcos 21π13cos 624A A ⎛⎫++ ⎪⎛⎫⎝⎭=+== ⎪⎝⎭,∴π31cos 22A ⎛⎫+=− ⎪⎝⎭, 因为0πA <<,得ππ7π2333A <+<,所以π2π233A +=或4323ππA +=, 解得π6A =或π2A =,因为a c <,得π2A <,∴π6A =. (2)由(1)知,6A π=,sin sin 43sin a A c C B +=,由正弦定理,得224312a c b +==,由余弦定理,得2222cos a b c bc A =+−⋅,即223123232c c c −=+−⋅, 整理,得22390c c −−=,由0c >得3c =,所以11133sin 332224ABC S bc A ==⨯⨯⨯=△. 9.(2023·广东惠州·统考模拟预测)条件①1cos 2a B cb =+, 条件②sin sin sin sin A C B C b a c−+=+, 条件③3sinsin 2B C b a B +=. 请从上述三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且满足________,(1)求A ;(2)若AD 是BAC ∠的角平分线,且1AD =,求2b c +的最小值.【分析】(1)选①,利用正弦定理结合两角和的正弦公式可得出cos A 的值,结合角A 的取值范围可得出角A 的值;选②,利用正弦定理结合余弦定理可得出cos A 的值,结合角A 的取值范围可得出角A 的值;选③,利用正弦定理结合三角恒等变换化简可得出sin2A 的值,结合角A 的取值范围可得出角A 的值; (2)由已知ABC ABD ACD S S S =+结合三角形的面积公式可得出111b c+=,将2b c +与11b c +相乘,展开后利用基本不等式可求得2b c +的最小值.【详解】(1)解:选①:因为1cos 2a B c b =+,由正弦定理可得1sin cos sin sin 2A B C B =+, 即()11sin cos sin sin sin cos cos sin sin 22A B A B B A B A B B =++=++, 所以1cos sin sin 2A B B =−, 而()0,πB ∈,sin 0B ∴≠,故1cos 2A =−,因为()0,πA ∈,所以2π3A =; 选②:因为sin sin sin sin A C B C b a c −+=+,由正弦定理a c b c b a c −+=+, 即222b c a bc +−=−,由余弦定理2221cos 222b c a bc A bc bc +−−===−, 因为()0,πA ∈,所以2π3A =; 选③:因为3sin sin 2B C b a B +=, 正弦定理及三角形内角和定理可得π3sin sinsin sin 2A B A B −=, 即3sin cos 2sin cos sin 222A A A B B =,因为A 、()0,πB ∈,则π0,22A ⎛⎫∈ ⎪⎝⎭,所以,sin 0B ≠,cos 02A ≠, 所以3sin 22A =,所以π23A =,即2π3A =. (2)解:由题意可知,ABC ABD ACD S S S =+,由角平分线性质和三角形面积公式得12π1π1πsin 1sin 1sin 232323bc b c =⨯⨯+⨯⨯, 化简得bc b c =+,即111b c+=, 因此()112222332322c b c b b c b c b c b c b c ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭, 当且仅当221c b ==+时取等号,所以2b c +的最小值为322+.10.(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【分析】(1)利用正弦定理边化角,再利用和角的正弦化简作答.(2)由(1)的结论,利用余弦定理结合均值不等式求出三角形面积范围作答.【详解】(1)在ABC 中,由已知及正弦定理得:sin cos sin cos 2sin cos A B B A C C +=,即有()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,而0πC <<,sin 0C >,则1cos 2C =, 所以π3C =. (2)在ABC 中,由余弦定理2222cos c a b ab C =+−得:221a b ab =+−,因此12ab ab ≥−,即01ab <≤,当且仅当a b =时取等号,又11333sin (0,]22244ABC S ab C ab ab ==⨯=∈△, 所以ABC 面积的取值范围是3(0,]4.。
第2讲 三角变换与解三角形考情解读 (1)高考中常考查三角恒等变换有关公式的变形使用,常和同角三角函数的关系或诱导公式结合.(2)利用正弦定理或余弦定理解三角形或判断三角形的形状、求值等,经常和三角恒等变换结合进行综合考查.1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan 2α=2tan α1-tan 2α.3.三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简. (2)等式的两边同时变形为同一个式子. (3)将式子变形后再证明.4.正弦定理 a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 5.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab .变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B , a 2+b 2-c 2=2ab cos C .6.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.热点一 三角变换例1 (1)已知sin(α+π3)+sin α=-435,-π2<α<0,则cos(α+2π3)等于( )A .-45B .-35C.45D.35(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2思维启迪 (1)利用和角公式化简已知式子,和cos(α+23π)进行比较.(2)先对已知式子进行变形,得三角函数值的式子,再利用范围探求角的关系. 答案 (1)C (2)B解析 (1)∵sin(α+π3)+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45, ∴cos(α+2π3)=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现张冠李戴的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.设函数f (x )=cos(2x +π3)+sin 2x .(1)求函数f (x )的最小正周期和最大值;(2)若θ是第二象限角,且f (θ2)=0,求cos 2θ1+cos 2θ-sin 2θ的值.解 (1)f (x )=cos(2x +π3)+sin 2x =cos 2x cos π3-sin 2x sin π3+1-cos 2x 2=12-32sin 2x .所以f (x )的最小正周期为T =2π2=π,最大值为1+32.(2)因为f (θ2)=0,所以12-32sin θ=0,即sin θ=33,又θ是第二象限角,所以cos θ=-1-sin 2θ=-63. 所以cos 2θ1+cos 2θ-sin 2θ=cos 2θ-sin 2θ2cos 2θ-2sin θcos θ=(cos θ+sin θ)(cos θ-sin θ)2cos θ(cos θ-sin θ)=cos θ+sin θ2cos θ=-63+332×(-63)=6-326=2-24.热点二 解三角形例2 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =2sin A ,cos B cos C +2a c +bc =0.(1)求边c 的大小;(2)求△ABC 面积的最大值.思维启迪 (1)将cos B cos C +2a c +bc=0中的边化成角,然后利用和差公式求cos C ,进而求c .(2)只需求ab 的最大值,可利用cos C =a 2+b 2-c 22ab和基本不等式求解.解 (1)∵cos B cos C +2a c +bc =0,∴c cos B +2a cos C +b cos C =0,∴sin C cos B +sin B cos C +2sin A cos C =0, ∴sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =-12,∵C ∈(0,π)∴C =2π3,∴c =a sin A·sin C = 3.(2)∵cos C =-12=a 2+b 2-32ab ,∴a 2+b 2+ab =3,∴3ab ≤3,即ab ≤1. ∴S △ABC =12ab sin C ≤34.∴△ABC 面积最大值为34.思维升华 三角形问题的求解一般是从两个角度,即从“角”或从“边”进行转化突破,实现“边”或“角”的统一,问题便可突破. 几种常见变形:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径; (3)sin(A +B )=sin C ,cos(A +B )=-cos C .(1)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba 等于( )A. 2 B .2 2 C. 3 D .2 3(2)(2014·江西)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932C.332 D .3 3 答案 (1)A (2)C解析 (1)因为a sin A sin B +b cos 2A =2a ,由正弦定理得sin 2A sin B +sin B cos 2A =2sin A ,即sin B =2sin A , 即sin B sin A =2,b a =sin B sin A= 2. (2)∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得ab =6.∴S △ABC =12ab sin C =12×6×32=332.热点三 正、余弦定理的实际应用例3 (2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 思维启迪 (1)直接求sin B ,利用正弦定理求AB .(2)利用余弦定理和函数思想,将甲乙距离表示为乙出发后时间t 的函数.解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.思维升华 求解三角形的实际问题,首先要准确理解题意,分清已知与所求,关注应用题中的有关专业名词、术语,如方位角、俯角等;其次根据题意画出其示意图,示意图起着关键的作用;再次将要求解的问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识建立数学模型,从而正确求解,演算过程要简练,计算要准确;最后作答.如图,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A 地侦察发现,在南偏东60°方向的B 地,有一艘某国军舰正以每小时13海里的速度向正西方向的C 地行驶,企图抓捕正在C 地捕鱼的中国渔民.此时,C 地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C 地救援我国渔民,能不能及时赶到?(2≈1.41,3≈1.73,6≈2.45)解 过点A 作AD ⊥BC ,交BC 的延长线于点D .因为∠CAD =45°,AC =10海里,所以△ACD 是等腰直角三角形.所以AD =CD =22AC =22×10=52(海里).在Rt △ABD 中,因为∠DAB =60°,所以BD =AD ×tan 60°=52×3=56(海里). 所以BC =BD -CD =(56-52)(海里).因为中国海监船以每小时30海里的速度航行,某国军舰正以每小时13海里的速度航行,所以中国海监船到达C 点所用的时间t 1=AC 30=1030=13(小时),某国军舰到达C 点所用的时间t 2=BC 13=5×(6-2)13≈5×(2.45-1.41)13=0.4(小时). 因为13<0.4,所以中国海监船能及时赶到.1.求解恒等变换问题的基本思路一角二名三结构,即用化归转化思想“去异求同”的过程,具体分析如下:(1)首先观察角与角之间的关系,注意角的一些常用变换形式,角的变换是三角函数变换的核心.(2)其次看函数名称之间的关系,通常“切化弦”. (3)再次观察代数式的结构特点. 2.解三角形的两个关键点(1)正、余弦定理是实现三角形中边角互化的依据,注意定理的灵活变形,如a =2R sin A ,sin A =a2R (其中2R 为三角形外接圆的直径),a 2+b 2-c 2=2ab cos C 等,灵活根据条件求解三角形中的边与角.(2)三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π”和诱导公式可得到sin(A +B )=sin C ,sin A +B 2=cos C2等,利用“大边对大角”可以解决解三角形中的增解问题等.3.利用正弦定理、余弦定理解决实际问题的关键是如何将实际问题转化为数学问题,抽象出三角形模型.真题感悟1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.故选C.2.(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 答案 6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab 22ab≥2⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab =6-24,故6-24≤cos C <1,且3a 2=2b 2时取“=”.故cos C 的最小值为6-24.押题精练1.在△ABC 中,已知tan A +B2=sin C ,给出以下四个结论: ①tan Atan B=1;②1<sin A +sin B ≤2;③sin 2A +cos 2B =1;④cos 2A +cos 2B =sin 2C . 其中一定正确的是( )A .①③B .②③C .①④D .②④ 答案 D解析 依题意,tan A +B2=sinA +B 2cos A +B 2=2sin A +B 2cos A +B22cos2A +B 2=sin (A +B )1+cos (A +B )=sin C 1+cos (A +B )=sin C . ∵sin C ≠0,∴1+cos(A +B )=1,cos(A +B )=0.∵0<A +B <π,∴A +B =π2,即△ABC 是以角C 为直角的直角三角形.对于①,由tan Atan B=1,得tan A =tan B ,即A =B ,不一定成立,故①不正确;对于②,∵A +B =π2,∴sin A +sin B =sin A +cos A =2sin(A +π4),∴1<sin A +sin B ≤2,故②正确; 对于③,∵A +B =π2,∴sin 2A +cos 2B =sin 2A +sin 2A =2sin 2A ,其值不确定,故③不正确;对于④,∵A +B =π2,∴cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故④正确.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,q =(2a,1),p =(2b -c ,cos C ),且q ∥p . (1)求sin A 的值;(2)求三角函数式-2cos 2C1+tan C+1的取值范围.解 (1)∵q =(2a,1),p =(2b -c ,cos C )且q ∥p ,∴2b -c =2a cos C , 由正弦定理得2sin A cos C =2sin B -sin C ,又sin B =sin(A +C )=sin A cos C +cos A sin C , ∴12sin C =cos A sin C . ∵sin C ≠0,∴cos A =12,又∵0<A <π,∴A =π3,∴sin A =32.(2)原式=-2cos 2C 1+tan C+1=1-2(cos 2C -sin 2C )1+sin C cos C=1-2cos 2C +2sin C cos C =sin 2C -cos 2C =2sin(2C -π4),∵0<C <23π,∴-π4<2C -π4<1312π,∴-22<sin(2C -π4)≤1,∴-1<2sin(2C -π4)≤2,即三角函数式-2cos 2C1+tan C+1的取值范围为(-1,2].(推荐时间:60分钟)一、选择题1.(2014·浙江)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位答案 C解析 因为y =sin 3x +cos 3x =2sin(3x +π4)=2sin[3(x +π12)],又y =2cos 3x =2sin(3x +π2)=2sin[3(x +π6)],所以应由y =2cos 3x 的图象向右平移π12个单位得到.2.已知α∈(π2,π),sin(α+π4)=35,则cos α等于( )A .-210 B.7210C .-210或7210D .-7210答案 A解析 ∵α∈(π2,π),∴α+π4∈(34π,54π),∵sin(α+π4)=35,∴cos(α+π4)=-45,∴cos α=cos(α+π4-π4)=cos(α+π4)cos π4+sin(α+π4)sin π4=-45×22+35×22=-210.3.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为( )A.13B.12C.15D.14 答案 D解析 由正弦定理:c a =sin C sin A=3,由余弦定理:cos B =a 2+c 2-b 22ac =c 2-52ac2ac =12×c a -54=32-54=14.4.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形. 5.已知tan β=43,sin(α+β)=513,其中α,β∈(0,π),则sin α的值为( ) A.6365 B.3365C.1365D.6365或3365答案 A解析 依题意得sin β=45,cos β=35.注意到sin(α+β)=513<sin β,因此有α+β>π2(否则,若α+β≤π2,则有0<β<α+β≤π2,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),则cos(α+β)=-1213,sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β=6365. 6.已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且tan B =2-3a 2-b 2+c2,BC →·BA →=12,则tan B 等于( )A.32B.3-1 C .2 D .2- 3答案 D解析 由题意得,BC →·BA →=|BC →|·|BA →|cos B=ac cos B =12,即cos B =12ac, 由余弦定理, 得cos B =a 2+c 2-b 22ac =12ac⇒a 2+c 2-b 2=1, 所以tan B =2-3a 2-b 2+c 2=2-3,故选D. 二、填空题7.已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=________. 答案 -255解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α) =22sin α=-255. 8.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,则b =________.答案 4解析 由sin A cos C =3cos A sin C 得:a 2R ·a 2+b 2-c 22ab =3·b 2+c 2-a 22bc ·c 2R , ∴a 2+b 2-c 2=3(b 2+c 2-a 2),a 2-c 2=b 22, 解方程组:⎩⎪⎨⎪⎧a 2-c 2=2b a 2-c 2=b 22,∴b =4. 9.已知0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45,则cos(α+π4)=________. 答案 82-315解析 因为0<α<π2<β<π, 所以π4<β-π4<3π4,π2<α+β<3π2. 所以sin(β-π4)>0,cos(α+β)<0. 因为cos(β-π4)=13,sin(α+β)=45, 所以sin(β-π4)=223,cos(α+β)=-35. 所以cos(α+π4)=cos[(α+β)-(β-π4)] =cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4) =-35×13+45×223=82-315. 10.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米.答案 40013解析 如题图,在△ABD 中,BD =400米,∠ABD =120°.因为∠ADC =150°,所以∠ADB =30°.所以∠DAB =180°-120°-30°=30°.由正弦定理,可得BD sin ∠DAB =AD sin ∠ABD. 所以400sin 30°=AD sin 120°,得AD =4003(米). 在△ADC 中,DC =800米,∠ADC =150°,由余弦定理,可得AC 2=AD 2+CD 2-2×AD ×CD ×cos ∠ADC=(4003)2+8002-2×4003×800×cos 150°=4002×13,解得AC =40013(米).故索道AC 的长为40013米.三、解答题11.(2014·安徽)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值. 解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理得a =2b ·a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13. 由于0<A <π,所以sin A =1-cos 2A =1-19=223. 故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝⎛⎭⎫-13×22=4-26. 12.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1, 从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ).(2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 13.已知角A 、B 、C 是△ABC 的三个内角,若向量m =(1-cos(A +B ),cos A -B 2),n =(58,cos A -B 2),且m ·n =98. (1)求tan A tan B 的值;(2)求ab sin C a 2+b 2-c 2的最大值. 解 (1)m ·n =58-58cos(A +B )+cos 2A -B 2=98-18cos A cos B +98sin A sin B =98, ∴cos A cos B =9sin A sin B 得tan A tan B =19. (2)tan(A +B )=tan A +tan B 1-tan A tan B =98(tan A +tan B )≥98·2tan A tan B =34. (∵tan A tan B =19>0, ∴A ,B 均是锐角,即其正切值均为正)ab sin C a 2+b 2-c 2=sin C 2cos C =12tan C =-12tan(A +B )≤-38, 所求最大值为-38.。
失分警示]1.同角关系应用错误:利用同角三角函数的平方关系开方时,忽略判断角所在的象限或判断出错,导致三角函数符号错误.2.诱导公式的应用错误:利用诱导公式时,三角函数名变换出错或三角函数值的符号出错.3.忽视解的多种情况如已知a ,b 和A ,应先用正弦定理求B ,由A +B +C =π,求C ,再由正弦定理或余弦定理求边c ,但解可能有多种情况.4.忽略角的范围应用正、余弦定理求解边、角等量的最值(范围)时,要注意角的范围. 5.忽视解的实际意义求解实际问题,要注意解得的结果要与实际相吻合.考点三角恒等变换典例示法 题型1 求角典例1 中山模拟]已知cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β=________.解答此类问题的关键是结合已知条件,求出相应角的三角函数值,然后根据角的范围确定角的具体取值.题型2 求值典例2 安徽合肥质检]已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin2α的值;(2)求tanα-1tanα的值.化简常用的方法技巧(1)化简常用方法:①直接应用公式,包括公式的正用、逆用和变形用;②切化弦、异名化同名、异角化同角等.(2)化简常用技巧:①注意特殊角的三角函数与特殊值的互化;②注意利用角与角之间的隐含关系,如2α=(α+β)+(α-β),θ=(θ-φ)+φ等;③注意利用“1”的恒等变形,如tan45°=1,sin2α+cos2α=1等.考点正、余弦定理典例示法题型1应用正、余弦定理求边、角典例3淄博模拟]已知a,b,c分别为△ABC的内角A,B,C的对边,且a cos C +3a sin C-b-c=0.(1)求A;(2)若a=2,求△ABC面积的最大值.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 题型2 判断三角形的形状典例4 设△ABC 的内角,A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定利用正、余弦定理判定三角形形状的两种思路(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.题型3 求有关三角形的面积典例5 2014·浙江高考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.与三角形面积有关问题的常见类型及解题策略(1)求三角形的面积.对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.考点正、余弦定理的实际应用典例示法典例6如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?.1.解三角形应用题的常见情况及方法(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.2.解三角形应用题的一般步骤针对训练2015·湖北高考]如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=_______________________________________________ _________________________m.全国卷高考真题调研]1.全国卷Ⅱ]若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( )A.725 B.15 C .-15 D .-7253.2015·全国卷Ⅰ]在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.4.浙江高考]已知2cos 2x +sin2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.5.2015·广东高考]设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.6.2014·山东高考]设f (x )=sin x cos x -cos 2⎝⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC面积的最大值.一、选择题1.合肥质检]sin18°sin78°-cos162°cos78°=( ) A .-32 B .-12 C.32 D.122.广西质检]已知π2<α<π,3sin2α=2cos α,则cos(α-π)等于( ) A.23 B.64 C.223 D.326。
第3讲 三角恒等变换与解三角形[考情分析] 1.三角恒等变换的求值、化简是命题的热点,利用三角恒等变换作为工具,将三角函数与解三角形相结合求解最值、范围问题.2.单独考查可出现在选择题、填空题中,综合考查以解答题为主,中等难度. 考点一 三角恒等变换 核心提炼1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”. 2.三角恒等变换“四大策略”(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化.例1 (1)(2020·宁德模拟)若sin ⎝⎛⎭⎫π2-α=35,则cos 2α等于( ) A.725 B.2425 C .-725 D .-2425 答案 C解析 由条件得sin ⎝⎛⎭⎫π2-α=cos α=35, ∴cos 2α=2cos 2α-1=2×⎝⎛⎭⎫352-1=-725. (2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6 答案 C解析 因为α,β均为锐角,所以-π2<α-β<π2.又sin(α-β)=-1010,所以cos(α-β)=31010. 又sin α=55,所以cos α=255,所以sin β=sin [α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝⎛⎭⎫-1010=22. 所以β=π4.易错提醒 (1)公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 跟踪演练1 (1)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,tan α=cos 2β1-sin 2β,则( ) A .α+β=π2B .α-β=π4C .α+β=π4D .α+2β=π2答案 B解析 tan α=cos 2β1-sin 2β=cos 2β-sin 2βcos 2β+sin 2β-2sin βcos β=(cos β+sin β)(cos β-sin β)(cos β-sin β)2=cos β+sin βcos β-sin β=1+tan β1-tan β=tan ⎝⎛⎭⎫π4+β, 因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2, 所以α=π4+β,即α-β=π4.(2)(tan 10°-3)·cos 10°sin 50°=________.答案 -2解析 (tan 10°-3)·cos 10°sin 50°=(tan 10°-tan 60°)·cos 10°sin 50°=⎝⎛⎭⎫sin 10°cos 10°-sin 60°cos 60°·cos 10°sin 50°=sin (-50°)cos 10°cos 60°·cos 10°sin 50°=-1cos 60°=-2.考点二 正弦定理、余弦定理 核心提炼1.正弦定理:在△ABC 中,a sin A =b sin B =csin C =2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c2R ,a ∶b ∶c =sin A ∶sin B ∶sinC 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A . 变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc .3.三角形的面积公式:S =12ab sin C =12ac sin B =12bc sin A .考向1 求解三角形中的角、边例2 (2020·湖北省襄阳市四中月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin C1-cos A =3c .(1)求角A 的大小;(2)若b +c =10,△ABC 的面积S △ABC =43,求a 的值. 解 (1)由正弦定理及a sin C1-cos A =3c ,得sin A sin C1-cos A=3sin C ,∵sin C ≠0,∴sin A =3(1-cos A ), ∴sin A +3cos A =2sin ⎝⎛⎭⎫A +π3=3, ∴sin ⎝⎛⎭⎫A +π3=32, 又0<A <π,∴π3<A +π3<4π3,∴A +π3=2π3,∴A =π3.(2)∵S △ABC =12bc sin A =34bc =43,∴bc =16.由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-2bc -bc =(b +c )2-3bc ,又b +c =10,∴a 2=102-3×16=52,∴a =213.考向2 求解三角形中的最值与范围问题例3 (2020·新高考测评联盟联考)在:①a =3c sin A -a cos C ,②(2a -b )sin A +(2b -a )sin B =2c sin C 这两个条件中任选一个,补充在下列问题中,并解答.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,c =3,而且________. (1)求角C ;(2)求△ABC 周长的最大值. 解 (1)选①:因为a =3c sin A -a cos C ,所以sin A =3sin C sin A -sin A cos C , 因为sin A ≠0,所以3sin C -cos C =1, 即sin ⎝⎛⎭⎫C -π6=12, 因为0<C <π,所以-π6<C -π6<5π6,所以C -π6=π6,即C =π3.选②:因为(2a -b )sin A +(2b -a )sin B =2c sin C , 所以(2a -b )a +(2b -a )b =2c 2, 即a 2+b 2-c 2=ab , 所以cos C =a 2+b 2-c 22ab =12,因为0<C <π,所以C =π3.(2)由(1)可知,C =π3,在△ABC 中,由余弦定理得a 2+b 2-2ab cos C =3,即a 2+b 2-ab =3, 所以(a +b )2-3=3ab ≤3(a +b )24, 所以a +b ≤23,当且仅当a =b 时等号成立,所以a +b +c ≤33,即△ABC 周长的最大值为3 3.规律方法 (1)利用余弦定理求边,一般是已知三角形的两边及其夹角.利用正弦定理求边,必须知道两角及其中一边,且该边为其中一角的对边,要注意解的多样性与合理性. (2)三角形中的最值与范围问题主要有两种解决方法:一是利用基本不等式求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围确定所求式的范围.跟踪演练2 (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为S ,且a =1,4S =b 2+c 2-1,则△ABC 外接圆的面积为( ) A .4π B .2π C .π D.π2答案 D解析 由余弦定理得,b 2+c 2-a 2=2bc cos A ,a =1, 所以b 2+c 2-1=2bc cos A , 又S =12bc sin A,4S =b 2+c 2-1,所以4×12bc sin A =2bc cos A ,即sin A =cos A ,所以A =π4,由正弦定理得,1sin π4=2R ,得R =22,所以△ABC 外接圆的面积为π2.(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =3B ,则ab 的取值范围是( )A .(0,3)B .(1,3)C .(0,1]D .(1,2] 答案 B解析 A =3B ⇒sin A sin B =sin 3B sin B =sin (2B +B )sin B =sin 2B cos B +cos 2B sin B sin B =2sin B cos 2B +cos 2B sin Bsin B =2cos 2B +cos 2B =2cos 2B +1,即a b =sin Asin B=2cos 2B +1,又A +B ∈(0,π),即4B ∈(0,π)⇒2B ∈⎝⎛⎭⎫0,π2⇒cos 2B ∈(0,1),∴ab∈(1,3).(3)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若tan C =125,a =b =13,BC 边上的中点为D ,则sin ∠BAC =________,AD =________. 答案31313 352解析 因为tan C =125,所以sin C =1213,cos C =513,又a =b =13,所以c 2=a 2+b 2-2ab cos C =13+13-2×13×13×513=16,所以c =4.由a sin ∠BAC =c sin C ,得13sin ∠BAC =41213,解得sin ∠BAC =31313.因为BC 边上的中点为D ,所以CD =a2,所以在△ACD 中,AD 2=b 2+⎝⎛⎭⎫a 22-2×b ×a 2×cos C =454,所以AD =352.专题强化练一、选择题1.(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( ) A.53 B.23 C.13 D.59答案 A解析 由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α>0, 所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53.2.(2020·全国Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B 等于( )A.19B.13C.12D.23 答案 A解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.3.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积为( ) A .4 3 B .4 C .2 3 D .2 2 答案 C解析 由余弦定理可得,(23)2=AB 2+42-2×4×AB cos 60°,化为AB 2-4AB +4=0,解得AB =2,∴△ABC 的面积S =12AC ·AB ·sin A =12×4×2×32=2 3.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,sin 2C 1-cos 2C =1,B =π6,则a 的值为( ) A.3-1 B .23+2 C .23-2 D.2+ 6答案 D解析 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,sin 2C1-cos 2C =1,所以2sin C cos C 2sin 2C =1,所以tan C =1,C =π4.因为B =π6,所以A =π-B -C =7π12,所以sin A =sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+cos π4sin π3=2+64.由正弦定理可得a 2+64=2sin π6,则a =2+ 6. 5.(2020·聊城模拟)已知cos ⎝⎛⎭⎫α-π6=35,则sin ⎝⎛⎭⎫α+π3等于( ) A.35 B .-35 C.45 D .-45答案 A解析 因为cos ⎝⎛⎭⎫α-π6=35, 由三角函数诱导公式可得,cos ⎝⎛⎭⎫π6-α=35, 因为sin ⎝⎛⎭⎫α+π3=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6-α, 所以sin ⎝⎛⎭⎫α+π3=cos ⎝⎛⎭⎫π6-α=35. 6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a cos B +b cos A =2c cos C ,c =7,且△ABC 的面积为332,则△ABC 的周长为( )A .1+7B .2+7C .4+7D .5+7答案 D解析 在△ABC 中,a cos B +b cos A =2c cos C , 则sin A cos B +sin B cos A =2sin C cos C , 即sin(A +B )=2sin C cos C ,∵sin(A +B )=sin C ≠0,∴cos C =12,∴C =π3,由余弦定理可得,a 2+b 2-c 2=ab , 即(a +b )2-3ab =c 2=7,又S =12ab sin C =34ab =332,∴ab =6,∴(a +b )2=7+3ab =25,即a +b =5, ∴△ABC 的周长为a +b +c =5+7.7.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos A =513,cos B =35,c =4,则a等于( )A .12B .15 C.207 D.307答案 D解析 因为cos A =513,cos B =35,所以sin A =1213,sin B =45,所以sin C =sin(A +B )=sin A cosB +cos A sin B =1213×35+513×45=5665.因为c =4,所以由正弦定理可得a =c sin Asin C =4×12135665=307.8.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( ) A .3 B.2213 C .3 2 D.352答案 B解析 因为A =120°,a =1,所以由正弦定理可得 b sin B =c sin C =a sin A =1sin 120°=233, 所以b =233sin B ,c =233sin C ,故2b +3c =433sin B +23sin C=433sin(60°-C )+23sin C =433sin C +2cos C =2213sin(C +φ). 其中sin φ=217,cos φ=277, 所以2b +3c 的最大值为2213.二、填空题9.(2020·黑龙江省哈尔滨32中模拟)已知tan ⎝⎛⎭⎫π4+α=12,则sin 2α-cos 2α1+cos 2α=________. 答案 -56解析 因为tan ⎝⎛⎭⎫π4+α=12,所以tan π4+tan α1-tan π4tan α=12, 即1+tan α1-tan α=12,解得tan α=-13,所以sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.10.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b +a sin C =2a sin B -csin B -sin A,则A =________.答案 π4解析 由正弦定理a sin A =b sin B =csin C ,得b +a c =2a sin B -c b -a ,整理得b 2-a 2=2ac sin B -c 2, 即b 2+c 2-a 2=2ac sin B =2bc sin A , 由余弦定理得,b 2+c 2-a 2=2bc cos A , ∴2bc cos A =2bc sin A ,即cos A =sin A , ∴tan A =1,∴A =π4.11.如图,△ABC 是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF =2AF ,AB =13,则△EDF 的面积为________.答案3解析 由题意知DB =AF =CE , 设DB =x ,则AD =3AF =3x , 在△ABD 中,∠ADB =120°, 根据余弦定理得AB 2=AD 2+DB 2-2AD ·DB cos 120°, 即13=9x 2+x 2+3x 2=13x 2, 解得x =1,所以DF =2x =2, 因此△DEF 的面积为34×22= 3. 12.(2020·山东省师范大学附中月考)在△ABC 中,设角A ,B ,C 对应的边分别为a ,b ,c ,记△ABC 的面积为S ,且4a 2=b 2+2c 2,则Sa2的最大值为________.答案 106解析 由题意知,4a 2=b 2+2c 2⇒b 2=4a 2-2c 2=a 2+c 2-2ac cos B ,整理,得2ac cos B =-3a 2+3c 2⇒cos B =3(c 2-a 2)2ac, 因为⎝⎛⎭⎫S a 22=⎝ ⎛⎭⎪⎫12ac sin B a 22=⎝⎛⎭⎫c sin B 2a 2=c 2(1-cos 2B )4a 2, 代入cos B =3(c 2-a 2)2ac,整理得 ⎝⎛⎭⎫S a 22=-116⎝⎛⎭⎫9×c4a4-22×c2a 2+9, 令t =c 2a 2,则⎝⎛⎭⎫S a 22=-116(9t 2-22t +9) =-116⎝⎛⎭⎫3t -1132+1036, 所以⎝⎛⎭⎫S a 22≤1036,所以S a 2≤106,故S a 2的最大值为106. 三、解答题13.(2020·全国Ⅰ)在△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a =3c ,b =27,求△ABC 的面积;(2)若sin A +3sin C =22,求C . 解 (1)由余弦定理可得b 2=28=a 2+c 2-2ac ·cos 150°=7c 2,∴c =2,a =23,∴△ABC 的面积S =12ac sin B = 3. (2)∵A +C =30°,∴sin A +3sin C =sin(30°-C )+3sin C =12cos C +32sin C =sin(C +30°)=22, ∵0°<C <30°,∴30°<C +30°<60°,∴C +30°=45°,∴C =15°.14.(2020·武汉模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2b c -1=2ab cos C b 2+c 2-a 2,a =27.(1)求△ABC 外接圆的面积;(2)若b +c =8,求△ABC 的面积.解 (1)依题意得,2b c -1=2ab cos C b 2+c 2-a 2, 故2b -c =2abc cos C b 2+c 2-a 2=a cos C cos A , 所以2b cos A -c cos A =a cos C ,所以2sin B cos A =sin A cos C +sin C cos A =sin(A +C ),即2sin B cos A =sin B ,因为sin B ≠0,所以cos A =12, 因为A ∈(0,π),所以A =π3, 设△ABC 外接圆的半径为R ,由正弦定理可得,a sin A =2R =2732=4213, 解得R =2213, 故△ABC 外接圆的面积为S =πR 2=283π. (2)由A =π3及余弦定理得, a 2=b 2+c 2-2bc cos A =(b +c )2-3bc ,又a =27,b +c =8,所以(27)2=82-3bc ,解得bc =12,故S △ABC =12bc sin A =3 3.。