gi ( x) p(wi | x) p(wi x) p(wi | x) p( x) p( x | wi ) p(wi ) gi ( x) p(wi | x) p( x | wi ) p(wi ) / p( x)
对于同一个像素来说,p(x)是相同的,因此可以约掉
最大似然方法
训练区:已知类别的区域,用于训练分类算法
样本区域类别的确定:实地观测,航片解译、 地图分析、个人经验等
监督分类的步骤
(1)提取样本区的光谱特性 (2)确定判别准则(最小距离?),生成判别函数 (3)将类型未知的样本值代入到判别函数中,根 据函数值对样本进行分类
样本区的选择
样本区类型:点、线、面 样本区的选择: 具有代表性(典型性) 时间或空间上的一致性 像元要足够多
A.图像预处理
确定工作范围 多源图像的几何配准 噪声处理 辐射校正 几何精校正 多图像融和(高空间分辨率和高光谱分辨率的图像)
C.特征选择和提取
特征:用于测量的属性 特征选择:变量:数据
波段数据、波段代数运算后的数据 图像变换之后的数据 非遥感图像数据
特征提取:地物光谱与图像亮度的先验关系
可分性、可靠性、独立性、数量少
XY ( X ) (Y )
2 2
p
பைடு நூலகம்
p
分类方法
(1)监督分类 (2)非监督分类 (3)其它的综合性分类方法:
模糊聚类、神经网络、决策树、专家系统分类、面 向对象的分类
工作流程
A.图像预处理 B.选择分类方法 C.特征选择和提取 D.选择合适的分类参数进行分类 E.分类后处理 F.成果输出
平行管道方法(盒式分类器,平行六面体分类器)
分类原理:每个训练区的样本的特征向量生成一个盒子,盒子 的中心为均值向量,边界为标准差的倍数(1、2、1.73等)。未 分类的向量落到哪个盒子就属于哪个类,即