近红外光谱仪器基础
- 格式:ppt
- 大小:798.00 KB
- 文档页数:35
近红外光谱仪的操作步骤光谱仪技术指标近红外光谱仪从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换、声光可调滤光器和阵列检测五种类型。
滤光片型紧要作专用分析仪器,如粮食水分测定仪。
近近红外光谱仪从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换、声光可调滤光器和阵列检测五种类型。
滤光片型紧要作专用分析仪器,如粮食水分测定仪。
近红外光谱仪的操作步骤如下:(1)将烟叶样品全部经60目旋风磨处理,待测:(2)开机(要求在18—24℃范围内启动),持续预热 1.5小时;(3)扫描背景,一般要求四次样品扫一次背景。
在环境要求变化不大时可适当放宽要求;(4)用烧杯量取待测样品约75ml(仅对粉末而言)放入样品杯,样品装填均匀,用压紧器(可做成铜块)压紧样品,要求底部没有裂缝。
(5)将样品杯放入样品室,开始扫描;(6)扫描结束后,取出样品杯,清扫样品;(7)重新装样,进行第二个样品的扫描;(8)样品全部扫描结束后,分析结果。
试样测试完成后,首先应退出FT—IR软件,关闭电脑,最后关闭主机电源。
近红外光谱仪仪器使用的注意事项:A 、保持室内环境相对湿度在50%以下。
KBr窗片和分束器很简单吸潮,为防止潮解,务必保持室内干燥。
同时操作的人员不宜太多,以防人呼出的水气和CO2影响仪器的工作。
B 、维持室内温度相对稳定。
温差变化太大,也简单造成水气在窗片上凝结。
C 、假如条件允许,建议定期对仪器用N2进行吹扫。
D 、尽量不要搬动仪器,防止精密仪器的猛烈震动。
—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
光谱仪近红外指的是一类光谱仪器,用于检测和分析近红外波段的光谱信息。
近红外波段通常包括700纳米到2500纳米的范围。
近红外光谱仪通过测量物质在近红外光波段的吸收、散射或透射等特性,获取样品的光谱数据,并进一步分析和解释。
近红外光谱具有许多应用领域,包括但不限于以下几个方面:
1.化学分析:近红外光谱仪可以用于化学成分分析、质量控制、反应动力学等方面的研究。
通过检测样品在近红外波段的吸收特性,可以识别和定量分析化合物的种类和含量。
2.农业和食品领域:近红外光谱仪可用于农作物和食品品质的分析。
例如,可以通过近红外光谱技术判断水果的成熟度、检测农产品中的营养成分、预测食品的新鲜度等。
3.药物和生物医学研究:近红外光谱可用于医药领域的药物分析和生物医学研究。
例如,可以通过近红外光谱检测药物的纯度、质量等;同时,在生物医学研究中,近红外光谱被用作非侵入性的、实时的生物体监测工具。
4.环境监测:近红外光谱仪可以用于水质、空气质量、土壤污染等环境领域的监测和分析,帮助评估环境中的污染物含量和类型。
近红外光谱仪的使用使得对物质的分析更加简便、高效、准确,广泛应用于科学研究、工业生产、环境监测等领域。
_近红外光谱解析实用指南_近红外光谱解析是一种非常常用的分析技术,可用于定性和定量分析。
本指南旨在向读者介绍近红外光谱解析的基本原理、仪器设备、样品制备和数据分析方法。
一、基本原理近红外光谱是指在800至2500纳米波长范围内的光谱。
近红外光谱的原理是利用样品中分子振动和拉伸产生的光谱吸收特征来推测样品的成分和属性。
这些光谱特征是由于化学键振动、倾角、水合作用等引起的。
二、仪器设备近红外光谱仪是近红外光谱解析的关键设备。
现在市场上常见的仪器一般采用光栅技术,具有高分辨率和高精度。
仪器的重要参数包括光源、光路、检测器和光谱仪。
选择合适的仪器要考虑样品类型、分析要求和预算。
三、样品制备样品制备对于近红外光谱解析至关重要。
样品制备的目的是使样品以均匀、透明、薄膜形式呈现在仪器上。
常用的样品制备方法包括将样品粉碎后与固体粉末混合,或将液体样品稀释后滴在红外透明基底上。
四、数据分析方法近红外光谱解析的数据处理过程包括光谱校正、预处理、模型建立和模型验证等步骤。
首先,需进行光谱校正,如仪器平滑、波长校准和零点校准等。
接下来,进行样品的预处理,包括去噪、光谱标准化和特征选择等。
然后,构建合适的模型,可以采用主成分分析、偏最小二乘法或支持向量机等方法。
最后,进行模型验证和检验,评估模型的准确度和鲁棒性。
近红外光谱解析的应用非常广泛,涉及农业、食品、化学、药品、生物医学等领域。
它可以用于农产品质量检测、食品成分分析、药品质量控制等。
近红外光谱解析具有快速、非破坏性、准确度高等优点,因此备受研究者和工程师的青睐。
总结起来,近红外光谱解析是一种有效的分析技术,具有广泛的应用前景。
通过正确选择仪器设备,合理制备样品,以及采用科学的数据处理方法,可以实现准确、快速和可靠的分析结果。
希望本指南能够为读者提供有关近红外光谱解析的基本知识和实用指导。
红外光谱分析及FTIR基础知识第⼀章红外光谱的基本原理l—1 光的性质光是⼀种电磁波,它在电场和磁场⼆个正交⾯内波动前进.⼆个波峰或波⾕之间的距离为波长,以“ λ”表⽰。
电磁波包括波长短⾄0.1纳⽶的x射线到长达106厘⽶的⽆线电波.其中波长为0.75微⽶到200微⽶,即从可见光区外延到微波区的⼀段电磁波称红外光.红外光通常以微⽶为单位(µm).1微⽶等于10-4厘⽶(1µm=10-4cm),因此,红外光波长以厘⽶为单位时,其倒数就是1厘⽶内的波数(ν),所以波数的单位ν是厘⽶-1(cm-1).红外光既可以波长(λ),也可以波数(cm-1)表⽰,⼆者关系如(1-1)式所⽰:ν(cm-1)=104/λ(µm) (1-1)由于光的能量与频率有关,因此红外光也可以频率为单位.频率(f)是每秒内振动的次数.频率、波长和波数的关系是,f=c/λ=ν*c (1—2)式中:c为光速,是常数(3×1010厘⽶秒); λ是波长(微⽶);f是频率(秒-1);ν是波数(厘⽶-1).由于波数是频率被⼀个定值(光速)除的商值,因此红外光谱中常将波数称为频率.光既有波的性质,⼜有微粒的性质.可将⼀束光看作⾼速波动的粒⼦流,最⼩单位为光⼦.根据爱因斯坦—普朗克关系式,⼀定波长或频率的单⾊光束中每个光⼦具有能量E,E=hf=hcν=hc/λ (1—3)式中:h为普朗克常量,等于6.63×10-34焦⽿·秒.按(1.3)式可以算出波长2µm(5000厘⽶-1)的红外光⼦能量为6.63×10-34 (焦⽿·秒)x3x1010/2x10-4厘⽶=9.95x10-20焦⽿.同理波长l0微⽶(1000厘⽶-1)的红外光⼦的能量仅1.99×10-20焦⽿.可见波长短,能量⼤.波长长,能量⼩.1-2 分⼦光谱的种类有机分⼦同其他物质⼀样始终处于不停的运动之中。
近红外光谱仪器比较 一 基本构成 近红外光谱仪的光学部分由:光源、分光系统、测样附件和检测器等部分构成。
(1)光源 近红外光谱仪器最常用的光源是卤钨灯,性能稳定,价格也相对较低。
发光二极管LED是一种新型光源,波长范围可以设定,线性度好,适于在线或便携式仪器。
(2)测样附件:液体多使用透射式测量池,也可采用透射式光纤探头。
(3)检测器:可分为 单点检测器和阵列检测器 金陵石化汽油调和的是单点检测器。
在短波区域多采用Si检测器或CCD阵列检测器。
在长波区 多采用PbS 或 InGaAs 或其阵列检测器。
InGaAs 检测器的响应速度快,信噪比和灵敏度高,但响应范围相对较窄,价格也较贵。
PbS 检测器的响应范围较宽,价格约为InGaAs检测器的1/5,但其响应呈较高的非线性。
为了提高检测器的灵敏度,扩展响应范围,在使用时往往采用半导体或液氮制冷,以保持较低的恒定温度。
二 光谱仪的类型 色散型光谱仪由于固有的缺点:扫描速度慢、分辨率低、信噪比低、重复性差。
检测器的作用:检测光通过样品后的能量。
选用检测器要满足下面三点要求: (1)具有较高的检测灵敏度(2)快的响应速度(3)较宽的测量范围 按单色器分类,市场上存在的NIR光谱仪可分为:滤光片型、光栅色散型、傅里叶变换型(FT)、声光可调滤光器型(AOTF)四类。
除采用 单色器 分光外,也有仪器采用多个不同波长的发光二极管作为光源,即 LED型近红外光谱仪。
1.滤光片型 滤光片型仪器采用干涉滤光片进行分光。
光学滤光片是建立在光学薄膜干涉原理上的精密光学滤光器件,利用入射和反射之间相位差产生的干涉现象,得到带宽相当窄的单色光,其半波宽可在10nm以下,基本能达到单色器的分光质量。
优点:采样速度快、比较坚固、可制造现场分析的手提式仪器。
缺点:只能在单一或少数几个波长下测定,波长数目有限,若样品的基体发生变化,往往会引起较大的测量误差。
现代近红外光谱技术及应用进展一、本文概述近红外光谱(Near-Infrared Spectroscopy,NIRS)是一种基于物质对近红外光的吸收和散射特性的分析技术。
近年来,随着光谱仪器设备的不断改进和计算机技术的飞速发展,现代近红外光谱技术在分析化学、生物医学、农业食品等领域的应用日益广泛。
本文旨在综述现代近红外光谱技术的最新进展,特别是在仪器设备、数据处理方法、化学计量学以及应用领域的最新发展。
文章首先介绍了近红外光谱的基本原理和技术特点,然后重点论述了现代近红外光谱技术在不同领域的应用实例和取得的成果,最后展望了未来发展方向和潜在应用前景。
通过本文的阐述,旨在为读者提供一个全面、深入的现代近红外光谱技术及应用进展的概述。
二、现代近红外光谱技术的理论基础现代近红外光谱技术,作为一种高效、无损的分析手段,其理论基础源自电磁辐射与物质相互作用的原理。
近红外光谱区域通常是指波长在780 nm至2500 nm范围内的电磁波,其能量恰好对应于分子振动和转动能级间的跃迁。
因此,当近红外光通过物质时,分子中的化学键和官能团会吸收特定波长的光,产生振动和转动跃迁,从而形成独特的光谱。
现代近红外光谱技术的理论基础主要包括量子力学、分子振动理论和光谱学原理。
量子力学为近红外光谱提供了分子内部电子状态和行为的基本描述,而分子振动理论则详细阐述了分子在不同能级间的跃迁过程。
光谱学原理则将这些理论应用于实际的光谱测量和分析中,通过测量物质对近红外光的吸收、反射或透射特性,来获取物质的结构和组成信息。
现代近红外光谱技术还涉及到光谱预处理、化学计量学方法以及光谱解析等多个方面。
光谱预处理包括平滑、去噪、归一化等步骤,旨在提高光谱的质量和稳定性。
化学计量学方法则通过多元统计分析、机器学习等手段,实现对光谱数据的深入挖掘和信息提取。
光谱解析则依赖于专业的光谱数据库和算法,对光谱进行定性和定量分析,从而确定物质中的成分和含量。
近红外光谱标准近红外光谱技术作为一种重要的分析技术,在多个领域得到了广泛的应用。
为了规范近红外光谱技术的使用和推广,制定了一系列近红外光谱标准。
本文将介绍近红外光谱标准的主要内容,包括近红外光谱仪器标准、近红外光谱分析方法标准、近红外光谱样品制备标准、近红外光谱数据解析标准、近红外光谱应用领域标准、近红外光谱质量评估标准、近红外光谱安全操作标准以及近红外光谱数据处理标准。
近红外光谱仪器标准近红外光谱仪器是进行近红外光谱分析的基础设备,因此其性能和质量对分析结果有着至关重要的影响。
近红外光谱仪器标准主要包括仪器的基本参数、性能指标、稳定性、可靠性等方面的规定。
例如,仪器的主要技术指标应符合相应的测试方法及技术要求,仪器的稳定性应满足测试要求,仪器的操作应简单方便,仪器的安全性能应符合相关规定等。
近红外光谱分析方法标准近红外光谱分析方法标准是针对具体分析对象和方法制定的标准。
这些标准通常包括样品的前处理方法、光谱采集条件、谱图解析方法等方面的规定。
例如,样品的前处理应遵循一定的流程和规范,以保证样品的代表性和均匀性;光谱采集时应选择合适的波长范围和扫描次数,以保证光谱的质量和可靠性;谱图解析时应采用合适的数学方法和模型,以获得准确的分析结果。
近红外光谱样品制备标准近红外光谱样品制备是进行近红外光谱分析的重要环节之一。
样品制备不当可能会影响光谱的质量和分析结果的准确性。
近红外光谱样品制备标准主要包括样品的制备方法、样品制备过程中的质量控制等方面的规定。
例如,样品制备时应保证样品的代表性和均匀性,样品制备过程中应避免外部因素对样品的影响等。
近红外光谱数据解析标准近红外光谱数据解析是将采集的光谱数据转化为有用的分析结果的过程。
数据解析过程中涉及到数学建模、模型验证等方面,因此需要制定相应的标准来规范这一过程。
近红外光谱数据解析标准主要包括模型建立的方法、模型验证的方法、模型评价等方面的规定。
例如,模型建立时应选择合适的波长范围和变量,模型验证时应采用交叉验证等方法,模型评价时应根据实际应用情况进行评估等。
近红外光谱分析仪的使用分析仪技术指标近红外光谱分析仪是利用气体或液体对红外线进行选择性吸取的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰本领强等特点,被广泛应近红外光谱分析仪是利用气体或液体对红外线进行选择性吸取的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰本领强等特点,被广泛应用于石油化工冶金等工业生产中。
近红外光谱分析仪的光源是接受上下两个电极的方法,通上电流,电极之间就形成一个火花式光谱仪光源。
在这火花式光谱仪光源中,电极之间空气或其他气体一般处于大气压力。
因此放电是在充有气体的电极之间发生,是依靠电极间流过的电流使气体发光,是建立在气体放电的基础上。
低压火花以及控波型光谱分析仪光源是在电容电场作用下,接受掌控气氛中放电;火花光谱分析仪光源是在直流电场作用下,淡薄掌控气氛中放电;等离子体火花式光谱仪光源是在射频电磁场作用下掌控气氛中放电(电极之间的电压以及电流的关系不遵守欧姆定律的)。
光谱分析仪光源的作用是将待测元素变成气体状态,而后激发成光谱,依据该元素谱线强度转换成光电流,由计算机掌控的测光系统按谱线的强度换算成元素的含量。
光源作用的这种动态过程,就是将样品由固态变成气态,其中一部份元素激发而发射光谱,而这些气态的样品又不断地向四周扩散,分析间隙的气态样品也在不断更新,以求达到一个动态平衡,当火花光谱分析仪光源激发确定时间后,蒸气云中待测元素浓度增大,只有蒸气云中浓度充分大,才能得到大的光电信号。
近红外光谱分析仪是否稳定正常地运行,直接影响到仪器测定数据的好坏,假如气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体掌控系统要常常进行检查和维护。
首先要做试验,打开掌控系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,察看减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排出。
紫外可见近红外光谱仪结构紫外可见近红外光谱仪(UV-Vis-NIR光谱仪)是一种广泛应用于光学分析领域的仪器,用于测量材料在紫外(UV)、可见(Vis)、近红外(NIR)区域的光谱特性。
下面是UV-Vis-NIR光谱仪的一般结构和组成部分:1.光源:光谱仪通常配备了一个光源,用于产生光束以照射样品。
光源一般采用氘灯或钨灯,来提供紫外和可见光谱范围的光线,同时一些仪器也配备了近红外光源。
2.光学系统:光谱仪的光学系统包括多个光学元件,如反射镜、光栅、滤光片等。
这些元件用于分散和选择不同波长的光,使其通过样品和到达检测器。
光栅是一种常见的光分散元件,用于将光按波长进行分光处理。
3.样品室:样品室是放置样品的装置,以接收光线进行测量。
样品室通常是一个透明的容器,内部装有样品架或样品池。
在紫外可见光谱仪中,样品室通常是光密封的,以防止外界光线的干扰。
4.检测器:用于测量样品室中经过的光线的强度的检测器位于样品室的另一侧。
常用的检测器包括光电二极管(Photodiode)和光电倍增管(Photomultiplier Tube),它们能够将光信号转化为电信号。
近红外光谱仪通常配备更敏感的探测器,如InGaAs探测器。
5.信号处理和数据分析部分:光谱仪配备了相应的电路和软件,用于信号放大、滤波、数据记录和分析。
它可以对接收到的光信号进行处理和展示,在计算机上生成光谱图像,并提供相关的分析结果。
这些部分组合在一起,构成了UV-Vis-NIR光谱仪的基本结构,它们协同工作,使光谱仪能够测量不同波长范围内的光谱特性,应用于物质分析、化学研究和材料科学等领域。
近红外光谱仪的分析方法近红外光谱仪(NIR)是一种非破坏性的分析仪器,它可用于分析物质的化学成分和品质特征,适用于食品、制药、化妆品、纺织品等多个领域。
本文将介绍近红外光谱仪的基本原理、分析方法以及仪器的使用注意事项。
基本原理红外光谱是指物质分子在受到一定波数范围内的红外辐射后,分子内部振动和分子间振动引起的特殊谱线。
近红外光谱仪利用一定波数范围内的红外辐射,通过样品对该辐射的吸收、透射和散射来分析样品。
与传统的红外光谱仪相比,近红外光谱仪是在红外光谱的高频段(波数约为4000-10000 cm-1)进行分析,适合于进行定性和定量分析。
分析方法定性分析近红外光谱仪可用于物质的定性分析,通过比较已知样品的光谱图和待测样品的光谱图来确定待测样品的成分。
这种方法适用于样品成分较为单一的物质,如各种单一化合物、药品等。
定量分析近红外光谱仪还可用于物质的定量分析,通过建立样品的定量分析模型,利用仪器测得的光谱图数据计算出待测样品的成分。
这种方法适用于复杂样品或者需要快速分析大量样品的情况,如食品、化妆品等行业的质量控制。
近红外光谱仪所建立的定量分析模型一般分为两种类型:一是基于化学计量学方法(如主成分分析、偏最小二乘法等)建立的模型,二是基于光谱匹配(spectral matching)建立的模型。
校正与验证在建立定量分析模型时,需要进行校正与验证。
校正是指利用部分已知样品数据来建立模型,验证则是指利用另外的已知样品数据来评估模型的可靠性。
建立模型时,一般将样品数据分为校正集和验证集,其中校正集用于训练模型,验证集用于评估模型的预测能力。
仪器使用注意事项样品制备近红外光谱仪的样品制备非常关键。
对于不同行业的样品,有不同的样品制备方法。
如在食品行业中,需要将食品样品研磨成粉末或浸泡在溶剂中;在药品行业中,需要将药品样品溶解后进行稀释。
无论是何种样品制备方法,需确保样品充分混合且无气泡,避免对光谱结果产生影响。
近红外光谱仪的使用教程近红外光谱仪(Near-Infrared Spectrometer,简称NIR)是一种常用的分析仪器,广泛应用于农业、食品、医药、化工等领域。
它能够通过测量样品在近红外光波段的吸收和散射光来确定样品的物理、化学及结构性质。
本篇文章将介绍近红外光谱仪的使用方法和注意事项,以帮助读者更好地利用该仪器。
仪器准备在操作近红外光谱仪之前,首先需要对仪器进行准备。
确保设备工作正常并经过校准是十分重要的。
首先,检查光源是否亮度均匀、光束是否齐整。
其次,确保样品舱及光学部件的清洁度,以免影响测量结果。
最后,进行仪器校准,确保光谱仪的准确性和稳定性。
样品处理在使用近红外光谱仪前,需要对样品进行适当的前处理,以保证测量结果的准确性。
样品通常需要经过研磨、过滤或稀释等步骤,以确保样品均匀、无颗粒和适宜的浓度。
此外,还需要注意样品的温度和湿度,以免对测量结果产生影响。
光谱测量在进行光谱测量时,需要选择适当的光谱范围和参数,以获得最佳的结果。
一般来说,近红外光谱仪有两种测量模式:反射和透射。
反射模式适用于固体样品和粉末样品,而透射模式适用于液体和溶液样品。
在选择测量模式时,根据样品的性质和要求进行选择。
数据分析获取光谱数据后,需要对数据进行分析和解读。
常见的数据处理方法包括预处理、特征提取和模型建立等。
预处理是指对数据进行平滑、去噪、标准化等操作,以提高数据的质量和可解释性。
特征提取是将复杂的光谱数据转化为可理解的数据特征,以便进一步分析和识别。
模型建立是利用已知样品的光谱数据建立模型,并利用该模型对未知样品进行分类、定量和质量控制等。
注意事项在使用近红外光谱仪时,需要注意以下几点。
首先,避免光源和检测器受到干扰,保持实验环境的干净和安静。
其次,校准仪器的频率要求,以确保测量结果的稳定性和准确性。
此外,注意样品舱的温度控制,以免样品受到热辐射的影响。
总结近红外光谱仪是一种重要的分析工具,它能够提供大量关于样品性质和组成的信息。
近红外光谱分析仪原理
近红外光谱分析仪是一种可以通过测量样品吸收、散射或透射近红外光的仪器,用于分析和确定样品中的化学成分或性质。
其工作原理基于近红外光与样品发生相互作用后产生的能量变化。
每种化学物质都有其特定的分子结构和化学键,因此它们对于不同波长的光有不同的吸收特性。
近红外光谱分析仪利用这一原理进行定量或定性分析。
其工作原理大致可以分为光源、样品传感器和信号处理三个主要部分。
首先,近红外光谱分析仪会通过一个光源产生一束包含不同波长的近红外光。
这种光通过一系列的透镜和光学器件进行聚焦和传输,最后照射到样品表面。
其次,样品表面的化学物质会吸收或散射部分近红外光。
这些吸收或散射过程会导致透射光中特定波长的光强发生变化。
近红外光谱分析仪会采用一个传感器,如光电二极管或光电探测器,来测量透射光的强度。
传感器会将吸收或散射光转化为电信号,并将其传送至信号处理部分。
最后,信号处理部分会对接收到的电信号进行处理和分析。
这些处理方法包括光谱解析、数学算法和化学模型等。
光谱解析可以通过比较样品的光谱特征与已知标准光谱进行拟合,从而确定样品中的化学成分。
数学算法则可以通过对光谱数据进行处理和加工,提取有关样品的相关信息。
化学模型则可以利用已知样品的光谱数据训练模型,从而实现对未知样品的分类或
定量分析。
综上所述,近红外光谱分析仪利用样品对近红外光的吸收或散射特性,通过测量透射光的强度和进行信号处理,实现对样品化学成分或性质的分析和确定。
这种仪器可以广泛应用于食品、药品、化工等各个领域,并在质量控制、过程监测和研究开发等方面发挥着重要作用。
近红外光谱仪的分析原理光谱仪工作原理近红外光谱仪的分析原理近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。
近红外光谱紧要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的紧要是含氢基团X—H(X=C、N、O)振动的倍频和合频吸取。
不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸取波长与强度都有明显差别,NIR 光谱具有丰富的结构和构成信息,特别适合用于碳氢有机物质的构成与性质测量。
但在 NIR区域,吸取强度弱,灵敏度相对较低,吸取带较宽且重叠严重。
因此,依靠传统的建立工作曲线方法进行定量分析是特别困难的,化学计量学的进展为这一问题的解决奠定了数学基础。
其工作原理是,假如样品的构成相同,则其光谱也相同,反之亦然。
假如我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。
操作近红外光谱仪的注意事项近红外光谱仪紧要广泛应用于对液体状样品的化学、物理性质作定量分析,由于仪器在常规光纤中有良好的传输性,且仪器简单、分析速度快、对样品不会造成破坏、测试时对样品需求小等优点,在在线分析中得到广泛使用。
在操作近红外光谱仪的过程中要注意以下事项:1、近红外光谱区范围为780~2526nm,是介于可见光和中红外光之间的电磁波,在检测样品前首先要了解测试光谱的范围。
2、在使用前还要对仪器进行校正,近红外光谱仪的校正相对比较麻烦,为了得出精准的数值,一般需要80个以上的代表性样品用来进行校正,这一步骤通常称为模型建立。
3、在检测过程中,首先用近红外光谱仪测定样品的光谱区,通过软件自动对模型库进行检索,选择正确模型计算待测样品质量参数。