江苏省苏州市2020-2021学年第一学期九年级数学2020年竞赛复习模拟卷
- 格式:doc
- 大小:1.87 MB
- 文档页数:13
江苏省苏州市2024-2025学年上学期九年级数学期中模拟卷(4)一、单选题1.下列y 关于x 的函数中,属于二次函数的是()A .()221y x x =+-B .2y ax bx c=++C .()23y x x =-D .25y x =+2.抛物线y =﹣x 2+3的顶点在()A .x 轴上B .y 轴上C .第一象限D .第二象限3.小明根据方差公式()()()()()22222211323333363S x n ⎡⎤=-+-+-+-+-⎣⎦分析和计算得出了四个结论,其中不正确的是()A .11x =B .众数是3C .中位数是3D .2 2.4S =4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A .124B .112C .16D .145.点(),5P m 在抛物线()2:36C y x =--+上,将抛物线C 进行平移得抛物线2:2C y x '=-+,P 的对应点为P ',则点P '移动的最短路程为()A .3B .4C .5D .66.已知二次函数()()210y a x a a =--≠,当14x -≤≤时,y 的最小值为4-,则a 的值为()A .12或4B .4或12-C .43-或4D .12-或127.如图1,ABC V 中,90C ∠=︒,15AC =,20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止,过点D 作DE AB ⊥,垂足为E .设点D 运动的路径长为x ,BDE V 的面积为y ,若y 与x 的对应关系如图2所示,则a b -的值为()A .54B .52C .50D .488.如图,二次函数()220y ax bx a =++≠的图象与x 轴交于()1,0-,1(,0)x ,其中123x <<.结合图象给出下列结论:①0ab >;②2a b -=-;③当>1时,y 随x 的增大而减小;④关于x 的一元二次方程()2200ax bx a ++=≠的另一个根是2a-;⑤b 的取值范围为413b <<.其中正确结论的个数是()A .2B .3C .4D .5二、填空题9.已知一组数据24、27、19、13、23、12,那么这组数据中的中位数是.10.如图,AD 是ABC V 中BC 边的中线,点E ,F ,G 分别是AD ,BC ,AB 的中点,连接EF 、DG ,现随机向ABC V 内掷一枚小针,则针尖落在阴影区域的概率是.11.已知二次函数()214y x =+-,当02x ≤≤时,函数值y 的取值范围为12.如图,抛物线2y ax bx c =++与直线22y x =-相交于点(,4)A m ,(,2)B n -,则关于x 的方程222ax bx c x ++=-的解为.13.如图,抛物线212y x =与直线112y x =-+交于A ,B 两点(A 在B 左侧),连接AO ,P 在直线AO 下方抛物线上,当AOP 的面积最大时,点P 的坐标是.14.如果我们定义[],,a b c 为二次函数=B 2+B +的“有序数集”,如函数23y x x =-+的“有序数集”为[]1,1,3-.若一个二次函数的“有序数集”是[]1,21-,则将此函数的图象先向右平移2个单位长度,再向上平移3个单位长度后,得到的图象对应的函数的“有序数集”是15.已知抛物线()2212y x mx m =--≤≤经过点(,)A p t 和点(2,)B p t +,则t 的最小值是.16.如图,抛物线213222y x x =+-与x 轴交于点A 和点B 两点,与y 轴交于点C ,D 点为抛物线上第三象限内一动点,当2180ACD ABC ∠∠=︒+时,点D 的坐标为.三、解答题17.某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩x 均为不小于60的整数,分为四个等级:D :6070x ≤<,C :7080x ≤<,B :8090x ≤<,A :90100x ≤≤),部分信息如下:信息一:信息二:学生成绩在B 等级的数据(单位:分)如下:80,81,82,83,84,84,84,86,86,86,88,89请根据以上信息,解答下列问题:(1)求所抽取的学生成组为C 等级的人数;(2)求所抽取的学生成绩的中位数;(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A 等级的人数.18.已知二次函数y =﹣12(x +4)2,将此函数的图像向右平移3个单位长度,再向上平移2个单位长度.(1)请写出平移后图像所对应的函数解析式;(2)在如图所示的平面直角坐标系中,画出平移后的图像;(3)根据所画的函数图像,写出当y <0时x 的取值范围.19.某景区检票口有A ,B ,C 共3个检票通道,甲,乙两人到该景区游玩,两人分别从3个检票通道中随机选择一个检票.(1)甲选择A 检票通道的概率是___________;(2)求甲,乙两人选择的检票通道恰好相同的概率.20.已知抛物线2y x bx c =++与y 轴交于点10,2A ⎛-⎫ ⎪⎝⎭,顶点B 的横坐标为12-.(1)求b ,c 的值;(2)设m 是抛物线2y x bx c =++与x 轴的交点的横坐标,求3233320242m m m +-+的值.21.如图,某校准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB BC ⊥,3AB =米,1BC =米)和总长为14米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 在线段A 上,设DF 的长为x 米.(1)请用含x 的代数式表示EF 的长;(2)若要求所围成的小型农场DBEF 的面积为274平方米,求DF 的长;(3)求小型农场DBEF 的最大面积.22.如图,在平面直角坐标系中,抛物线()240y ax x c a =-+≠与x 轴分别交于点()1,0A 、点()3,0B ,与y 轴交于点C ,连接BC ,点P 在线段BC 上,设点P 的横坐标为m .(1)求直线BC 的解析式;(2)如果以P 为顶点的新抛物线经过原点,且与x 轴的另一个交点为D ,若PAB 是以PA 为腰的等腰三角形,求新抛物线的解析式.23.某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的50%.在销售过程中发现:当销售单价为35元时,每天可售出350件,若销售单价每提高5元,则每天销售量减少50件.设销售单价为x 元(销售单价不低于35元)(1)当这种儿童玩具以每件最高价出售时,每天的销售量为多少件?(2)求这种儿童玩具每天获得的利润w (元)与销售单价x (元)之间的函数表达式;(3)当销售单价为多少元时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少元?24.跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =-++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______;(2)求满足的函数关系2116y x bx c =-++;(3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离.25.如图,在平面直角坐标系中,抛物线²y x bx c =++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,作直线BC ,点P 是抛物线上一个动点(点P 不与点B ,C 重合),连接PB ,PC ,以PB ,PC 为边作平行四边形CPBD ,设平行四边形CPBD 的面积为S ,点P 的横坐标为m .(1)求抛物线函数解析式;(2)当点P 在第四象限,且6S =时,求点P 坐标.(3)①求S 与m 之间的函数关系式.②根据S 的不同取值,试探索点P 的个数情况.。
人教版(五四制)2020-2021学年度第一学期九年级数学期中模拟测试题1(附答案) 一、单选题1.如图,AB 是O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN上一动点,ACB ∠的角平分线交O 于点D ,BAC ∠的平分线交CD 于点E .当点C从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( ) A .2B .2πC .32D .5 2.若函数221(100196|100196|)2y x x x x =-++-+,则当自变量x 取1、2、3、…、100这100个自然数时,函数值的和是( )。
A .540B .390C .194D .973.如图,过半径为6的圆O 上一点A 作圆O 的切线l ,点P 从A 点出发,沿逆时针方向运动到点B ,作PH⊥l 于点H ,连接PA .如果PA=x ,AH=y ,那么下列图象中,能大致表示y 与x 的函数关系的是( )A .B .C .D .4.如图,边长为2的正方形ABCD 的顶点A 、B 在一个半径为2的圆上, 顶点C 、D 在圆内,将正方形ABCD 沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C 运动的路径长为 ( )A .2πB .2+1)πC .2+2)πD .223π 5.如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D ,E ,过劣弧D E(不包括端点D ,E)上任一点P 作⊙O 的切线MN ,与AB ,BC 分别交于点M ,N ,若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .rB .rC .2rD .r6.如图,AD 是⊙O 的直径,以A 为圆心,弦AB 为半径画弧交⊙O 于点C ,连结BC 交AD 于点E ,若DE =3,BC =8,则⊙O 的半径长为( )A .256B .5C .163D .253 7.已知二次函数()20y ax bx c a =++>过点()1,2M -和点()1,2N -,交x 轴于A ,B 两点,交y 轴于点C ,则:①0a c +=;②无论a 取何值,此二次函数图象截x 轴所得的线段长度必大于2;③若1a =,则2OA OB OC ⋅=.以上说法正确的是( ) A .①② B .①③ C .②③D .①②③ 8.在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是( ) A . B . C . D . 9.已知二次函数2(0)y ax bx c a =++≠的图象如图,则下列结论中正确的是( )A .240b ac -<B .0a b c -+>C .0abc <D .0a b c ++>10.已知二次函数的图象如下面左图所示,则一次函数的图象大致是( ) A . B . C .D .二、填空题11.如图,正方形ABCD 内接于半径为的⊙O ,E 为DC 的中点,连接BE ,则点O到BE 的距离等于 .12.如图,在ABC 中,15B ∠=︒,60BAC ∠=︒,3AC =,将ABC 绕点A 旋转得到ADE (B 与D ,C 与E 分别是对应顶点),且点B ,C ,D 在同一直线上,以A 为圆心,AE 为半径画弧交边AB 于点F ,则EF 的长为__________.13.如图,Rt △ABC 的直角边BC 在x 轴正半轴上,点D 为斜边AC 的中点,DB 的延长线交y 轴负半轴于点E ,反比例函数的图象经过点A .若S △BEC =3,则k 的值为 ;14.如图,在ABC 中,AB=AC=6,∠B=30°,边BC 上一个动点M 从B 运动到C ,连AM ,将射线AM 绕M 顺顺时针转30°交AC 于N ,则N 的路径长_______.15.如图,正方形ABCD 的边长为4,连接AC ,先以A 为圆心,AB 的长为半径作弧BD ,再以A 为圆心、AC 的长为半径作弧CE ,且A 、D 、E 三点共线,则图中两个阴影部分的面积之和是______.16.如图所示,将抛物线C 0∶y =x 2-2x 向右平移2个单位长度,得到抛物线C 1,则抛物线C 1的表达式是________.17.如图,等边△ABC 内有一点O ,OA =3,OB =4,OC =5,以点B 为旋转中心将BO 逆时针旋转60°得到线段BO ',连接AO ',下列结论:①ABO '△可以看成是△BOC 绕点B 逆时针旋转60°得到的;②点O 与O '的距离为5;③∠AOB =150°;④S 四边形AOBO′=6+42;⑤AOC AOB S S +△△=6+934.其中正确的结论有_____.(填正确序号)18.如图,将矩形OABC 置于一平面直角坐标系中,顶点A ,C 分别位于x 轴,y 轴的正半轴上,点B的坐标为(5,6),双曲线y=kx(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为___.19.在平面直角坐标系xOy中,直线y=﹣x+1与图数y=kx的限象交于A(﹣2,a),B两点.(1)写出a,k的值________;(2)已知点P(0,n),过点P作平行于x轴的直线l,交函数y=kx的图象于点C(x1,y1),交直线y=﹣x+1的图象于点D(x2,y2),若|x1|≤|x2|,结合函数图象,请写出m 的取值范围________.20.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为___(结果保留根号).三、解答题21.如图,在平面直角坐标系中,点为坐标原点,抛物线交轴于、两点,交轴于点,直线经过、两点.(1)求抛物线的解析式;(2)过点作直线轴交抛物线于另一点,点是直线下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点作轴于点,交于点,交于点,连接,过点作于点,设点的横坐标为,线段的长为,求与之间的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,连接,过点作于点(点在线段上),交于点,连接交于点,当时,求线段的长.22.某农作物的生长率P 与温度 t(℃)有如下关系:如图 1,当10≤t≤25 时可近似用函数11505P t =-刻画;当25≤t≤37 时可近似用函数21()0.4160P t h =--+ 刻画. (1)求h 的值.(2)按照经验,该作物提前上市的天数m(天)与生长率P 满足函数关系:生长率P0.2 0.25 0.3 0.35 提前上市的天数m (天)0 5 10 15①请运用已学的知识,求m 关于P 的函数表达式;②请用含t 的代数式表示m ;(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t(℃)之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).23.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第一、三象限内的、两点,与轴交于点,过点作轴于点,作轴于点,,,点的坐标为.(1)求四边形的周长和面积.(2)求该反比例函数和一次函数的解析式.24.已知二次函数y=211524kx x ++(k 是常数). (1)若该函数的图象与x 轴有两个不同的交点,试求k 的取值范围;(2)若点(1,k )在某反比例函数图象上,要使该反比例函数和二次函数y=211524kx x ++都是y 随x 的增大而增大,求k 应满足的条件及x 的取值范围; (3)若抛物线y=211524kx x ++与x 轴交于A (A x ,0)、B (B x ,0)两点,且A x <B x ,22A B x x +=34,若与y 轴不平行的直线y=ax+b 经过点P (1,3),且与抛物线交于1Q (1x ,1y )、2Q (2x ,2y )两点,试探究1212·Q P Q P Q Q 是否为定值,并写出探究过程. 25.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE ⊥AM 于点E ,点N 与点M 关于直线CE 对称,连接CN .(1)如图,当0°<α<45°时:①依题意补全图;②用等式表示∠NCE 与∠BAM 之间的数量关系:___________;(2)当45°<α<90°时,探究∠NCE 与∠BAM 之间的数量关系并加以证明; (3)当0°<α<90°时,若边AD 的中点为F ,直接写出线段EF 长的最大值.26.手机上常见的wifi 标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1,若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为12320...S S S S 、、.(1)求123S S S 、、的值;(2)写出n S 的值;(3)求12320...S S S S ++++.27.长为300m 的春游队伍,以/v m s ()的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2/v m s (),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t s (),排头与O 的距离为S m 头().(1)当2v =时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S m 甲(),求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为T s (),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.28.如图,在平面直角坐标系xOy 中,双曲线m y x=与直线2y kx =-交于点(3,1)A .(1)求直线和双曲线的解析式.(2)直线2y kx =-与x 轴交于点B ,点P 是双曲线m y x=上的一点,过点P 作PQ y ⊥轴于Q ,且2PQ OB =,直接写出点P 的坐标.29.如图,已知二次函数y =x 2+bx +c 的图像与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图像上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.30.如图,点A(tanα,0),B(tanβ,0)在x 轴的正半轴上,点A 在点B 的左边,α、β是以线段AB 为斜边、顶点C 在x 轴上方的Rt△ABC 的两个锐角;(1)若二次函数y=-x 2-52kx+(2+2k -k 2)的图象经过A 、B 两点,求它的解析式。
2020苏州市小学数学专业素养竞赛模拟卷小学数学本试卷满分共150分考试时间120分钟注意事项:1.答题前,考生务必先将自己的姓名、学校、考试号等信息用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上,并用2B铅笔认真正确填涂考试号下方的数字。
2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,请用橡皮干净后,再选涂其它答案:答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其它笔答题。
3.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效。
一、单项选择题(本大题共30小题,每小题2分,共60分)1.教师在履行教育义务的活动中,最主要、最根本的道德责任是▲A.依法执教 B.教书育人 C.爱岗敬业 D.团结协作2.教育法律关系中两个最重要的主体是▲A.教育部门和下属学校B.教育机构和非教育机构C.教师和学生D.教育领导和教师3.实施义务教育▲①是家长对国家和社会的义务②是公民应尽的一项基本义务③是国家对人民的义务④是学生对家庭的义务A.①②③ B.①③④ C.①②④ D.②③④4.教育法规中确立的有关教育管理体制、办学体制、教育基本制度和原则等,必须符合▲A.儿童身心发展规律B.我国基本国情C.《中国人民共和国宪法》D.教育内在规律5.从教师个体职业良心形成的角度看,教师的职业良心首先会受到▲A.社会生活和群体的影响B.教育对象的影响C.教育法规的影响D.教育原则的影响6.依法执教的内容不包括▲A.要依法维护学校、教师的合法权益B.要依法贯彻执行党和国家的路线、方针和政策C.依法执教是依法治国的必然要求D.要依法贯彻落实教育教学的各项法律法规7.“教学相长”、“循序渐进”等教学原则最早出自▲A.《学记》B.《论语》C.《尚书》D.《孟子》8.认为“智力的本质也是一种适应” 的心理学家是▲A. 皮亚杰B. 格塞尔C. 赞科夫D. 维果茨基9. “干越夷貉之子,生而同声,长而异俗,教使之然也。
周末数学练习10.31 一、选择题 1.已知⊙O 的半径为5cm 若点A 到圆心O 的距离为3cm ,则点A( )A 在⊙O 内 B.在⊙O 上 C.在⊙O 外 D.无法确定2.一元二次方程2610x x --=配方后可变形为( )A.()2310x += B.()238x += C.()2310x -= D.()238x -= 3.如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,若∠BCD =40°,则∠ABD 的大小为( )A.60°B.50°C.40°D.20°第3题 第5题 第7题4.⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( )A.3B.5C.2 C.23D.255.如图,AB 为⊙O 的切线,切点为A ,连接AO 、BO ,BO 与⊙O 交于点C ,延长BO 与 ⊙O 交于点D ,连接AD.若∠ABO =36°,则∠ADC 的度数为( )A.54°B.36°C.32°D.27°6已知()()2222138x y x y ++++=,则22x y +的值为( )A.-5或1B.1C.5D.5或-17.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,维续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( )A.40海里B.60海里C.203海里D.403海里8.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°,则∠DAB 等于( )A.55°B.60°C.65°D.70°第8题 第9题 第10题9.如图,在矩形ABCD 中,AB =3,BC =5;以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )A.12B.2C.3D.4 10.如图,△AEC 中,AD ⊥BC 于点D ,AD =2,AB =4;AC =3,则△ABC 外接圆半径是( )A.1B.2C.3D.4二、填空题11.计算cos60°= .12.若关于x 的一元二次方程240x x m --=有两个不相等的实数根,则实数m 的取值范是 .13.若m 是方程22310x x --=的一个根,则2692019m m -+的值为 .14.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为 .15.如图,AC 是⊙O 的内接正六边形的一边,点B 在AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n .第14题 第15题 第16题 16.如图,点A 、B 、C 、D 、E 在⊙O 上,且AB 为50°则∠E+∠C = .17.如图,在⊙O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 .第17题 第18题18.如图,△ABC 中,AB =3cm ,以C 为圆心,1m 长为半径画⊙C ,点P 在⊙C 上移动,连接AP ,并将AP 绕点A 顺时针旋转60°至AP ,点D 是边AC 的中点,连接DP'在点P 移动过程中,DP'长度的最小值为 .三、解答题19.(1)2273x x -+= (2)()()51210x x x -+=-(3)2tan 304sin30cos 45︒+︒︒(4)()22cos30tan 451tan 60︒-︒--︒20.已知关于x 的方程225270x x m m ----= (1)若此方程的一个根为-1,求m 的值;(2)求证:无论m 取何实数,此方程都有两个不相等的实数根。
正多边形和圆、弧长和扇形的面积真题测试一、单选题⌢上的任意一点,则∠APB的大小是1.(2020·柯桥模拟)如图,正六边形ABCDEF内接于⊙O,点P是CD()A. 15°B. 30°C. 45°D. 60°2.(2020·新都模拟)如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为()A. 140°B. 70°C. 80°D. 60°3.(2020·吉林模拟)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=100°,则∠α=()A. 80°B. 100°C. 120°D. 160°4.(2020·启东模拟)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A. 1B. 2C. 3D. 65.(2020九下·中卫月考)如图,一根5米长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只羊A(羊在草地上活动),那么羊在草地上的最大活动区域面积是()平方米.A. 1712π B. 176π C. 254π D. 7712π6.(2020·无锡模拟)已知扇形的半径为6cm,圆心角为120°,则这个扇形的面积是()A. 36πcm2B. 12πcm2C. 9πcm2D. 6πcm27.(2020·南充模拟)如图A,B,C是⊙O上顺次3点,若AC,AB,BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A. 9B. 10C. 12D. 158.(2020·开平模拟)如图,正五边形ABCDE绕点A旋转了α°,当α=36°时,则∠1=()A. 72°B. 108°C. 144°D. 120°9.(2020·石家庄模拟)如图,以正五边形ABCDE的对角线BE为边,作正方形BEFG,使点A落在正方形BEFG内,则∠ABG的度数为()A. 18∘B. 36∘C. 54∘D. 72∘10.(2020·台州模拟)如图,将边长为3的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()A. S1>S2B. S1=S2C. S1<S2D. S1=π3S211.(2020·湖州模拟)如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A. 74π B. π C. 72π D. 2π12.(2020·金牛模拟)如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为32cm,BD的长为14cm,则DE⌢的长为()cm.A. 154π B. 12π C. 15π D. 36π13.(2020·河北模拟)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B , M 间的距离不可能是( )A. 0.5B. 0.6C. 0.7D. 0.814.(2019九上·温州期中)如图,△ABC 内接于⊙O ,BC=6,AC=2,∠A-∠B=90°,则⊙O 的面积为( )A. 9.6πB. 10πC. 10.8πD. 12π15.(2019·上海模拟)正六边形的半径与边心距之比为( )A. 1: √3B. √3 :1C. √3 :2D. 2: √316.(2020·宁波模拟)如图,⊙O 上有一个动点A 和一个定点B ,令线段AB 的中点是点P ,过点B 作⊙O的切线BQ ,且BQ=3,现测得 AB⌢ 的长度是 4π3 , AB⌢ 的度数是120°,若线段PQ 的最大值是m ,最小值是n ,则mn 的值是( )A. 3 √10B. 2 √13C. 9D. 1017.(2019九上·无锡月考)如图,AB 是⊙o 直径,M ,N 是 AB⌢ 上两点,C 是 MN ⌢ 上任一点,∠ACB 角平分线交⊙o 于点D ,∠BAC 的平分线交CD 于点E ,当点C 从M 运动到N 时,C 、E 两点的运动路径长之比为( )A. √2B. π2C. 32D. √5218.(2019九上·浙江期中)如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E 为⊙O上一动点,CF⊥AE于点F。
2022-2023学年第一学期九年级数学期末数学模拟试题(21)考试时间:120分钟试卷满分:150分考试范围:第1章-第8章一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2021秋•宜州区期中)下列方程中,一定是关于x的一元二次方程的是()A.ax2+bx+c=0B.2(x﹣9)2﹣(x+1)2=1C.x2++5=0D.x2+5x﹣6=x22.(3分)(2021•惠城区一模)若m,n为方程x2﹣3x﹣1=0的两根,则m+n的值为()A.1B.﹣1C.﹣3D.33.(3分)(2020•渝中区校级模拟)如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C的度数为()A.45°B.60°C.90°D.120°4.(3分)(2019秋•南通期中)已知点A与⊙O在同一平面内,⊙O的半径是3,且点A到圆心O的距离是4,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O内C.点A在⊙O上D.不能确定5.(3分)(2020•龙湾区二模)若20件外观相同的产品中有3件不合格产品,现从这20件产品中任意抽取1件进行检测,则抽到合格产品的概率是()A.B.C.D.6.(3分)(2022春•雨花区校级期末)一组数据2,1,4,x,6的平均值是4,则x的值为()A.3B.5C.6D.77.(3分)(2022•雁塔区校级模拟)在同一平面直角坐标系中,有两条抛物线关于y轴对称,且它们的顶点与原点的连线互相垂直,若其中一条抛物线的表达式为y=x2﹣4x+m,则m的值为()A.2或﹣6B.﹣2或6C.2或6D.﹣2或﹣68.(3分)(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x﹣2﹣101y0466下列结论不正确的是()A.抛物线的开口向下B.抛物线的对称轴为直线x=C.抛物线与x轴的一个交点坐标为(2,0)D.函数y=ax2+bx+c的最大值为二.填空题(共8小题,满分24分,每小题3分)9.(3分)(2021秋•崆峒区校级月考)请任写一个二次函数解析式,使这个函数的图象具备以下两个特点:①开口向上;②对称轴为y轴.这个函数可以是.10.(3分)(2022•牡丹区三模)已知方程2x2+bx+c=0的两根为2和﹣2,分解因式2x2+bx+c=.11.(3分)(2021春•两江新区期末)重庆市6月1号至6月7号,每天的最高温度的数值分别是22,18,25,27,30,32,34,则这几天最高气温温度数值的中位数是.12.(3分)(2022秋•射阳县校级月考)若圆锥的侧面积为14π,底面圆半径为2,则该圆锥母线长是.13.(3分)(2022秋•通榆县月考)抛物线y=﹣(x﹣h)2+k的部分图象如图所示,则此抛物线的顶点坐标是.14.(3分)(2022春•青岛期末)如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在阴影区域的概率是.15.(3分)(2020秋•赤峰期末)如图,已知二次函数y=ax2+bx+c的图象,其对称轴方程为x=1.下列结论;①a<0;②c<0;③=﹣1;④b2﹣4ac<0;⑤图象与x轴的另一个交点坐标是(﹣2,0);⑥当x>1时,y随x的增大而增大.其中正确的是.(填序号)16.(3分)(2020•浙江自主招生)将等边三角形(记为“雪花曲线(1)”,如图(1))每一边三等分,以居中的那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(记为“雪花曲线(2)”,如图(2)),接着对每个等边三角形凸出的部分继续作上述过程,即在每条边三等分后的中段,像图(3)那样向外画新的等边三角形.不断重复这样的过程,得到一系列的“雪花曲线”,记第n 个图形为“雪花曲线(n)”,其周长为l n,若“雪花曲线(2012)”的周长为l2012=2013,则l2013=.三.解答题(共11小题,满分102分)17.(6分)(2021秋•娄星区校级月考)(1)用直接开平方法解下列方程:9x2﹣81=0;(2)用配方法解一元二次方程:x2﹣6x﹣9=0.18.(6分)已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程的两实数根分别为x1,x2,且满足5x1+2x2=2,求二次函数y=x2﹣4x+m的图象与x轴的两个交点间的距离.19.(8分)(2017秋•交城县期中)已知二次函数.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、顶点坐标、对称轴;(2)在如图所示的直角坐标系中画出函数图象,并指出当y<0时x的取值范围;(3)当0≤x≤4时,求出y的最小值及最大值.20.(8分)(2021秋•中宁县月考)已知关于x的一元二次方程x2﹣(2m﹣3)x+m2=0.(1)当m取何值时,该方程有实数根?(2)当m=0时,用合适的方法求此时该方程的解.21.(8分)(2021•南通)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球的标号是奇数,该事件的概率为;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.22.(10分)(2021秋•聊城期末)下面的表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是分;中位数是分;(2)计算小明平时成绩的平均分;(3)计算小明平时成绩的方差;(4)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.23.(10分)(2022•岳池县模拟)如图,AB为⊙O的直径,点D为圆外一点,连接AD、BD,分别与⊙O相交于点C、E,且,过点C作CF⊥BD于点F,连接BC.(1)求证:CF是⊙O的切线;(2)若∠CBD=30°,AC=5,求阴影部分面积(结果保留π).24.(10分)(2020•锡山区一模)如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON=OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.25.(12分)(2022•双峰县一模)为了落实国务院惠农的指示精神,最近市政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为40元/千克.市场调查发现,该产品每天的销售量y(千克)与售价x(元/千克)有如下关系:y=﹣2x+200.设这种产品每天的销售利润为w(元).(1)求w与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定每天至少获得1000元的销售利润,销售价应在什么范围?26.(12分)(2022•丽水)如图,以AB为直径的⊙O与AH相切于点A,点C在AB左侧圆弧上,弦CD⊥AB交⊙O于点D,连结AC,AD.点A关于CD的对称点为E,直线CE交⊙O于点F,交AH于点G.(1)求证:∠CAG=∠AGC;(2)当点E在AB上,连结AF交CD于点P,若=,求的值;(3)当点E在射线AB上,AB=2,以点A,C,O,F为顶点的四边形中有一组对边平行时,求AE的长.27.(12分)(2021•烟台模拟)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴的负半轴交于点C,且A(1,0),sin∠OBC=.过点B作线段BC的垂线交抛物线于点D,交y轴于点E.设直线x=﹣2与直线BD相交于点M,与x轴交于点N.(1)求该抛物线的表达式;(2)试判断以点A为圆心,AD长为半径的圆与y轴的位置关系,并给出证明;(3)如图2,作直线OM.问:在(2)中的⊙A上是否存在一点P,使△OPM的面积最大?若存在,求出△OPM面积的最大值;若不存在,请说明理由.答案与解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2021秋•宜州区期中)下列方程中,一定是关于x的一元二次方程的是()A.ax2+bx+c=0B.2(x﹣9)2﹣(x+1)2=1C.x2++5=0D.x2+5x﹣6=x2解:A.ax2+3x+1=0,当a=0时不是一元二次方程,故本选项不合题意;B.2(x﹣9)2﹣(x+1)2=1是一元二次方程,故本选项符合题意;C.是分式方程,故本选项不合题意;D.x2+5x﹣6=x2,整理后不含二次项,不是一元二次方程,故本选项不合题意;故选:B.2.(3分)(2021•惠城区一模)若m,n为方程x2﹣3x﹣1=0的两根,则m+n的值为()A.1B.﹣1C.﹣3D.3解:∵m,n为方程x2﹣3x﹣1=0的两根,∴m+n=3.故选:D.3.(3分)(2020•渝中区校级模拟)如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C的度数为()A.45°B.60°C.90°D.120°解:∵AC为⊙O的直径,∴++的度数是180°,∴∠A+∠B+∠C=90°,故选:C.4.(3分)(2019秋•南通期中)已知点A与⊙O在同一平面内,⊙O的半径是3,且点A到圆心O的距离是4,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O内C.点A在⊙O上D.不能确定解:∵点A到圆心O的距离d=4,⊙O的半径r=3,∴d>r,则点A在⊙O外,故选:A.5.(3分)(2020•龙湾区二模)若20件外观相同的产品中有3件不合格产品,现从这20件产品中任意抽取1件进行检测,则抽到合格产品的概率是()A.B.C.D.解:根据题意抽到合格产品的概率是=,故选:D.6.(3分)(2022春•雨花区校级期末)一组数据2,1,4,x,6的平均值是4,则x的值为()A.3B.5C.6D.7解:∵一组数据2,1,4,x,6的平均值是4,∴(2+1+4+x+6)÷5=4,解得x=7,故选:D.7.(3分)(2022•雁塔区校级模拟)在同一平面直角坐标系中,有两条抛物线关于y轴对称,且它们的顶点与原点的连线互相垂直,若其中一条抛物线的表达式为y=x2﹣4x+m,则m的值为()A.2或﹣6B.﹣2或6C.2或6D.﹣2或﹣6解:∵一条抛物线的函数表达式为y=x2﹣4x+m,∴这条抛物线的顶点为(2,m﹣4),∴关于y轴对称的抛物线的顶点(﹣2,m﹣4),∵它们的顶点与原点的连线互相垂直,∴2×[22+(m﹣4)2]=42,整理得m2﹣8m+12=0,解得m=2或m=6,∴m的值是2或6.故选:C.8.(3分)(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x﹣2﹣101y0466下列结论不正确的是()A.抛物线的开口向下B.抛物线的对称轴为直线x=C.抛物线与x轴的一个交点坐标为(2,0)D.函数y=ax2+bx+c的最大值为解:由表格可得,,解得,∴y=﹣x2+x+6=﹣(x﹣)2+=(﹣x+3)(x+2),∴该抛物线的开口向下,故选项A正确,不符合题意;该抛物线的对称轴是直线x=,故选项B正确,不符合题意,∵当x=﹣2时,y=0,∴当x=×2﹣(﹣2)=3时,y=0,故选项C错误,符合题意;函数y=ax2+bx+c的最大值为,故选项D正确,不符合题意;故选:C.二.填空题(共8小题,满分24分,每小题3分)9.(3分)(2021秋•崆峒区校级月考)请任写一个二次函数解析式,使这个函数的图象具备以下两个特点:①开口向上;②对称轴为y轴.这个函数可以是y=2x2﹣1(答案不唯一).解:∵抛物线的对称轴为y轴,∴该抛武线的解析式为y=ax2+c,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1(答案不唯一).10.(3分)(2022•牡丹区三模)已知方程2x2+bx+c=0的两根为2和﹣2,分解因式2x2+bx+c=2(x+2)(x﹣2).解:∵方程2x2+bx+c=0的两根为2和﹣2,∴2x2+bx+c=2(x+2)(x﹣2),故答案为:2(x+2)(x﹣2).11.(3分)(2021春•两江新区期末)重庆市6月1号至6月7号,每天的最高温度的数值分别是22,18,25,27,30,32,34,则这几天最高气温温度数值的中位数是27.解:将这组数据从小到大排列为:18,22,25,27,30,32,34,处在中间位置的一个数是27,因此中位数是27,故答案为:27.12.(3分)(2022秋•射阳县校级月考)若圆锥的侧面积为14π,底面圆半径为2,则该圆锥母线长是7.解:设圆锥的母线长为l,设由题意得,14π=πl×2,解得,l=7,故答案为:7.13.(3分)(2022秋•通榆县月考)抛物线y=﹣(x﹣h)2+k的部分图象如图所示,则此抛物线的顶点坐标是(1,4).解:把(0,3)代入y=﹣(x﹣1)2+k,3=﹣1+kk=4,∴抛物线的顶点坐标是(1,4).故答案为:(1,4).14.(3分)(2022春•青岛期末)如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在阴影区域的概率是.解:根据题意可得:指针落在阴影区域的概率是=.故答案为:.15.(3分)(2020秋•赤峰期末)如图,已知二次函数y=ax2+bx+c的图象,其对称轴方程为x=1.下列结论;①a<0;②c<0;③=﹣1;④b2﹣4ac<0;⑤图象与x轴的另一个交点坐标是(﹣2,0);⑥当x>1时,y随x的增大而增大.其中正确的是①③.(填序号)解:由图象可知:抛物线开口向下,交y轴的正半轴,∴a<0,故①正确,②错误;∵抛物线对称轴为直线x=1,∴﹣=1,∴=﹣1,故③正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故④错误;∵(3,0)关于直线x=1的对称点为(﹣1,0),∴图象与x轴的另一个交点坐标是(﹣1,0),故⑤错误;当x>1时,由图象可知y随x的增大而减小,故⑥错误;正确的是①③.故答案为①③.16.(3分)(2020•浙江自主招生)将等边三角形(记为“雪花曲线(1)”,如图(1))每一边三等分,以居中的那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(记为“雪花曲线(2)”,如图(2)),接着对每个等边三角形凸出的部分继续作上述过程,即在每条边三等分后的中段,像图(3)那样向外画新的等边三角形.不断重复这样的过程,得到一系列的“雪花曲线”,记第n 个图形为“雪花曲线(n)”,其周长为l n,若“雪花曲线(2012)”的周长为l2012=2013,则l2013=2684.解:设图(1)中等边三角形的边长为a,∴第一个三角形的周长=3a,观察发现:第二个图形在第一个图形的周长的基础上多了它的周长的,第三个在第二个的基础上,多了其周长的.第二个周长:×3a,第三个周长:=×3a;第四个周长:=×3a;…故第n个图形的周长是第一个周长的()n﹣1倍,即周长是3a×,∵“雪花曲线(2012)”的周长为l2012=2013,即2013=3a×,则l2013=3a×=2013×=2684,故答案为:2684.三.解答题(共11小题,满分102分)17.(6分)(2021秋•娄星区校级月考)(1)用直接开平方法解下列方程:9x2﹣81=0;(2)用配方法解一元二次方程:x2﹣6x﹣9=0.解:(1)9x2﹣81=0,x2=9,∴x=±3,∴x1=3,x2=﹣3;(2)x2﹣6x﹣9=0,x2﹣6x=9,x2﹣6x+9=9+9,即(x﹣3)2=18,∴x﹣3=±3,∴x1=3+3,x2=3﹣3.18.(6分)已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程的两实数根分别为x1,x2,且满足5x1+2x2=2,求二次函数y=x2﹣4x+m的图象与x轴的两个交点间的距离.解:(1)∵方程x2﹣4x+m=0有实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4m≥0,∴m≤4.(2)∵方程x2﹣4x+m=0有两个实数根x1,x2,∴x1+x2=4.∵5x1+2x2=2,x1+x2=4,∴x1=﹣2,x2=6,∴二次函数y=x2﹣4x+m的图象与x轴的两个交点间的距离为|x1﹣x2|=|﹣2﹣6|=8.19.(8分)(2017秋•交城县期中)已知二次函数.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、顶点坐标、对称轴;(2)在如图所示的直角坐标系中画出函数图象,并指出当y<0时x的取值范围;(3)当0≤x≤4时,求出y的最小值及最大值.解:(1)=,开口向上,顶点为(3,),对称轴为:直线x=3,(2)如图所示,由图可知,当2<x<4时,y<0;(3)当x=0时,y有最大值4,当x=3时,y有最小值﹣.20.(8分)(2021秋•中宁县月考)已知关于x的一元二次方程x2﹣(2m﹣3)x+m2=0.(1)当m取何值时,该方程有实数根?(2)当m=0时,用合适的方法求此时该方程的解.解:(1)△=(2m﹣3)2﹣4m2≥0,整理得﹣12m+9≥0,解得,所以,当时,方程有实数根;(2)当m=0时,方程为x2+3x=0,∴x(x+3)=0,∴x=0或x+3=0,∴x1=0,x2=﹣3.21.(8分)(2021•南通)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球的标号是奇数,该事件的概率为;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.解:(1)随机摸取一个小球的标号是奇数,该事件的概率为=,故答案为:;(2)画树状图如图:共有16种等可能的结果,两次取出小球标号的和等于5的结果有4种,∴两次取出小球标号的和等于5的概率为=.22.(10分)(2021秋•聊城期末)下面的表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是90分;中位数是90分;(2)计算小明平时成绩的平均分;(3)计算小明平时成绩的方差;(4)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.解:(1)成绩从大到小排列为96,92,90,90,88,86,则中位数是:=90分,众数是90分,故答案是:90,90;(2)小明平时成绩的平均分为=89(分);(3)小明平时成绩的方差为×[(88﹣89)2+(92﹣89)2+(90﹣89)2+(86﹣89)2]=5;(4)89×10%+90×30%+96×60%=93.5(分).答:小明的总评分应该是93.5分.23.(10分)(2022•岳池县模拟)如图,AB为⊙O的直径,点D为圆外一点,连接AD、BD,分别与⊙O相交于点C、E,且,过点C作CF⊥BD于点F,连接BC.(1)求证:CF是⊙O的切线;(2)若∠CBD=30°,AC=5,求阴影部分面积(结果保留π).(1)证明:连接OC,∵CF⊥BD,∴∠CFD=90°,∵,∴∠ABC=∠CBD,∵OC=OB,∴∠ABC=∠OCB,∴∠OCB=∠CBD,∴OC∥BD,∴∠OCF=∠CFD=90°,∵OC是圆O的半径,∴CF是⊙O的切线;(2)∵AB为⊙O的直径,∴∠ACB=90°,∵∠CBD=30°,∴∠ABC=∠CBD=30°,∴∠AOC=2∠ABC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠CAB=60°,AO=AC=5,∴BC=AC tan60°=5,∴△ABC的面积=AC•BC=×5×5=,∵OA=OB,∴△AOC的面积=△ABC的面积=,∴阴影部分面积=扇形AOC的面积﹣△AOC的面积=﹣=,答:阴影部分面积为:.24.(10分)(2020•锡山区一模)如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON=OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6﹣3t,ON=t.若△ABO∽△MNO,则=,即=,解得t=1.若△ABO∽△NMO,则=,即=,解得t=1.8.综上,当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似.(2)①当0<t<2时,在ON的延长线的截取ND=OM,连接CD、CN、CM,如图所示:∵直线y=x与x轴的夹角为450,∴OC平分∠AOB.∴∠AOC=∠BOC.∴CN=CM.又∵在⊙O中∠CNO+∠CMO=180°,∠DNC+∠CNO=180°,∴∠CND=∠CMO.∴△CND≌△CMO(SAS).∴CD=CO,∠DCN=∠OCM.又∵∠AOB=90°,∴MN为⊙O的直径,∴∠MCN=90°.∴∠OCM+∠OCN=90°.∴∠DCN+∠OCN=90°.∴∠OCD=90°.又∵CD=CO,∴OD=OC.∴ON+ND=OC.∴OM+ON=OC.②当t>2时,过点C作CD⊥OC交ON于点D,连接CM、CN,如图所示:∵∠COD=45°,∴△CDO为等腰直角三角形,∴OD=OC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM(SAS).∴DN=OM.又∵OD=OC,∴ON﹣DN=OC.∴当2<t<3时,ON﹣OM=OC;当t>3时,OM﹣ON=OC.当t=3时,OM=ON.25.(12分)(2022•双峰县一模)为了落实国务院惠农的指示精神,最近市政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为40元/千克.市场调查发现,该产品每天的销售量y(千克)与售价x(元/千克)有如下关系:y=﹣2x+200.设这种产品每天的销售利润为w(元).(1)求w与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定每天至少获得1000元的销售利润,销售价应在什么范围?解:(1)由题意得,w与x之间的函数关系式是w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,∵,解得:40<x<100,∴w与x之间的函数关系式是w=﹣2x2+280x﹣8000(40<x<100);(2)由(1)可知,w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,w取得最大值1800,答:当售价定为70元/千克时,每天的销售利润最大,最大利润为1800元;(3)由(1)可得,w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,令﹣2(x﹣70)2+1800=1000,解得x1=50,x2=90,∵﹣2(x﹣70)2+1800≥1000,∴50≤x≤90,答:至少获得1000元的销售利润,销售价应在50≤x≤90这个范围内.26.(12分)(2022•丽水)如图,以AB为直径的⊙O与AH相切于点A,点C在AB左侧圆弧上,弦CD⊥AB交⊙O于点D,连结AC,AD.点A关于CD的对称点为E,直线CE交⊙O于点F,交AH于点G.(1)求证:∠CAG=∠AGC;(2)当点E在AB上,连结AF交CD于点P,若=,求的值;(3)当点E在射线AB上,AB=2,以点A,C,O,F为顶点的四边形中有一组对边平行时,求AE的长.(1)证明:∵AH是⊙O的切线,∴AH⊥AB,∴∠GAB=90°,∵A,E关于CD对称,AB⊥CD,∴点E在AB上,CE=CA,∴∠CEA=∠CAE,∵∠CAE+∠CAG=90°,∠AEC+∠AGC=90°,∴∠CAG=∠AGC;(2)解:∵AB是直径,AB⊥CD,∴=,∴AC=AD,∴∠ACD=∠ADC,∵∠ACD=∠ECD,∴∠ADC=∠ECD,∴CF∥AD,∴=,∵CE=AC=AD,∴=,∵=,∴=,∴=;(3)解:如图1中,当OC∥AF时,连接OC,OF.设∠AGF=α,则∠CAG=∠ACD=∠DCF=∠AFG=α,∵OC∥AF,∴∠OCF=∠AFC=α,∵OC=OA,∴∠OCA=∠OAC=3α,∵∠OAG=90°,∴4α=90°,∴α=22.5°,∵OC=OF,OA=OF,∴∠OFC=∠OCF=∠AFC=22.5°,∴∠OF A=∠OAF=45°,∴AF=OF=OC,∵OC∥AF,∴==,∵OA=1,∴AE=×1=2﹣.如图2中,当OC∥AF时,连接OC,AD,设CD交AE点M.设∠OAC=α,∵OC∥AF,∴∠F AC=∠OCA=α,∴∠COE=∠F AE=2α,∵∠AFG=∠D,∠AGF=∠D,∴∠AGC=∠AFG=∠AEC+∠F AE=3α,∵∠AGC+∠AEC=90°,∴4α=90°,∴α=22.5°,2α=45°,∴△COM是等腰直角三角形,∴OC=OM,∴OM=,AM=+1,∴AE=2AM=2+;如图3中,当AC∥OF时,连接OC,OF.设∠AGF=α,∵∠ACF=∠ACD+∠DCF=2α,∵AC∥OF,∴∠CFO=∠ACF=2α,∴∠CAO=∠ACO=4α,∵∠AOC+∠OAC+∠ACO=180°,∴10α=180°,∴α=18°,∴∠COE=∠ECO=∠CFO=36°,∴△OCE∽△FCO,∴OC2=CE×CF,∴1=CE(CE+1),∴CE=AC=OE=,∴AE=OA﹣OE=.如图4中,当AC∥OF时,连接OC,OF,BF.设∠F AO=α,∵AC∥OF,∴∠CAF=∠OF A=α,∴∠COF=∠BOF=2α,∵AC=CE,∴∠AEC=∠CAE=∠EFB,∴BF=BE,由△OCF≌△OBF,∴CF=BF=BE,∵∠BEF=∠COF,∴△COF∽△CEO,∴OC2=CE•CF,∴BE=CF=,∴AE=AB+BE=.综上所述,满足条件的AE的长为2﹣或2+或或,27.(12分)(2021•烟台模拟)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴的负半轴交于点C,且A(1,0),sin∠OBC=.过点B作线段BC的垂线交抛物线于点D,交y轴于点E.设直线x=﹣2与直线BD相交于点M,与x轴交于点N.(1)求该抛物线的表达式;(2)试判断以点A为圆心,AD长为半径的圆与y轴的位置关系,并给出证明;(3)如图2,作直线OM.问:在(2)中的⊙A上是否存在一点P,使△OPM的面积最大?若存在,求出△OPM面积的最大值;若不存在,请说明理由.解:(1)∵y=ax2+bx﹣3,∴OC=3.∵sin∠OBC=,∴∠OBC=45°.∴OB=OC=3.∴B(3,0).∵A(1,0),∴,∴.∴y=﹣x2+4x﹣3.(2)相交.证明:∵BD⊥BC,∴∠OBE=45°.∴OE=OB=3.∴E(0,3 ).设直线BE为y=kx+t,∴.∴,∴y=﹣x+3,联立.解得,.∴D(2,1).∴AD==,∵AD>OA,∴以点A为圆心,AD长为半径的圆与y轴相交.(3)存在,如图,过A点作OM的垂线交⊙A于第一象限内点P,垂足为H.此时,△OPM的面积最大.由,得.∴M(﹣2,5).OM=,∵∠ONM=∠OHA=90°,∠MON=∠AOH,∴△ONM∽△OHA.∴.∴AH=.∵AP=,∴PH=+,∴S△OPM=OM⋅PH=××(+)=.。
2020—2021学年第一学期九年级期末学业水平质量检测数学试卷一、选择题(本题共8个小题,每小题2分,共16分.每小题只有一个正确选项)1.如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②AE DEAB BC=;③AD AEAC AB=. 使△ADE与△ACB一定相似的是A.①②B.②③C.①③D.①②③2. 如图,A、B、C是半径为4的⊙O上的三点. 如果∠ACB=45°,那么AB的长为A.πB.2πC.3πD.4π3. 小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地. 如果他再抛第5次,那么硬币正面朝上的概率为A.1 B.12C.14D.154.如图,数轴上有A、B、C三点,点A、C关于点B对称,以原点O为圆心作圆,如果点A、B、C分别在⊙O外、⊙O内、⊙O上,那么原点O的位置应该在A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点5. 如图,P A和PB是⊙O的切线,点A和点B为切点,AC是⊙O的直径. 已知∠P=50°,那么∠ACB的大小是A.65°B.60°C.55°D.50°6. 如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C,测得∠α=30°,∠β=45°,量得BC长为80米.如果设河的宽度为x米,那么下列关系式中正确的是A.1802xx=+B.180xx=+C.802xx=+D.803xx=+cCBA7. 体育节中,某学校组织九年级学生举行定点投篮比赛, 要求每班选派10名队员参加.下面是一班和二班 参赛队员定点投篮比赛成绩的折线统计图(每人投 篮10次,每投中1次记1分),请根据图中信息判断:①二班学生比一班学生的成绩稳定;②两班学生成绩的中位数相同;③两班学生成绩的众数相同. 上述说法中,正确的序号是 A .①② B .①③C .②③D .①②③8. 运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线可以看作是一条抛物线,不考虑空气阻力,足球距离地面的高度y (单位:m )与足球被踢出后经过的时间x (单位:s )近似满足函数关系()20y ax bx c a =++≠.如图记录了3个时刻的数据,根据函数模型和所给数据,可推断出足球飞行到最高点时,最接近的时刻x 是 A .4 B .4.5C .5D .6二、填空题(本题共8个小题,每小题2分,共16分)9. 如图,线段BD 、CE 相交于点A ,DE ∥BC .如果AB =4,AD =2,DE =1.5, 那么BC 的长为_________.10.在平面直角坐标系xOy 中,二次函数()214y x =--+的图象如图,将二次函数()214y x =--+的图象平移,使二次函数()214y x =--+的图象的最高点与坐标原点重合,请写出一种平移方法:__________________________________________.11.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC =5cm ,弦DE =8cm ,则直尺的宽度为____cm.12. “阅读让自己内心强大,勇敢面对抉择与挑战.”某校倡导学生读书,下面的表格是该校九年级学生本学期内阅读课外书籍情况统计表. 请你根据统计表中提供的信息,求出表中a 、b 的值:a = ,b = .13.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y 美元. 设2017年到2019年该地区居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是________________________. 图书种类 频数 频率 科普常识 210 b 名人传记 204 0.34 中外名著 a 0.25 其他360.06x s ()y m ()182014O yx4O 1EDBCA二班一班成绩/分109876109876543201514. 如图,直角三角形纸片ABC ,90ACB ∠=︒,AC 边长为10 cm. 现从下往上依次裁剪宽为4 cm 的矩形纸条, 如果剪得第二张矩形纸条恰好是正方形,那么BC 的长 度是____cm .15. 已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出一组满足条件的a ,b 的值:a =______,b =________.16. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线a 和直线外一点P . 求作:直线a 的垂线,使它经过P . 作法:如图2.(1)在直线a 上取一点A ,连接P A ; (2)分别以点A 和点P 为圆心,大于12AP 的长为半径 作弧,两弧相交于B ,C 两点,连接BC 交P A 于点D ; (3)以点D 为圆心,DP 为半径作圆,交直线a 于点E (异于点A ),作直线PE .所以直线PE 就是所求作的垂线.请回答:该尺规作图的依据是_____________________________________________. 三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17.计算:(4cos30π1︒+--.18. 已知:如图,AB 为⊙O 的直径,OD ∥AC . 求证:点D 平分BC .19.如图,在□ABCD 中,连接DB ,F 是边BC 上一点,连接DF 并延长,交AB=∠A . (1)求证:△BDF ∽△BCD ;(2)如果BD =9BC =,求ABBE的值. 图1aaP20. 如图,菱形ABCD 的对角线交于点O ,点E 是菱形外一点,DE ∥AC ,CE ∥BD . (1)求证:四边形DECO 是矩形;(2)连接AE 交BD 于点F ,当∠ADB =30°,DE=2时,求AF 的长度.21.如图,直线2y x =+与反比例函数()00ky k x x=>>,的图象交于点A (2,m ),与y 轴交于点B .(1)求m 、k 的值;(2)连接OA ,将△AOB 沿射线BA 方向平移,平移后A 、O 、B 的对应点分别为A'、O'、B',当点O'恰好落在反比例函数()0ky k x=>的图象上时,求点O' 的坐标; (3)设点P 的坐标为(0,n )且04n <<,过点P 作平行于x 轴的直线与直线2y x =+和反比例函数()0ky k x=>的图象分别交于点C ,D ,当C 、D 间距离小于或等于4时,直接写出n 的取值范围.22.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,连接CD ,过点C 作CE ⊥DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点. (1)求证:CF 是⊙O 的切线; (2)当185BD=,3sin 5F=时,求OF 的长.23. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每名被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有_______人,扇形统计图中α的度数是_______; (2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或画树状图法求出选中书法与乐器组合在一起的概率.24.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,30CAB ∠=︒,D 是直径AB 上一动点,连接CD 并过点D 作CD 的垂线,与⊙O 的其中一个交点记为点E (点E 位于直线CD 上方或左侧),连接EC .已知AB =6 cm ,设A 、D 两点间的距离为x cm ,C 、D 两点间的距离为1y cm ,E 、C 两点间的距离为2y cm . 小雪根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小雪的探究过程:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值,请将表格补充完整; x /cm 0 1 2 3 4 5 61y /cm5.20 4.36 3.60 2.65 2.65 2y /cm5.204.564.224.244.775.606.00 (2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y ),(x ,y ),并画出函数y 的图象;y 2cm6543学生选修课程条形统计图学生选修课程扇形统计图25. 在平面直角坐标系xOy 中,抛物线()240y ax ax m a =-+≠与x 轴的交点为A 、B ,(点A 在点B 的左侧),且AB =2. (1)求抛物线的对称轴及m 的值(用含字母a 的代数式表示);(2)若抛物线()240y ax ax m a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,求a 的取值范围;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接 写出a 的取值范围.26. 如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF ⊥BC ,且FE =FC (CE <CB ),连接CE 、AE ,点G 是AE 的中点,连接FG .(1)用等式表示线段BF 与FG 的数量关系是___________________;(2)将图1中的△CEF 绕点C 按逆时针旋转,使△CEF 的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是AE 的中点,连接FG 、DF .①在图2中,依据题意补全图形; ②求证:DF =.图2图127. 在平面直角坐标系xOy中,⊙C的半径为r,点P与圆心C不重合,给出如下定义:若在⊙C上存在一点M,使30MPC∠=︒,则称点P为⊙C的特征点.(1)当⊙O的半径为1时,如图1.①在点P1(-1,0),P2(1,P3(3,0)中,⊙O的特征点是______________.②点P在直线y b=+上,若点P为⊙O的特征点,求b的取值范围.(2)如图2,⊙C的圆心在x轴上,半径为2,点A(-2,0),B(0,.若线段AB上的所有点都是⊙C的特征点,直接写出圆心C的横坐标m的取值范围.2020—202021学年第一学期九年级期末学业水平质量检测数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 3 10. 向左平移1个单位,再向下平移4个单位(答案不唯一) 11. 312. 150,0.3513. ()23001y x =+ 14. 20 15. 1,2(答案不唯一) 16. 到线段两个端点距离相等的点在这条线段的垂直平分线上,直径所对的圆周角是直角,两点确定一条直线三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17. 解:原式=411+-, ………………… 4分 =11+-,=0. ………………… 6分18. 证明:连接CB . ………………… 1分∵AB 为⊙O 的直径,∴90ACB ∠=︒. ………………… 3分 ∵OD ∥AC ,∴OD ⊥CB ,. …………………5分 ∴点D 平分BC . ………………… 6分 另证:可以连接OC 或AD .19. (1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AE ,A C ∠=∠,AB =DC . ………………… 1分 ∵EDB A ∠=∠,∴EDB C ∠=∠. ………………… 2分 ∵DBF CBD ∠=∠,∴△BDF ∽△BCD . ………………… 3分(2)解:∵△BDF ∽△BCD ,∴BF BDBD BC =. ………………… 4分9=.∴5BF=. …………………5分∵DC∥AE,∴△DFC∽△EFB.∴CF DCBF BE=.∴45ABBE=. …………………6分20. (1)证明:∵四边形ABCD是菱形,∴AC⊥BD. ………………1分∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形.∴四边形DECO是矩形. ………………2分(2)解:∵四边形ABCD是菱形,∴AO OC=.∵四边形DECO是矩形,∴DE OC=.∴2DE AO==. ………………3分∵DE∥AC,∴OAF DEF∠=∠.∵AFO EFD∠=∠,∴△AFO≌△EFD.∴OF DF=. ………………4分在Rt△ADO中,tanOAADBDO∠=.∴2DO=.∴DO=………………5分∴FO=∴AF===. ………………6分方法二:∴△AFO≌△EFD.在Rt △ACE 中,AC =4,CE =OD=∴AE=∴AF =12AE. 21. 解:(1)∵直线2y x =+过点A (2,m ),∴224m =+=. ……………… 1分 ∴点A (2,4). 把A (2,4)代入函数ky x=中, ∴42k =. ∴8k =. ……………… 2分 (2)∵△AOB 沿射线BA 方向平移,∴直线OO' 的表达式为y x =. ……………… 3分∴,8y x y x =⎧⎪⎨=⎪⎩.解得x =. ……………… 4分 ∴点O'的坐标为(. ……………… 5分(3)24n <≤. ……………… 6分22. (1)证明:连接OC .∵CB CB =,∴2BOC BAC ∠=∠. ……………… 1分 ∵∠ABD =2∠BAC , ∴BOC ABD ∠=∠.∴BD ∥OC . ……………… 2分 ∵CE ⊥DB ,∴CE ⊥OC . ……………… 3分 ∴CF 是⊙O 的切线.(2)解:连接AD .∵AB 为⊙O 的直径,∴BD ⊥AD . ∵CE ⊥DB , ∴AD ∥CF .在Rt △ABD 中, ∴3sin sin 5BD F=BAD AB ∠==. ∴18355AB =. ∴6AB =. ……………… 5分 ∴3OC =. 在Rt △COF 中, ∴3sin 5OC F OF ==. ∴335OF =. ∴5OF =. ……………… 6分 另解:过点O 作OG ⊥DB 于点G .23. 解:(1)40,108︒; ……………… 2分 (2)条形统计图补充正确; ……………… 4分 (3)列表法或画树状图正确: ……………… 5分∴P (AC )=126=. ……………… 6分 24. 解:(1)3,3 ……………… 2分(2) ……………… 4分 (3)4.5 或6 ……………… 6分25.解:(1)对称轴为直线422ax a-=-=. ……………… 1分 ∵AB =2,点A 在点B 的左侧,∴A ()10,,B ()30, 把A (1,0)代入()240y ax ax m a =-+≠中,y 2cm 65432∴3m a =. ……………… 2分(2)∵抛物线()2430y ax ax a a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,∴0a <. ……………… 3分当抛物线()2430y ax ax a a =-+≠经过点(0,-1)时,可得13a =-. ∴a 的取值范围是103a -<<. ……………… 4分 (3)32a -<-≤或2<3a ≤. ……………… 6分26. (1)BF =. ……………… 1分(2)①依据题意补全图形; ……………… 3分②证明:如图,连接BF 、GB .∵四边形ABCD 是正方形,∴AD =AB ,90ABC BAD ∠=∠=︒,AC 平分BAD ∠. ∴45BAC DAC ∠=∠=︒. 在△ADF 和△ABF 中,AD AB DAC BAC AF AF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△ABF . ……………… 4分∴DF BF =.∵EF ⊥AC ,90ABC ∠=︒,点G 是AE 的中点,∴AG EG BG FG ===. ……………… 5分 ∴点A 、F 、E 、B 在以点G 为圆心,AG 长为半径的圆上. ∵BF BF =,45BAC ∠=︒,∴290BGF BAC ∠=∠=︒. ……………… 6分 ∴△BGF 是等腰直角三角形.∴BF =.∴DF =. ……………… 7分27. 解:(1) P 1,P 2.……………… 2分②当0b >时,设直线y b =+与以2为半径的⊙O 相切于点C ,与y 轴交于点E ,与x 轴交于点F . ∴E (0,b ),F,0),OC ⊥EF .∴3tan OF FEO OE b ∠===. ∴30FEO ∠=︒. (3)∵1sin 2OC FEO OE ∠==,∴212b =. ∴4b =. ……………… 4分 当0b <时,由对称性可知:4b =-. ……………… 5分 ∴b 的取值范围是44b -≤≤. ……………… 6分 (2)∴m 的取值范围为22m -<≤. ……………… 7分。
第二十一章一元二次方程实际问题与一元二次方程一、基础巩固1.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程()A.1+x=225B.1+x2=225C.(1+x)2=225D.1+(1+x2)=2252.某超市今年一月份的营业额为50万元,三月份的营业额为72万元,则二、三两个月的营业额每月平均增长率是()A.10%B.15%C.20%D.25%3.《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线长恰好相等.问门高、宽和对角线的长各是多少?设门对角线的长为x尺,下列方程符合题意的是()A.(x+2)2+(x﹣4)2=x2B.(x﹣2)2+(x﹣4)2=x2C.x2+(x﹣2)2=(x﹣4)2D.(x﹣2)2+x2=(x+4)24.近年来,快速业成为我国经济的一匹“黑马“,2018年我国快递业务量为507亿件,2020年快递量将达到700亿件,设快递量平均每年增长率为x.则下列方程中正确的是()A.507(1+x)=700B.507(1+2x)=700C.507(1+x)2=700D.700(1﹣x)2=5075.在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为()A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=50006.如图,在宽为22m、长为30m的矩形地面上修建两条宽度相同的道路,余下部分作为耕地,若耕地面积需要560m2,则修建的路宽应为()A.1m B.1.5m C.2D.2.5m7.飞机着陆后滑行的距离y(单位:m)关于滑行时间以(单位:)的函数解析式是y=6t﹣t2.在飞机着陆滑行中,滑行最后的150m所用的时间是()s.A.10B.20C.30D.10或308.2018年8月份,我省大型企业集团的资产总额已达到11906万元,同比2017年8月增长了19%,下列说法:①2017年8月份我省大型企业集团的资产总额为11906(1﹣19%)万元;②2017年8月份我省大型企业集团的资产总额为万元;③若2018年9月和10月这两个月资产总额按2%的增长率环比增长,则2018年10月份我省大型企业集团的资产总额将达到11906(1+2%)2万元.其中正确的是()A.②③B.①③C.①②③D.①②9.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口9万人,通过社会各界的努力,2019年底贫困人口减少至1万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意列方程得﹣.10.已知两个数的差等于2,积等于15,则这两个数中较大的是.11.如图,从一块矩形铁片中间截去一个小矩形,使剩下部分四周的宽度都等于x,且小矩形的面积是原来矩形面积的一半,则x的值为.12.如图,在宽为4m、长为6m的矩形花坛上铺设两条同样宽的石子路,余下部分种植花卉,若种植花卉的面积15m2,则铺设的石子路的宽应为m.13.将一块面积为120m2的矩形菜地的长减少2m,它就变成了正方形,求原菜地的长.14.某汽车公司今年8月份销售6000辆汽车,10月份销售汽车数量比8月份多615辆.求该公司9月份、10月份销售汽车数量的月平均增长率.15.某省2017年有绿地面积9万公顷,该省近几年不断增加绿地面积,2019年达到12.96万公顷.(1)求该省2017至2019年绿地面积的年平均增长率;(2)若年增长率保持不变,2020年该省绿地面积能否达到16万公顷?请说明理由.16.如图,用长33米的竹篱笆围成一个矩形院墙,其中一面靠墙,墙长15米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x米,院墙的面积为S平方米.(1)直接写出S与x的函数关系式;(2)若院墙的面积为143平方米,求x的值;(3)若在墙的对面再开一个宽为a(a<3)米的门,且面积S的最大值为165平方米,求a的值.二、拓展提升17.一家蔬菜公司计划到某绿色蔬菜基地收购A,B两种蔬菜共140吨,预计两种蔬菜销售后获利的情况如表所示:销售品种A种蔬菜B种蔬菜每吨获利(元)12001000其中A种蔬菜的5%,B种蔬菜的3%须运往C市场销售,但C市场的销售总量不超过5.8吨.设销售利润为W元(不计损耗),购进A种蔬菜x吨.(1)求W与x之间的函数关系式;(2)将这140吨蔬菜全部销售完,最多可获得多少利润?(3)由于受市场因素影响,公司进货时调查发现,A种蔬菜每吨可多获利100元,B种蔬菜每吨可多获利m(200<m<400)元,但B种蔬菜销售数量不超过90吨.公司设计了一种获利最大的进货方案,销售完后可获利179000元,求m的值.18.商店销售某种利润率为50%的商品,现在的售价为30元/千克,每天可卖100千克,现准备对价格进行调整,由实际销售经验可知,售价每涨1元销售量要少卖10千克,设涨价后的销专单价为x(元/千克),且物价局规定每千克的利润不低于12元且不高于18元.(1)该商品的购进价格是每千克多少元?(2)若商店某天的利润为750元,求售价为多少元?(3)求该商店每天销售这种商品的最大利润.19.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批康乃馨,经分析上一年的销售情况,发现这种康乃馨每天的销售量y(支)是销售单价x(元)的一次函数,已知销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.(1)求这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式;(2)若按去年方式销售,已知今年这种康乃馨的进价是每支5元,商家若想每天获得42元的利润,销售单价要定为多少元?(3)在(2)的条件下,当销售单价x为何值时,花店销售这种康乃馨每天获得的利润最大?并求出获得的最大利润.20.某商店经销A、B两种商品,现有如下信息:信息1:A、B两种商品的进货单价之和是3元;信息2:A商品零售单价比进货单价多1元,B商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买A商品3件和B商品2件,共付12元.请根据以上信息,解答下列问题:(1)求A、B两种商品的零售单价;(2)该商店平均每天卖出A商品500件和B商品1500件.经调查发现,A种商品零售单价每降0.1元,A种商品每天可多销售100件.商店决定把A商品的零售单价下降m(m>0)元,B商品的零售单价和销量都不变,在不考虑其他因素的条件下,当m为多少时,商品每天销售A、B两种商品获取的总利润为2000元?。
中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+52.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC 上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.9.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2 B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b210.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)二.填空题(共8小题,满分24分,每小题3分)11.函数y=中,自变量x的取值范围是.12.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.13.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.14.已知a2+a﹣1=0,则a3+2a2+2018=.15.如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:.16.一组按规律排列的式子:,﹣,,﹣,…(a≠0),其中第10个式子是.17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为.三.解答题(共10小题,满分96分)19.(10分)(1)计算:(﹣1)(+1)+(﹣1)0﹣(﹣)﹣2.(2)化简:.(3)解方程:.20.(8分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.(8分)一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?22.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m<70 38 0.3870≤m<80 a 0.3280≤m<90 b c90≤m≤100 10 0.1合计 1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(8分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.25.(9分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN 绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.(1)求证:△ABM∽△NDA;(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?27.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC 于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.28.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y 轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.文昌实验中学中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是﹣0.6,故选:B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.6.【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.【解答】解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a﹣2>b﹣2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.【点评】考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D是线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴,解得:,∴E点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二.填空题(共8小题,满分24分,每小题3分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.13.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=3cm,DH=DE=2cm.∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm.∴六边形的周长为1+3+3+2+4+2=15cm.故答案为:15cm.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是:序号的3倍减去1,据此即可求解.【解答】解:∵=(﹣1)1+1•,﹣=(﹣1)2+1•,=(﹣1)3+1•,…第10个式子是(﹣1)10+1•=.故答案是:.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,∴该函数的对称轴为直线x=﹣1,∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,∴a<0,当x=﹣1时,y=7,∴7=a(x+1)2+3a2﹣a+3,解得,a1=﹣1,a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共10小题,满分96分)19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣1+1﹣9,然后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;(3)先去分母得到整式方程,再解整式方程,然后检验即可.【解答】解:(1)原式=3﹣1+1﹣9=﹣6;(2)原式=+•=+=;(4)x(x+2)+6(x﹣2)=(x﹣2)(x+2),x2+2x+6x﹣12=x2﹣4,x=1,经检验,x=1是原方程的解.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x<4在数轴上表示如下:所以,原不等式组的正整数解是1,2,3.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.22.【分析】(1)依据1﹣0.38﹣0.32﹣0.1,即可得到c的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【解答】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.【分析】连接OD,设⊙O的半径为r,则OE=r﹣2,再根据圆周角定理得出∠DOE=60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE的长,进而可得出结论.【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r﹣2),解得r=4;∴OE=4﹣2=2,∴DE===2,∴CD=2DE=4.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:∵四边形BMND为矩形,∴BM=DN,∵△ABM∽△NDA,∴=,∴BM2=AB2,∴BM=AB,∴∠BAM=∠BMA==22.5°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y (件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
初中数学2020年竞赛复习模拟卷一.选择题(共8小题,满分24分,每小题3分)1.24323(21)(21)(21)1++⋯++计算结果的个位数字是( ) A .4B .6C .2D .82.如果等式3(23)1x x +-=,则等式成立的x 的值的个数为( ) A .1B .2C .3D .43.m 是有理数,则||(m m + ) A .可以是负数 B .不可能是负数C .一定是正数D .可是正数也可是负数4.(2020•南通)如图,在ABC ∆中,2AB =,60ABC ∠=︒,45ACB ∠=︒,D 是BC 的中点,直线l 经过点D ,AE l ⊥,BF l ⊥,垂足分别为E ,F ,则AE BF +的最大值为( )A .6B .22C .23D .325.已知:20172018a x =-+,20172019b x =-+,20172020c x =-+,请你巧妙的求出代数式222a b c ab bc ca ++---的值( )A .0B .1C .2D .36.如图,在ABC ∆中,90ACB ∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =.给出以下四个结论:其中正确的有( )(1)DE DF =;(2)DEF ∆是等腰直角三角形; (3)12ABC CEDF S S ∆=四边形;(4)2EF 的最小值为2.A .4个B .3个C .2个D .1个7.(2019•桂林)如图,四边形ABCD 的顶点坐标分别为(4,0)A -,(2,1)B --,(3,0)C ,(0,3)D ,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+ B .2133y x =+C .1y x =+D .5342y x =+8.在平面直角坐标系中,已知平行四边形ABCD 的点(0,2)A -、点(3B m ,41)(1)m m +≠-,点(6,2)C ,则对角线BD 的最小值是( )A .32B .213C .5D .6二.填空题(共11小题,满分33分,每小题3分)9.已知m ,n ,p 均为实数,若1x -,4x +均为多项式32x mx nx p +++的因式,则2286m n p --+= .10.(2020•常州)如图,点C 在线段AB 上,且2AC BC =,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 、BCFG ,连接EC 、EG ,则tan CEG ∠= .11.利用乘法公式计算:2123124122-⨯= .12.已知22(2016)(2018)34x x -+-=,则2(2017)x -的值是 .13.(2020•苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为(4,0)-、(0,4),点(3,)C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n = .14.如图,ABC ∆中,10AB =,6AC =,14BC =,D 为AC 边上一动点(D 不与A 、C 重合),将线段BD 绕D 点顺时针旋转90︒得到线段ED ,连接CE ,则CDE ∆面积的最大值为 .15.如图,在Rt ABC ∆中,90ACB ∠=︒,9AC =,12BC =,AD 是BAC ∠的平分线.若P 、Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是 .16.如图,已知90EOF ∠=︒,ABC ∆中,10AC BC ==,12AB =,点A 、B 分别在边OE 、OF 上运动,ABC ∆的形状大小始终保持不变.在运动的过程中,点C 到点O 的最大距离为 .17.如图,点C 是线段AB 上的一点,分别以AC 、BC 为边在AB 的同侧作正方形ACDE 和正方形CBFG ,连接EG 、BG 、BE ,当1BC =时,BEG ∆的面积记为1S ,当2BC =时,BEG ∆的面积记为2S ,⋯⋯,以此类推,当BC n =时,BEG ∆的面积记为n S ,则20182017S S -的值为 .18.已知线段6AB =,C 、D 是AB 上两点,且1AC DB ==,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为 .19.如图,平面直角坐标系中,点(2,6)P ,(4,0)B ,若以PB 为边在第一象限内作等腰直角三角形PBC ∆,则点C 的坐标为 .三.解答题(共7小题,满分43分)20.(5分)(1)25(6)(4)99-++ (2)312.4( 3.5)(5)(4)52+-+++-(3)531135)135()53(13553⨯+-⨯---⨯)( (4))()()()(99111511811311+⨯⨯+⨯+⨯+21.(5分)去括号,合并同类项(1)13[5(4)]2x x x ---; (2)221644(2)2a ab a ab --+; (3)223(2)4(6)x xy x xy --++-22.(5分)已知23m n +能被19整除,则3323m n +++能否被19整除.23.(5分)已知a ,b ,c 是ABC ∆的三边,试说明:222222()4a b c a b +--的值一定是负数.24.(7分)如图,在Rt ABC ∆中,90ABC ∠=︒,以CB 为半径作C ,交AC 于点D ,交AC 的延长线于点E ,连接BD ,BE .(1)求证:ABD AEB ∆∆∽(1分); (2)当43AB BC =时,求tan E (3分); (3)在(2)的条件下,作BAC ∠的平分线,与BE 交于点F ,若2AF =,求C 的半径(3分).25.(8分)如图,抛物线26y ax x c =++交x 轴于A ,B 两点,交y 轴于点C .直线5y x =-经过点B ,C . (1)求抛物线的解析式(1分); (2)过点A 的直线交直线BC 于点M .①当AM BC ⊥时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标(3分);②连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标(4分).26.(8分)如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与A 、C 重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,已知3AD =,3sin 5BAC ∠=.设AP 的长为x .(1)AB = ;当1x =时,PEPB= (1分); (2)①试探究:PEPB是否是定值?若是,请求出这个值;若不是,请说明理由(2分); ②连接BE ,设PBE ∆的面积为S ,求S 的最小值(2分).(3)当PCE是等腰三角形时.请求出x的值(3分);参考答案一.选择题(共8小题,满分24分,每小题3分)1.B .2.C .3.B .4.A .5.D .6.A .7.D .8.D . 二.填空题(共11小题,满分33分,每小题3分) 9.100.10.12.11.112.16.13.145.14.1158;15.365.16.14.17.2017.5.18.2.19.(8,8)或(10,2)或(6,4).三.解答题(共7小题,满分43分)20.(5分)(错1题扣2分,错2题扣5分,错3题以上每题扣3分)(1) 原式2512(64)()219933=-++-+=-+=-;(2) 原式251851230300=-+-+=-+=; (3) 原式132=;(4) 原式1120=; 21.(5分)(错1题扣2分,错2题扣5分,错3题扣10分)(1)13[5(4)]2x x x ---13[54]2x x x =--+13542x x x =-+-342x =--;(2)221644(2)2a ab a ab --+226482a ab a ab =---226a ab =--;(3)223(2)4(6)x xy x xy --++-22634424x xy x xy =-+++-22724x xy =-+-.22.(5分)解:3323822738(23)193m n m n m n n +++=⨯+⨯=⨯++⨯,(重点是写出最后面的式子)由(23)m n +能被19整除,193n ⨯能被19整除, 3323m n +++能被19整除.23.(5分)解:222222()4a b c a b +--222222(2)(2)a b c ab a b c ab =+-++--2222[()][()]a b c a b c =+---()()()()a b c a b c a b c a b c =+++----+,a ,b ,c 是三角形ABC 三边,0a b c ∴++>,0a b c +->,0a b c --<,0a b c -+>,()()()()0a b c a b c a b c a b c ∴+++----+<,即值为负数.24.解:(1)90ABC ∠=︒,90ABD DBC ∴∠=︒-∠, 由题意知:DE 是直径,90DBE ∴∠=︒,90E BDE ∴∠=︒-∠,BC CD =,DBC BDE ∴∠=∠,ABD E ∴∠=∠,A A ∠=∠,ABD AEB ∴∆∆∽;(2):4:3AB BC =,∴设4AB =,3BC =,5AC ∴==,3BC CD ==,532AD AC CD ∴=-=-=,由(1)可知:ABD AEB ∆∆∽,∴AB AD BDAE AB BE==,2AB AD AE ∴=, 242AE ∴=,8AE ∴=,在Rt DBE ∆中41tan 82BD AB E BE AE ====;(3)过点F 作FM AE ⊥于点M ,:4:3AB BC =,∴设4AB x =,3BC x =,∴由(2)可知;8AE x =,2AD x =, 6DE AE AD x ∴=-=,AF 平分BAC ∠,∴BF AB EF AE =,∴4182BF x EF x ==,1tan 2E =,cos E ∴,sin E =,∴BE DE =,BE ∴=,23EF BE ∴=,sin MF E EF ∴==,85MF x ∴=, 1tan 2E =,1625ME MF x ∴==,245AM AE ME x ∴=-=,222AF AM MF =+,222484()()55x x ∴=+,x ∴=,C ∴另解:由上述知1tan 3FM FAM AM∠==, BC DC CE ==,35BC AC =,::2:3:3AD DM ME ∴=, 1tan 2FM E ME ∠==,设FM a =,则3AM a =,2ME a =,5AE a ∴=,31588DC AE a ∴==, 由勾股定理可知:10AF a =,2AF =,10a ∴=,310DC ∴=25.解:(1)265y x x =-+-;(2)①解方程2650x x -+-=得11x =,25x =,则(1,0)A ,(5,0)B ,(0,5)C -,OCB ∴∆为等腰直角三角形,45OBC OCB ∴∠=∠=︒,AM BC ⊥,AMB ∴∆为等腰直角三角形,2242222AM AB ∴==⨯=, 以点A ,M ,P ,Q 为顶点的四边形是平行四边形,//AM PQ ,2PQ AM ∴==PQ BC ⊥,作PD x ⊥轴交直线BC 于D ,如图1,则45PDQ ∠=︒,22224PD PQ ∴==⨯=, 设2(,65)P m m m -+-,则(,5)D m m -,当P 点在直线BC 上方时,2265(5)54PD m m m m m =-+---=-+=,解得11m =,24m =,当P 点在直线BC 下方时,225(65)54PD m m m m m =---+-=-=,解得1541m +=2541m -=,综上所述,P点的横坐标为4或5412+或5412-;②点M的坐标为13(6,17)6-或23(6,7)6-.26.解:(1)4,34.(2)①结论:PEPB的值为定值.理由:由PA x=,可得35PM x=.45AM x=,445BM x=-,335PN x=-,BMP PNE∆∆∽,∴33354445xPE PNPB BM x-===-.②在Rt PBM∆中,2222224332(4)()16555PB BM PM x x x x=+=-+=-+,34PEPB=,34PE PB∴=,2221333231654(16)()28858525S PB PE PB x x x∴===-+=-+,05x<<,165x∴=时,S有最小值5425=.(3)①当点E在线段CD上时,连接BE交AC于F.90PEC∠>︒,所以只能EP EC=,EPC ECP∴∠=∠,90BPE BCE∠=∠=︒,BPC BCP∴∠=∠,BP BC∴=,BE∴垂直平分线段PC,在Rt BCF∆中,cosCF BCBCFBC AC∠==,∴335CF=,95CF∴=,1825PC CF∴==,187555x PA∴==-=.②当点E 在DC 的延长线上时,设BC 交PE 于G .90PCE ∠>︒,所以只能CP CE =.CPE E ∴∠=∠,90GPB GCE ∠=∠=︒,PGB CGE ∠=∠,PBG E CPE ∴∠=∠=∠,90ABP PBC ∠+∠=︒,90APB CPE ∠+∠=︒,4AB AP ∴==,综上所述,x 的值为75或4.。