合金的时效,钢的热处理
- 格式:ppt
- 大小:3.11 MB
- 文档页数:67
钢的热处理工艺设计经验公式大全热处理是钢材加工过程中非常重要的一环,通过改变钢材的晶体结构和组织状态,可以提高钢材的力学性能和耐腐蚀性能。
热处理工艺设计是确定热处理参数和过程的过程。
在热处理工艺设计中,经验公式是实践经验的总结,可以作为指导设计的依据。
以下是一些常用的钢的热处理工艺设计经验公式:1.碳钢淬火温度(Tc)经验公式:Tc=727+0.33*C其中,Tc为淬火温度(单位:摄氏度),C为碳含量(单位:百分比)。
这个公式是根据碳钢的相图和强度要求推导出来的。
2.碳钢回火温度(Th)经验公式:Th=500+5*HRC-10其中,Th为回火温度(单位:摄氏度),HRC为硬度值(单位:洛氏硬度)。
这个公式是一种经验化的关系,用于估算碳钢的回火温度。
3.碳钢退火温度(Ta)经验公式:Ta=800+20*M-10*F其中,Ta为退火温度(单位:摄氏度),M为马氏体体积分数(百分比),F为珠光体体积分数(百分比)。
这个公式是根据马氏体转变的温度范围和组织形态确定的。
4.合金钢的时效温度(Ts)经验公式:Ts=Ac3+100-60*Ln(t)其中,Ts为时效温度(单位:摄氏度),Ac3为奥氏体转变温度(单位:摄氏度),t为时效时间(单位:小时)。
这个公式是用于选择合金钢的时效温度和时间。
5.不锈钢的固溶温度(Ts)经验公式:Ts=0.6*Ac1+0.4*Ac3其中,Ts为固溶温度(单位:摄氏度),Ac1为铁素体转变温度(单位:摄氏度),Ac3为奥氏体转变温度(单位:摄氏度)。
这个公式是选择不锈钢的固溶温度的经验方法。
6.复合材料的固化温度(Tc)经验公式:Tc=0.6*Tg+0.4*Tm其中,Tc为固化温度(单位:摄氏度),Tg为玻璃化转变温度(单位:摄氏度),Tm为熔融转变温度(单位:摄氏度)。
这个公式适用于选择复合材料的固化温度。
1简述常用的热处理的方法及时效处理。
答:常用热处理方法:退火,正火,淬火,回火,渗碳,渗氮,碳氮共渗,渗硼。
时效处理有人工时效处理,自然时效处理。
退火,将工件加热至Ac3以上30~50度,保温一定时间后,随炉缓慢冷却至500度一下在空间中冷却。
正火,将钢件加热至Ac3或Acm以上,保温后从炉中取出在空气中冷却的一种操作。
淬火,将钢件加热至Ac3或Ac1以上,保温后在水或油等冷却液中快速冷却,已获得不稳定的组织。
回火,将淬火后的钢重新加热到Ac1以下的温度,保温后冷却至室温的热处理工艺。
自然时效处理,将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。
人工时效处理,采用将工件加热到较高温度,并较短时间进行时效处理的时效处理工艺,叫人工时效处理。
2简述钢回火的目的答:回火又称配火。
将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。
或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。
目的:一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。
根据不同的要求可采用低温回火、中温回火或高温回火。
通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。
3简述钢的表面淬火的作用及分类。
答:有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。
在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。
由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。
根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。
4简述感应热处理技术的工作原理及特点。
简述超音频感应淬火的工作频率及频率和淬硬层厚度的关系。
答:基本原理将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生交变磁场。
常用材料热处理工艺参数
常用材料的热处理工艺参数取决于材料的组织性能要求、工艺性能要
求和使用条件等因素。
下面以几种常见的材料为例,介绍一些主要的热处
理工艺参数。
碳钢是一种普遍使用的金属材料,其热处理工艺参数包括淬火温度、
回火温度、保温时间等。
一般来说,碳钢的淬火温度在800℃至900℃之间,回火温度在150℃至500℃之间。
保温时间通常为1小时到3小时。
不锈钢是一类具有良好耐腐蚀性能的材料,其热处理工艺参数包括退
火温度、固溶温度和时效温度。
退火温度一般在800℃至900℃之间,固
溶温度在1000℃至1200℃之间,时效温度在500℃至700℃之间。
保温时
间通常为1小时到5小时。
铝合金是一种轻质高强度的材料,其热处理工艺参数包括固溶温度、
时效温度和时效时间等。
固溶温度一般在480℃至520℃之间,时效温度
在150℃至250℃之间。
时效时间一般为1小时至10小时。
铜合金是一种导电性能良好的材料,其热处理工艺参数包括固溶温度、时效温度和时效时间等。
固溶温度一般在800℃至950℃之间,时效温度
在300℃至550℃之间。
时效时间一般为1小时至10小时。
上述只是对于不同材料几种常见的热处理工艺参数进行了简单的介绍,实际工艺参数还需要根据具体材料的特性和要求进行调整。
同时,热处理
工艺参数的选择也应考虑到工艺设备和生产成本等因素。
在实际应用中,
可以通过试验和实践来确定最佳的热处理工艺参数。
常用钢材热处理方法及目的常用钢材热处理方法一.淬火将钢制零件加热到临界温度以上40~60℃,保持一定时间并快速冷却的热处理方法称为淬火。
常用的快速冷却介质为油、水和盐水溶液。
淬火加热温度及冷却介质热处理规范见表淬火的目的是:使钢件获得高的硬度和耐磨性,通过淬火钢件的硬度一般可达hrc60~65,但淬火后钢件内部产生了内应力,使钢件变脆,因此,要经过回火处理加以消除。
钢件的淬火处理,在机械制造过程中应用比较普遍,它常用的方法有:1.单液淬火:将钢件加热至淬火温度,并在一种冷却剂中冷却一段时间。
这种热处理方法称为单液淬火。
适用于形状简单、技术要求低的碳钢或合金钢,以及工件直径或厚度大于5~8mm的碳钢,用盐水或水冷却;油冷却用于合金钢。
在单液淬火中,水冷容易变形和开裂;油冷却容易产生硬度不足或不均匀。
2.双液淬火:将钢件加热到淬火温度,经保温后,先在水中快速冷却至300~400℃,在移入油中冷却,这种处理方法,称为双液淬火。
形状复杂的钢件,常采用此方法。
它既能保证钢件的硬度,又能防止变形和裂纹。
缺点是操作难度大,不易掌握。
3.火焰表面淬火:将乙炔和氧气的混合燃烧火焰喷在工件表面,加热至淬火温度,然后立即向工件表面喷水。
这种处理方法称为火焰表面淬火。
适用于单件生产,要求高表面或局部表面硬度和耐磨钢件。
缺点是操作困难。
4.表面感应淬火:将钢件放人感应器内,在中频或高频交流电的作用下产生交变磁场,钢件在磁场作用下产生了同频率的感应电流,使钢件表面迅速加热(2-10s)至淬火温度,立即把水喷射到钢件表面。
这种热处理方法,称为表面感应淬火。
经表面感应淬火的零件,表面硬而耐磨,而内部有较好的强度和韧性。
这种方法适用于中碳钢和中等含碳量的合金钢件。
根据电流频率的不同,表面感应淬火可分为高频淬火、中频淬火和工频淬火。
高频淬火电流频率为100~150kHz,硬化层深度为1~3mm。
适用于齿轮、花键轴、活塞等小零件的淬火;中频淬火电流频率为500~10000Hz,硬化层深度为3~10mm。
固溶处理和时效处理1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。
适用多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1.热处理后须要再加工的零件。
2.消除成形工序间的冷作硬化。
3.焊接后工件。
原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
17-4固溶时效热处理
17-4是一种合金钢,它含有17%的铬和4%的镍。
固溶时效热
处理是对这种合金进行的一种热处理方法,旨在优化其机械性能。
固溶时效热处理分为两个步骤:固溶和时效。
固溶指的是将合金加热到高温,使得其原子间的晶格达到一定程度的松弛和溶解。
在17-4合金中,这个过程发生在900°C
至1150°C的温度范围内。
在固溶过程中,合金的晶粒会细化,原先的奥氏体结构会溶解成单相固溶体结构。
时效指的是在固溶过程完成后,将合金冷却到室温,然后再将其加热到较低的温度(通常在480°C至620°C之间),保持
一段时间,目的是使合金再次进行相变,并形成所需的硬化相。
这个过程可进一步提高合金的硬度和强度,并且可以获得一些特定的微观结构,如弥散的粒子和纤维状晶粒。
固溶时效热处理可以显著提高17-4合金的机械性能,如硬度、强度、耐腐蚀性等。
然而,不同的固溶和时效参数会对合金的性能产生不同的影响,因此需要根据具体的应用要求来选择适当的热处理参数。
金属热处理:时效处理将淬火后的金属工件置于室温或较高温度下保持适当时间﹐以提高金属强度的金属热处理工艺。
室温下进行的时效处理是自然时效﹔较高温度下进行的时效处理是人工时效。
在机械生产中﹐为了稳定铸件尺寸﹐常将铸件在室温下长期放置﹐然后才进行切削加工。
这种措施也被称为时效。
但这种时效不属于金属热处理工艺。
20世纪初叶﹐德国工程师A.维尔姆研究硬铝时发现﹐这种合金淬火后硬度不高﹐但在室温下放置一段时间后﹐硬度便显著上昇﹐这种现象后来被称为沉淀硬化。
这一发现在工程界引起了极大兴趣。
随后人们相继发现了一些可以采用时效处理进行强化的铝合金﹑铜合金和铁基合金﹐开创了一条与一般钢铁淬火强化有本质差异的新的强化途径──时效强化。
绝大多数进行时效强化的合金﹐原始组织都是由一种固溶体和某些金属化合物所组成。
固溶体的溶解度随温度的上昇而增大。
在时效处理前进行淬火﹐就是为了在加热时使尽量多的溶质溶入固溶体﹐随后在快速冷却中溶解度虽然下降﹐但过剩的溶质来不及从固溶体中分析出来﹐而形成过饱和固溶体。
为达到这一目的而进行的淬火常称为固溶热处理。
经过长期反复研究证实﹐时效强化的实质是从过饱和固溶体中析出许多非常细小的沉淀物颗粒(一般是金属化合物﹐也可能是过饱和固溶体中的溶质原子在许多微小地区聚集)﹐形成一些体积很小的溶质原子富集区。
在时效处理前进行固溶处理时﹐加热温度必须严格控制﹐以便使溶质原子能最大限度地固溶到固溶体中﹐同时又不致使合金发生熔化。
许多铝合金固溶处理加热温度容许的偏差只有5℃左右。
进行人工时效处理﹐必须严格控制加热温度和保温时间﹐才能得到比较理想的强化效果。
生产中有时采用分段时效﹐即先在室温或比室温稍高的温度下保温一段时间﹐然后在更高的温度下再保温一段时间。
这样作有时会得到较好的效果。
马氏体时效钢淬火时会发生组织转变﹐形成马氏体。
马氏体就是一种过饱和固溶体。
这种钢也可采用时效处理进行强化。
低碳钢冷态塑性变形后在室温下长期放置﹐强度提高﹐塑性降低﹐这种现象称为机械时效。
固溶处理与时效处理1、固溶处理所谓固溶处理,就是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱与固溶体的热处理工艺。
固溶处理的主要目的就是改善钢或合金的塑性与韧性,为沉淀硬化处理作好准备等。
适用多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1、热处理后须要再加工的零件。
2、消除成形工序间的冷作硬化。
3、焊接后工件。
原理序言固溶处理就是为了溶解基体内碳化物、γ’相等以得到均匀的过饱与固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物与γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理就是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出与溶解规律及使用要求来选择,以保证主要强化相必要的析出条件与一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久与蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性与疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱与度低的合金,通常选择较快的冷却速度;对于过饱与度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱与状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火就是不同的,前者就是软化处理,后者就是淬硬。