(优选)第三节有机化合物红外光谱谱图的基本特征
- 格式:ppt
- 大小:2.50 MB
- 文档页数:62
各类化合物的红外光谱特征讲解红外光谱是一种广泛应用于化学、生物、材料科学等领域的分析技术,通过检测样品吸收或散射的红外辐射来获取样品的结构信息。
不同类型的化合物在红外光谱中表现出不同的特征,下面将分别讲解有机化合物、无机化合物和生物大分子的红外光谱特征。
1.有机化合物有机化合物在红外光谱中显示出多个特征峰,主要包括C-H伸缩振动和C=O伸缩振动。
C-H伸缩振动出现在2800-3000 cm-1的范围内,不同类型的C-H键有不同的峰位,例如烷基的C-H伸缩振动通常在2850-3000 cm-1之间,而芳香族的C-H伸缩振动在3000-3100 cm-1之间。
C=O伸缩振动出现在1650-1800 cm-1的范围内,不同类型的C=O键有不同的峰位,酮和醛的C=O伸缩振动通常在1700-1750 cm-1之间,羧酸的C=O伸缩振动在1700-1725 cm-1之间。
除了C-H伸缩和C=O伸缩振动,有机化合物还表现出其他特征峰。
N-H伸缩振动通常出现在3100-3500 cm-1之间,-O-H伸缩振动通常出现在3200-3600 cm-1之间。
C-C键伸缩振动和C-C键弯曲振动出现在1200-1700 cm-1之间,其峰位和强度可以提供有关分子结构和取代基的信息。
2.无机化合物无机化合物的红外光谱特征主要来自于它们的晶格振动。
晶体振动通常发生在低频区域,比如300-400 cm-1之间的范围。
晶体振动提供了关于化学键的存在和类型的信息,比如金属-氧化物和金属-氮化物的化学键常常表现出特征峰。
此外,一些无机离子的拉曼活动频率也可以通过红外光谱观察到。
3.生物大分子生物大分子包括蛋白质、核酸和糖类等,它们在红外光谱中显示出独特的特征。
蛋白质和核酸的红外光谱特征主要来自于其各种化学键的振动。
蛋白质中的肽键C=O伸缩振动通常在1650-1675 cm-1之间,背景中峰位较强。
糖类的伸缩振动一般在1000-1200 cm-1之间,不同类型的糖类有不同的峰位和强度。
仪器分析实验有机化合物的红外光谱分析 2015年4月21日有机化合物的红外光谱分析开课实验室:环境资源楼312【实验目的】1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作;2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程;3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。
【基本原理】• 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。
据此,可对物质进行定性和定量分析。
特别是对化合物结构的鉴定,应用更为广泛。
• 红外吸收法:类型:吸收光谱法;原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。
这是因为分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。
当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。
据此,可对化合物进行定性和定量分析;条件:分子具有偶极矩。
【仪器与试剂】1、仪器:傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机;玛瑙研钵;红外灯。
2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。
【实验步骤】1、样品制备(1)固体样品:KBr压片法在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。
在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的粉末移至环中,盖上另一块模具,放入油压机中进行压片。
KBr压片形成后,若已透明,可用夹具固定测试;(2)液体样品:液膜法取一对NaCl窗片,用刮勺沾取液体滴在一块窗片上,然后用另一块窗片覆盖在上面,形成一个没有气泡的毛细厚度薄膜,用夹具固定,即可放入仪器光路中进行测试,此法适用于高沸点液体样品。
各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。
不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。
有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。
在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。
2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。
在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。
3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。
在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。
在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。
4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。
在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。
在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。
5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。
在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。
在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。
6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。
在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。
在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。
7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。
在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。
8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。
在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。
各类化合物的红外光谱特征讲解红外光谱是一种重要的分析技术,可以用于确定化合物的结构和化学键的类型。
在红外光谱图中,横坐标表示波数(单位为cm⁻¹),纵坐标表示吸收强度或透射率。
有机化合物:1. 烷烃:烷烃的红外光谱图通常没有明显的峰。
C-H键的拉伸振动一般在3000-2900 cm⁻¹范围内,C-H键的弯曲振动通常在1450 cm⁻¹附近。
2. 烯烃:烯烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1650-1600 cm⁻¹范围内。
C-H键的拉伸振动和弯曲振动与烷烃类似。
3. 芳香烃:芳香烃的红外光谱图中通常有一个称为"C=C"伸缩振动的特征峰,在1600-1475 cm⁻¹范围内。
C-H键的拉伸和弯曲振动在3100-3000 cm⁻¹和1500-1000 cm⁻¹范围内。
4. 醇和酚:醇和酚的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-3200 cm⁻¹范围内。
C-O键的拉伸振动通常在1300-1000 cm⁻¹范围内。
5. 酮:酮的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-C和C-H键的伸缩振动可以在3000-2850cm⁻¹范围内观察到。
6. 醛:醛的红外光谱图中通常有一个称为"C=O"伸缩振动的特征峰,在1750-1650 cm⁻¹范围内。
C-H键的拉伸振动通常在2850-2700 cm⁻¹范围内。
7. 酸:酸的红外光谱图中通常有一个称为-OH伸缩振动的特征峰,在3500-2500 cm⁻¹范围内。
C=O伸缩振动通常在1800-1600 cm⁻¹范围内。
9. 酯:酯的红外光谱图中通常有一个称为C=O伸缩振动的特征峰,在1750-1735 cm⁻¹范围内。
红外谱图解析基本知识1.红外光谱法的一般特点特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。
2.对样品的要求①试样纯度应大于98%,或者符合商业规格Ø这样才便于与纯化合物的标准光谱或商业光谱进行对照Ø多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析②试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。
所用试样应当经过干燥处理③试样浓度和厚度要适当使最强吸收透光度在5~20%之间3.定性分析和结构分析红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。
因此,红外光谱法是定性鉴定和结构分析的有力工具①已知物的鉴定将试样的谱图与标准品测得的谱图相对照,或者与文献上的标准谱图(例如《药品红外光谱图集》、Sadtler标准光谱、Sadtler商业光谱等)相对照,即可定性使用文献上的谱图应当注意:试样的物态、结晶形状、溶剂、测定条件以及所用仪器类型均应与标准谱图相同②未知物的鉴定未知物如果不是新化合物,标准光谱己有收载的,可有两种方法来查对标准光谱:A.利用标准光谱的谱带索引,寻找标准光谱中与试样光谱吸收带相同的谱图B.进行光谱解析,判断试样可能的结构。
然后由化学分类索引查找标准光谱对照核实解析光谱之前的准备:Ø了解试样的来源以估计其可能的范围测定试样的物理常数如熔沸点、溶解度、折光率、旋光率等作为定性的旁证Ø Ø根据元素分析及分子量的测定,求出分子式Ø计算化合物的不饱和度Ω,用以估计结构并验证光谱解析结果的合理性解析光谱的程序一般为:A.从特征区的最强谱带入手,推测未知物可能含有的基团,判断不可能含有的基团B.用指纹区的谱带验证,找出可能含有基团的相关峰,用一组相关峰来确认一个基团的存在C.对于简单化合物,确认几个基团之后,便可初步确定分子结构D.查对标准光谱核实③新化合物的结构分析红外光谱主要提供官能团的结构信息,对于复杂化合物,尤其是新化合物,单靠红外光谱不能解决问题,需要与紫外光谱、质谱和核磁共振等分析手段互相配合,进行综合光谱解析,才能确定分子结构。
各类化合物的红外光谱特征有机化合物的数目非常大,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原子组合数目约有几十种。
根据上述讨论,基团的振动频率主要取决于组成基团原子质量(即原子种类)和化学键力常数(即化学键的种类)。
一般来说,组成分子的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。
所以,有必要对各类有机化合物的光谱特征加以总结。
一、烷烃1. νC-H 3000~2840 C-H伸缩振动频率2. δC-H 1460 和1380 C-H弯曲振动频率3.C-C 1250-800当化合物具有四个以上邻接的CH2基团时,几乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有用的。
二、烯烃1. ν=C-H 3010-31002.νC=C1680-16003. δC-H1000-700三、炔烃1. ν≡C-H 3300-3250 峰形较窄,易于OH和NH区别开。
2. δ≡C-H 900-610 宽的谱带3. ν C≡C2140-2100 一元取代炔烃RC≡CH|| 2260-2190 二元取代炔烃四、芳香烃1.νC-H 3080-30102.νC-C 1650-1450 2~4个吸收峰3. 面外弯曲振动(g=C-H ) 900-650五、醇和酚羟基化合物1. νO-H 3700-3500(游离的醇和酚,峰尖、强)|| 3500-3200(缔和的羟基,峰形强而宽)2. δO-H 1500~13003. νC-O 1250~1000六、醚1.脂肪醚1150-10602.芳香醚1270 ~ 1230(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩)3.乙烯醚:1225-12005、在环氧乙烷类中有三条特征谱带可作为这种基团的存在的标志:1280-1240 环的不对称伸缩振动|| 950-810cm-1 环的对称伸缩振动|| 840-750cm-1七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等)1.酮1725-17052.醛1740-1720 2820-2720出现两个强度相等的吸收峰3.羧酸(1)νO-H 3200-2500(液体及固体羧酸)|| 3550(在气相或极稀的非极性溶剂溶液中)(2)nC=O 1730-1700(2)νC-O 1250附近(强峰)(3)δO-H 1400cm-1和920cm-1区域有两个强而宽的吸收峰(4)羧酸盐1580cm-1 和1400cm-1 之间的两个谱带4.酯(1) νC=O1750-1735(2) νC-O-C 1330-10305.酸酐(1)n C=O 在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰(2) n C-O-C 开链的在1180-1045cm-1,而环状酸酐在1310-1200cm-16.酰胺: 兼有胺和羰基化合物的特点(1)νN-H稀溶液中伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,浓溶液和固体中由于有氢键发生,将移向3350-3180cm-1低频区仲酰胺在很稀溶液中,在3460-3420cm-1处只出现一个谱带,浓溶液中或固体中缔和体出现在3330cm-1(3)δN-H弯曲振动(酰胺II带)伯酰胺游离态在1600cm-1处,缔合态在1650-1620处,仲酰胺游离态在1550-1510处;缔和体在1570-1515处(4)酰胺还有C-N吸收带(酰胺III带),它们的吸收位置如下:伯酰胺1420-1400cm-1(中);仲酰胺1305-1200cm-1(中)叔酰胺700-620cm-1(中)八、胺和胺盐1.胺:胺有三个特征吸收带即:nNH、δ N-H和nC-N吸收带(1)nNH 3550-3250(2)δ N-H 1650-15402.铵盐伯胺和仲胺的νNH νNH3+ 伯胺盐在3000-2800cm-1之间出现强和宽的吸收带伯胺盐的δNH3+出现在1600-1575cm-1和1550-1504cm-1处两个吸收带仲胺盐的νNH2+ 出现在2700-2250cm-1 区域;δ NH2+ 出现在1620-1560cm-1区域叔胺盐的νNH+ 在2700-2250cm-1 区域出现一个强的宽带或一组较尖的谱带。