管壳式热交换器 设计3
- 格式:ppt
- 大小:1.01 MB
- 文档页数:17
管壳式换热器设计课程设计XXX课程设计:管壳式换热器设计学院:机械与XXX专业:热能与动力工程专业班级:11-02班指导老师:小组成员:目录第一章:设计任务书第二章:管壳式换热器简介第三章:设计方法及设计步骤第四章:工艺计算4.1 物性参数的确定4.2 核算换热器传热面积4.2.1 传热量及平均温差4.2.2 估算传热面积第五章:管壳式换热器结构计算管壳式换热器是常用的热交换设备,广泛应用于化工、石油、制药、食品等行业。
本次课程设计旨在设计一台管壳式换热器,以满足特定工艺条件下的换热需求。
在设计之前,需要了解管壳式换热器的基本结构和工作原理。
管壳式换热器由外壳、管束、管板、管箱、管夹等部分组成。
热量通过内置于管束中的流体在管内传递,再通过管壳间的流体传递到外壳中,从而实现热交换。
设计过程中,需要确定流体的物性参数,包括密度、比热、导热系数等。
同时,还需要核算换热器传热面积,以满足特定的传热需求。
传热量和平均温差是计算传热面积的重要参数,而估算传热面积则需要考虑流体的流动状态、管束的排布方式等因素。
最终,我们将根据设计要求进行管壳式换热器的结构计算,确定外壳、管束等部分的尺寸和数量,以满足特定工艺条件下的换热需求。
第一章设计任务书本项目旨在设计一台管壳式换热器,用于将煤油由140℃冷却至40℃。
处理能力为10t/h,压强降不得超过100kPa。
具体操作条件为:煤油的入口温度为140℃,出口温度为40℃,冷却水的入口温度为26℃,出口温度为40℃。
2.第二章管壳式换热器简介管壳式换热器是石油化工行业中应用最广泛的换热器。
尽管各种板式换热器的竞争力不断上升,但管壳式换热器仍然占据着换热器市场的主导地位。
目前,各国为提高这类换热器性能进行的研究主要集中在强化传热、提高对苛刻工艺条件的适应性以及开发适用于各类腐蚀介质的材料。
此外,结构改进也是向着高温、高压、大型化方向发展的必然趋势。
5.1 换热管计算及排布方式在设计管壳式换热器时,需要计算并确定换热管的数量、直径和排布方式。
列管式换热器的设计计算列管式(管壳式)换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。
2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
此外,在选择流速时,还需考虑结构上的要求。
例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。
这些也是选择流速时应予考虑的问题。
3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。
若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。
例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。
一、课程设计题目管壳式换热器的设计二、课程设计内容1.管壳式换热器的结构设计包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。
2. 壳体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)确定管板结构、尺寸及拉脱力、温差应力;(3)计算是否安装膨胀节;(4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。
3. 筒体和支座水压试验应力校核4. 支座结构设计及强度校核包括:裙座体(采用裙座)、基础环、地脚螺栓5. 换热器各主要组成部分选材,参数确定。
6. 编写设计说明书一份7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。
三、设计条件气体工作压力管程:半水煤气0.75MPa壳程:变换气 0.68 MPa壳、管壁温差55℃,tt >ts壳程介质温度为220-400℃,管程介质温度为180-370℃。
由工艺计算求得换热面积为140m2,每组增加10 m2。
四、基本要求1.学生要按照任务书要求,独立完成塔设备的机械设计;2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制;3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔;4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。
5.根据设计说明书、图纸、平时表现及答辩综合评分。
五、设计安排六、说明书的内容1.符号说明2.前言(1)设计条件;(2)设计依据;(3)设备结构形式概述。
3.材料选择(1)选择材料的原则;(2)确定各零、部件的材质;(3)确定焊接材料。
4.绘制结构草图(1)换热器装配图(2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示;(3)标注形位尺寸。
(4)写出图纸上的技术要求、技术特性表、接管表、标题明细表等5.壳体、封头壁厚设计(1)筒体、封头及支座壁厚设计;(2)焊接接头设计;(3)压力试验验算;6.标准化零、部件选择及补强计算:(1)接管及法兰选择:根据结构草图统一编制表格。
课程设计设计题目:管壳式水-水换热器姓名院系专业年级学号指导教师年月日目录1前言 (1)2课程设计任务书 (2)3课程设计说明书 (3)3.1确定设计方案 (3)3.1.1选择换热器的类型 (3)3.1.2流动空间及流速的确定 (3)3.2确定物性数据 (3)3.3换热器热力计算 (4)3.3.1热流量 (4)3.3.2平均传热温度差 (4)3.3.3循环冷却水用量 (4)3.3.4总传热系数K (5)3.3.4计算传热面积 (6)3.4工艺结构尺寸 (6)3.4.1管径和管内流速 (6)3.4.2管程数和传热管数 (6)3.4.3平均传热温差校正及壳程数 (7)3.4.4传热管排列和分程方法 (7)3.4.5壳体内径 (7)3.4.6折流板 (8)3.4.7接管 (8)3.5换热器核算 (8)3.5.1热量核算 (8)3.5.2换热器内流体的流动阻力 (12)3 .6换热器主要结构尺寸、计算结果 (13)3.7换热器示意图、管子草图、折流板图 (14)4设计总结 (15)5参考文献 (16)1前言在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,成为热交换器。
热交换器在工业生产中的应用极为普遍,例如动力工业中锅炉设备的过热器、省煤器、空气预测器,电厂热力系统中的凝汽器、除氧器、给水加热器、冷水塔;冶金工业中高炉的热风炉,炼钢和轧钢生产工艺中的空气和煤气预热;制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的蒸发器、冷凝器;制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,都是热交换器的应用实例。
在化学工业和石油化学工业的生产过程中,应用热交换器的场合更是不胜枚举。
在航空航天工业中,为了及时取出发动机及辅助动力装置在运行时产生的大量热量;热交换器也是不可或缺的重要部件。
根据热交换器在生产中的地位和作用,它应满足多种多样的要求。
一般来说,对其基本要求有:(1)满足工艺过程所提出的要求。
热交换强度高,热损失少。
管壳式换热器设计-课程设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN河南理工大学课程设计管壳式换热器设计学院:机械与动力工程学院专业:热能与动力工程专业班级:11-02班学号:姓名:指导老师:小组成员:目录第一章设计任务书 (1)第二章管壳式换热器简介 (2)第三章设计方法及设计步骤 (4)第四章工艺计算 (5)物性参数的确定 (5)核算换热器传热面积 (5)传热量及平均温差 (6)估算传热面积 (8)第五章管壳式换热器结构计算 (9)换热管计算及排布方式 (9)壳体内径的估算 (12)进出口连接管直径的计算 (13)折流板 (13)第六章换热系数的计算 (18)管程换热系数 (18)壳程换热系数 (19)第七章需用传热面积 (21)第八章流动阻力计算 (23)管程阻力计算 (24)壳程阻力计算 (25)总结 (27)第一章设计任务书煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。
设计任务及操作条件1、设备形式:管壳式换热器2、操作条件(1)煤油:入口温度140℃,出口温度40℃(2)冷却水介质:入口温度26℃,出口温度40℃第二章管壳式换热器简介管壳式换热器是在石油化工行业中应用最广泛的换热器。
纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。
目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。
强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。
目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。
管壳式换热器结构设计与强度计算中的重要问题管壳式换热器是一种常用的热交换器结构,其结构设计和强度计算是非常重要的问题。
在设计和计算过程中,需要考虑许多因素,包括材料选择、壳体和管道的结构、支撑和密封等。
以下是管壳式换热器结构设计和强度计算中的一些重要问题:1、材料选择选择合适的材料是管壳式换热器设计中最基本的问题之一。
材料应该具有足够的强度,耐腐蚀能力强,且具有良好的导热性能。
一般使用不锈钢、钛合金、镍基合金、铜合金等材料。
2、壳体和管道的结构壳体的结构应该具有足够的强度和刚度,以承受内部压力和外部载荷。
壳体由壳体头和壳体筒组成,一般采用对接或法兰连接方式。
管道的结构应该考虑流体的流动特性和换热流程的要求,一般采用不同的形状、长度和数量的管子,以满足流体的流量和换热效果要求。
3、支撑和密封在运行过程中,管壳式换热器需要足够的支撑和密封,以保证安全和稳定的运行。
支撑应该均匀,以避免管子的弯曲和扭转,导致热交换效率下降。
密封应该具有良好的密封性能,以避免流体泄漏或渗透,导致系统失效。
4、强度计算强度计算是管壳式换热器设计和制造中最重要的问题之一。
强度计算主要包括壳体和管子的强度计算、法兰连接的强度计算、焊接接头的强度计算等。
强度计算需要考虑不同的载荷情况、温度变化、材料蠕变等因素,以保证管壳式换热器在不同的工作条件下都具有足够的强度和安全性。
总之,管壳式换热器结构设计和强度计算是非常重要的问题,需要深入研究和细致分析,并结合实际应用要求进行优化和改进,以满足不同工况下的热交换需求。
本科生通用题目:单壳程双管程管壳式换热器设计(立式)专业:应用化学班级:0703班姓名:肖黎鸿成绩:导师签字:2010年7月11日题目:单壳程双管程管壳式换热器设计(立式)参数:要求要求每位学生在设计的过程中,充分发挥自己的独立工作能力及创造能力,在设计过程中必须做到:(1)及时了解有关资料,做好准备工作,充分发挥自己的主观能动性和创造性。
(2)认真计算和制图,保证计算正确和图纸质量。
(3)按预定计划循序完成任务。
日程安排:1.准备阶段(1天)2.设计计算阶段(3天)3.绘图阶段(4天)4.编写设计说明书(2天)目录1.绪论 (1)2.设计计算 (2)2.1管子数n的计算 (2)2.2管子排列方式,管间距的确定 (2)2.3壳体直径的确定 (2)2.4壳体厚度的计算 (2)2.5壳体液压试验应力校核 (3)2.6分程隔板的选择 (3)2.7封头的选择 (3)2.8法兰,管板的选择 (4)2.9垫片尺寸的确定 (5)2.10管子拉脱力的计算 (5)2.11是否安装膨胀节的计算 (6)2.12折流板设计 (7)2.13拉杆设计 (8)2.14开孔补强 (8)2.15支座 (9)3.设计评述 (10)4.参考文献 (11)附:设计结果一览表 (12)1.绪论热交换器,通常又称作换热器,是化工﹑炼油和食品及其他工业部门的通用设备,在生产中占有重要作用。
化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可以分为三大类,及间壁式、混合式和蓄热式。
三类换热器中,间壁式换热器应用最多。
本次设计的管壳式换热器就属于间壁式换热器的一种。
立式固定管板式换热器示意图2.设计计算2.1管子数n 的计算选25 ×2.5的无缝钢管,材质20号钢,管长1.5m 。
因为F =πd 均Ln ,所以根均1045.10225.011=⨯⨯==ππL d F n2.2管子排列方式,管间距的确定本设计物料:管程氮气,壳程水,循环水工作温度90℃较高,不易结垢。