数学史 第10讲 几何学的突破
- 格式:ppt
- 大小:212.00 KB
- 文档页数:44
《数学简史》知识提要1 数学史的意义及研究对象:数学史是研究数学概念、数学方法和数学思想的产生、发展及其规律的科学。
主要对象包括:重要数学成果、重大数学事件和重要数学人物,及其与社会、政治、经济和一般文化的联系。
2 数学文化的特点数学史在整个人类文明史上有着特殊地位,这是由数学的文化特点决定的。
数学文化特点有以下几个方面:(1)数学以抽象的形式,追求高度精确、可靠的知识。
(2)数学追求最大限度的一般性模式特别是一般性算法的倾向。
(3)数学是创造性活动的结果,追求艺术和美的特征。
3历史上对数学的认识:亚里斯多德:量的科学;笛卡儿:顺序与度量的科学;恩格斯:空间形式与数量关系;美国学者:关于模式的科学。
第二章古代希腊数学主题:论证数学的形成与发展1论证数学的开端:论证数学的鼻祖:泰勒斯(前625-前547)和毕达哥拉斯(前580-前500)。
(1)泰勒斯:发现了许多几何命题(圆被直径平分……);开创了几何命题的逻辑论证;天文测量。
他的逸闻趣事具有很好的教育意义。
(2)毕达哥拉斯及其学派致力于哲学与数学的研究,提出了“万物皆数”是信念,推动了证明的逻辑信念的形成。
主要成果:发现毕达哥拉斯定理及其数组;几何定理的证明;正多边形(正五和正十边形)与正多面体作图;形数(把数看成形进行研究);完全数(一个整数互为另一个的不包括自身的因数之和);亲和数(两个整数互为另一个的因数(不包括自身)之和);不可公度量(实质是证明了2是无理数)的发现。
(注:什么是“可公度量”?对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
这样的两条线段为“可公度量”,即有公共度量的度量单位。
这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反映。
)3亚历山大时期(全盛时期)主要代表人物:欧几里得、阿基米德和阿波罗里奥斯(1)欧几里得:主要代表作《原本》(又称为《几何原本》)。
他用公理化方法对当时的数学知识作了系统化、理论化的总结。
数学史复习资料一、选择题1、对古代埃及数学成就的了解主要来源于(A)A纸草书 B羊皮书 C泥版 D金字塔内的石刻2、对古代巴比伦数学成就的了解主要来源于(C)A纸草书 B羊皮书 C泥版 D金字塔内的石刻3、《九章算术》中的“阳马”是指一种特殊的(B)A棱柱 B棱锥 C棱台 D楔形体4、射影几何产生于文艺复兴时期的(C)A音乐演奏 B服装设计 C绘画艺术 D雕刻艺术5、欧洲中世纪漫长的黑暗时期过后第一位有影响的数学家是(A)。
A斐波那契 B卡尔丹 C塔塔利亚 D费罗6、被称作“第一位数学家和论证几何学的鼻祖”的数学家是(B)A欧几里得 B泰勒斯 C毕达哥拉斯 D阿波罗尼奥斯7、被称作“非欧几何之父”的数学家是(D)A波利亚 B高斯 C魏尔斯特拉斯 D罗巴切夫斯基8、对微积分的诞生具有重要意义的“行星运行三大定律”其发现者是(C)A伽利略 B哥白尼 C开普勒 D牛顿9、公元前世纪数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?(C) A不可公度数 B化圆为方 C倍立方体 D三等分角10、印度古代数学著作《计算方法纲要》的作者是(C)A阿耶波多 B婆罗摩笈多 C马哈维拉 D婆什迦罗11、最早证明了有理数集是可数集的数学家是(A)A康托尔 B欧拉 C魏尔斯特拉斯 D柯西12、下列哪一位数学家不属于“悉檀多”时期的印度数学家?(C)A阿耶波多 B马哈维拉 C奥马海亚姆 D婆罗摩笈多13、在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家是(A) A希尔伯特 B庞加莱 C罗素 D F克莱因14、与祖暅原理本质上一致的是(D)A德沙格原理 B中值定理 C泰勒定理 D卡瓦列里原理.15、我国元代数学著作《四元玉鉴》的作者是(C)A秦九韶 B杨辉 C朱世杰 D贾宪.16、就微分学与积分学的起源而言(A)A积分学早于微分学 B微分学早于积分学 C积分学与微分学同期 D不确定.17、在现存的中国古代数学著作中最早的一部是(D)A《孙子算经》 B《墨经》 C《算数书》 D《周髀算经》.18、中国古典数学发展的顶峰时期是(D)A两汉时期 B隋唐时期 C魏晋南北朝时期 D宋元时期.19、大数学家欧拉出生于(A)A瑞士 B奥地利 C德国 D法国.20、首先获得四次方程一般解法的数学家是(D)A塔塔利亚 B卡当 C费罗 D费拉利.21、世界上讲述方程最早的著作是( A)A.中国的《九章算术》B.阿拉伯花拉子米的《代数学》C.卡尔丹的《大法》D.牛顿的《普遍算术》22.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为(BA.托勒玫B.帕波斯C.阿波罗尼奥斯D.丢番图23.美索不达米亚是最早采用位值制记数的民族,他们主要用的是(AA.六十进制B.十进制C.五进制D.二十进制24."一尺之棰,日取其半,万世不竭"出自我国古代名著(B)。
中国数学史各阶段的特点1.引言1.1 概述中国数学史是指中国数学发展的历史过程,经历了古代、中世纪和近代三个阶段。
每个阶段都具有自己独特的特点和贡献。
本文将详细探讨每个阶段的数学特点,并总结各个阶段的特点,同时对未来发展方向进行展望。
在古代数学阶段,中国数学的特点主要体现在其对整数、代数、几何和算法的研究上。
古代中国人培养了一种强大的计算能力,他们通过日常生活中的实际问题激发了数学研究的动力。
重要的数学著作如《九章算术》和《孙子算经》被广泛传播和使用,成为后来数学发展的基础。
古代数学家在几何学上取得了突破,发展了割圆术和尺规作图法等重要的几何方法。
此外,他们还在代数学方面引入了象数、算术和代数基本理论,使得数学在提升计算能力的同时也开始具备了抽象思维能力。
进入中世纪数学阶段,中国数学面临了一定的停滞和衰退。
这个时期受到了外来文化的影响,特别是印度和阿拉伯数学的传入。
因此,在一段时间内,中国数学的发展主要借鉴了这些外来数学的成就。
然而,尽管主要受外来文化的影响,中国数学家依然在算法、代数和几何等方面进行了创新。
值得一提的是,中世纪时期中国数学家发展了一种新的计算方法,即推算和筹算,这种方法将数学与实际问题相结合,为后来数学的应用奠定了坚实基础。
进入近代数学阶段,中国数学经历了现代科学的兴起和西方数学的传入。
这个时期,中国数学面临了重大的挑战和机遇。
中国数学家开始研究西方的数学方法和理论,并通过翻译和借鉴逐渐吸收了西方数学的成就。
这使得中国数学在代数、几何、数论和概率论等领域取得了突破性的进展。
同时,中国数学家也借鉴了现代科学研究的方法和理念,将实证主义和数学方法相结合,为中国数学的发展开辟了新的道路。
总结各个阶段的特点,古代数学以其强大的计算能力和几何研究的突破而闻名;中世纪数学虽然受到外来文化的影响,但仍然在算法和几何等方面有所创新;近代数学则面临着西方数学的传入和现代科学思想的冲击,为中国数学发展带来了宝贵的机遇和挑战。
数学史上的重要数学家与突破性成果数学是一门古老而重要的学科,它的发展离不开无数杰出的数学家们的贡献。
他们通过不懈的探索和努力,不仅为我们揭示了数学的奥秘,还取得了突破性的成果。
本文将介绍数学史上的一些重要数学家及其所取得的突破性成果。
欧几里得(Euclid)欧几里得是古希腊的数学家,他被誉为几何学之父。
他的著作《几何原本》是世界上流传最广的数学著作之一。
在这本著作中,欧几里得以逻辑严密的方式阐述了几何学的基本概念和定理。
他的突破性成果在于建立了几何学的公理化体系,奠定了几何学的基础。
阿基米德(Archimedes)阿基米德是古希腊的物理学家、数学家和工程师,他被称为古代最伟大的数学家之一。
他的突破性成果包括浮力定律、杠杆原理和球的体积计算公式等。
阿基米德的研究对数学、物理学和工程学的发展产生了深远的影响。
牛顿(Isaac Newton)牛顿是17世纪英国的科学家和数学家,也是现代物理学和数学的奠基人之一。
他发明了微积分学,并通过其研究揭示了物体运动的规律,提出了万有引力定律。
牛顿的突破性成果使得人类对宇宙的理解有了新的突破,对后来的科学研究产生了深远的影响。
高斯(Carl Friedrich Gauss)高斯是18世纪德国的数学家,他是现代数学的开创者之一。
他在数论、代数、几何和物理学等领域都有重要贡献。
高斯提出了正规分布的概念,并建立了高斯函数,这对统计学和概率论有很大的影响。
他还发现了多边形面积的公式和二次互反律等重要结果。
黎曼(Bernhard Riemann)黎曼是19世纪德国的数学家,他对数学分析和几何学的发展做出了巨大的贡献。
他提出了黎曼几何的概念,将几何学从欧氏几何扩展到了更一般的情况。
黎曼的研究开创了拓扑学和微分几何的新领域,为现代数学的发展奠定了基础。
这些数学家以及他们所取得的突破性成果为数学的发展做出了重要贡献。
他们的工作不仅拓宽了人类对数学的认识,还为后代的数学家们提供了宝贵的启示。
《数学史》习题总体要求每一讲写一600字左右的读书笔记,30% 记录学期总成绩。
第一讲数学的起源与早期发展1、您对《数学史》课程的期望。
2、谈谈您的理解:数学是什么?3、数学崇拜与数学忌讳。
4、从数学的起源简述人类活动对文化发展的贡献。
5、数的概念的发展给我们的启示。
6、探讨古代埃及和古代巴比伦的数学知识在现实生活中的意义。
第二讲古代希腊数学1、试分析芝诺悖论:飞矢不动。
2、欧几里得《原本》对数学以及整个科学的发展有什么意义?3、简述欧几里得《原本》的现代意义?4、以“化圆为方”问题为例,说明未解决问题在数学中的重要性。
5、体验阿基米德方法:通过计算半径为1的圆内接和外切正96边形的周长,计算圆周率的近似值,计算到小数点后3位数。
6、毕达哥拉斯学派是怎样引起第一次数学危机的?他们为什么要对这次数学危机采取回避的态度?第三讲:中世纪的东西方数学I1、简述刘徽的数学贡献。
2、用数列极限证明:圆内椄正6•2^{n}边形的周长的极限是圆周长。
3、《九章算术》在中国数学发展史上的地位和意义如何?4、试比较阿基米德证明体积计算公式的方法与中国古代数学家的球体积计算公式的推导方法的异同。
5、更精确地计算圆周率是否有意义?谈谈您的理由。
6、分析宋元时期中国传统数学兴盛的社会条件。
第四讲:中世纪的东西方数学II1、印度数学对世界数学发展最重要的贡献是什么?他们的数学发展有何重要贡献?2、有关零号“0”的历史。
3、简述阿尔·花拉子米的数学贡献。
4、论述阿拉伯数学对保存希腊数学、传播东方数学的作用。
5、试说明:古代东方数学的特点之一是以计算为中心的实用化数学。
6、求斐波那契数列的通项公式。
第五讲:文艺复兴时期的数学1、阐述天文学革命对近代数学兴起的影响。
2、简述符号“+”、“-”的历史。
3、通过具体例子说明16世纪的意大利数学家是如何求解三、四方程的。
4、学习珠算有现实作用吗?5、简述欧几里得《原本》在中国出版的历史意义。
数学发展史中的几次重大思想方法的突破首先,公理化方法是数学发展史中一次重要的思想方法的突破。
在古希腊数学中,几何学以欧几里德的《几何原本》为代表,第一次使用公理化方法来建立数学理论体系。
公理化方法是基于一系列不需要证明但被普遍接受的基本命题(公理)来建立数学理论。
这种方法赋予了数学以逻辑和严谨性,成为后来数学发展的基石。
其次,演绎推理是另一个重大的思想方法的突破。
亚里士多德是演绎推理的先驱者,他系统地阐述了逻辑学和演绎推理的原理。
演绎推理是通过采用一套准则和规则,从已知的命题出发,以无可争辩的方式推出新的结论。
这一思想方法的突破加深了数学证明的严谨性和逻辑性,并为后来符号逻辑和集合论的发展奠定了基础。
第三,无限元素和无穷极限的概念的引入是数学史中的重大突破。
在古希腊数学中,人们主要关注有限的几何图形和数量,直到十七世纪才发展出对无限的概念。
这个突破是由数学家如托勒密、阿基米德和爱因斯坦的贡献推动的。
无限元素和无穷极限的概念赋予了数学一种新的动力和可能性,使得数学能够处理更为复杂的问题,并在微积分的发展中发挥了重要作用。
最后,抽象代数的发展也是一次重要的思想方法的突破。
抽象代数通过研究代数结构中的一般性质和规律,摆脱了具体的数值和几何直观,深化了对数学结构本质的理解。
这一突破由数学家如埃瓦里斯特·加罗华、诺特·亨德里克·阿贝尔和埃米尔·诺特贝克推动,对现代数学的发展起到了关键的作用,例如群论和环论等数学分支。
这些重大思想方法的突破不仅创造了数学的新领域和方法,也为科学和技术的发展提供了坚实的基础。
它们推动了数学从实用主义的学科向一门更为抽象和理论的学科的转变,使得数学的研究更加深入、广泛和严谨。
无论是公理化方法、演绎推理、无限元素和无穷极限,还是抽象代数的突破,它们都是数学史上的重要里程碑,对数学的发展产生了深远的影响。