椭圆偏振仪测量薄膜厚度和折射率PPT课件
- 格式:ppt
- 大小:1.39 MB
- 文档页数:30
103实验十二 用椭偏仪测薄膜厚度与折射率随着半导体和大规模集成电路工艺的飞速发展,薄膜技术的应用也越加广泛。
因此,精确地测量薄膜厚度与其光学常数就是一种重要的物理测量技术。
目前测量薄膜厚度的方法很多。
如称重法、比色法、干涉法、椭圆偏振法等。
其中,椭圆偏振法成为主要的测试手段,广泛地应用在光学、材料、生物、医学等各个领域。
而测量薄膜材料的厚度、折射率和消光系数是椭圆偏振法最基本,也是非常重要的应用之一。
实验原理由于薄膜的光学参量强烈地依赖于制备方法的工艺条件,并表现出明显的离散性,因此,如何准确、快速测量给定样品的光学参量一直是薄膜研究中一个重要的问题。
椭圆偏振法由于无须测定光强的绝对值,因而具有较高的精度和灵敏度,而且测试方便,对样品无损伤,所以在光学薄膜和薄膜材料研究中受到极大的关注。
椭圆偏振法是利用椭圆偏振光入射到样品表面,观察反射光的偏振状态(振幅和位相)的变化,进而得出样品表面膜的厚度及折射率。
氦氖激光器发出激光束波长为632.8nm 的单色自然光,经平行光管变成单色平行光束,再经起偏器P 变成线偏振光,其振动方向由起偏器方位角决定,转动起偏器,可以改变线偏振光的振动方向,线偏振光经1/4波片后,由于双折射现象,寻常光和非寻常光产生π/2的位相差,两者的振动方向相互垂直,变为椭圆偏振光,其长、短轴沿着1/4波片的快、慢轴。
椭圆的形状由起偏器的方位角来决定。
椭圆偏振光以一定的角度入射到样品的表面,反射后偏振状态发生改变,一般仍为椭圆偏振光,但椭圆的方位和形状改变了。
从物理光学原理可以知道,这种改变与样品表面膜层厚度及其光学常数有关。
因而可以根据反射光的特性来确定膜层的厚度和折射率。
图1为基本原理光路。
图2为入射光由环境媒质入射到单层薄膜上,并在环境媒质——薄膜——衬底的两个界面上发生多次折射和反射。
此时,折射角满足菲涅尔折射定律332211sin sin sin ϕϕϕN N N ==(1)104 其中N 1,N 2和N 3分别是环境媒质、= n – i k );ϕ1为入射角、 ϕ2 和ϕ3分别为薄膜和衬底的折射角。
椭偏光法测量薄膜的厚度和折射率1. 实验目的(1) 了解椭偏光法测量原理和实验方法; (2) 熟悉椭偏仪器的结构和调试方法; (3) 测量介质薄膜样品的厚度和折射率。
2. 实验原理本实验介绍反射型椭偏光测量方法。
其基本原理是用一束椭偏光照射到薄膜样品上,光在介质膜的交界面发生多次的反射和折射,反射光的振幅和位相将发生变化,这些变化与薄膜的厚度和光学参数(折射率、消光系数等)有关,因此,只要测出反射偏振状态的变化,就可以推出膜厚度和折射率等。
2.1 椭圆偏振方程图1所示为均匀、各向同性的薄膜系统,它有两个平行的界面。
介质1为折射率为n 1的空气,介质2为一层厚度为d 的复折射率为n 2的薄膜,它均匀地附在复折射率为n 3的衬底材料上。
φ1为光的入射角,φ2和φ3分别为薄膜中和衬底中的折射角。
光波的电场矢量可分解为平行于入射面的电场分量(p 波)和垂直于入射面的电场分量(s 波)。
用(I p )i 和(I s )i 分别代表入射光的p 分量和s 分量,用(I p )r 和(I s )r 分别代表各反射光O p ,I p ,II p ···中电矢量的p 分量之和及各束反射光s 分量之和。
定义反射率(反射系数)r 为反射光电矢量的振幅与入射光电矢量的振幅之比。
则由菲涅耳公式,有 对空气-薄膜界面I :r 1p =n 2cosφ1−n 1cosφ2n 2cosφ1+n 1cosφ2(1)r 1s =n 1cosφ1−n 2cosφ2n 1cosφ1+n 2cosφ2(2)对薄膜-衬底界面II :r 2p =n 3cosφ2−n 2cosφ3n 3cosφ2+n 2cosφ3(3)r 2s =n 2cosφ2−n 3cosφ3n 2cosφ2+n 3cosφ3图1 薄膜系统的光路示意图I pO pI pII p根据折射定律,有n1sinφ1=n2sinφ2=n3sinφ3(5) 由图1,可算出任意两相邻反射光之间的光程差为l=2n2dcosφ2相应的相位差为2δ=360°λl于是可得δ=360°λd(n22−n12sin2φ1)12⁄(6)另一方面,由多束光干涉原理来考察空气-薄膜-衬底作为一个整体系统的总反射系数,以R p 和R s分别表示这个系统对p波和s波的总反射系数,则由图1可知,对p波,R p由O p,I p,II p···各级反射光叠加合成。
椭圆偏振光法测量薄膜的厚度和折射率摘要:本实验中,我们用椭圆偏振光法测量了MgF 2,ZrO 2,TiO 2三种介质膜的厚度和折射率,取MgF 2作为代表,测量薄膜折射率和厚度沿径向分布的不均匀性,此外还测量了Au 和Cr 两种金属厚膜的折射率和消光系数。
掌握了椭圆偏振光法的基本原理和技术方法。
关键词:椭偏法,折射率,厚度,消光系数 引言:薄膜的厚度和折射率是薄膜光电子器件设计和制备中不可缺少的两个参数。
因此,精确而迅速地测定这两个参数非常重要。
椭圆偏振光法就是一个非常重要的方法。
将一束单色椭圆偏振光投射到薄膜表面,根据电动力学原理,反射光的椭偏状态与薄膜厚度和折射率有关,通过测出椭偏状态的变化,就可以推算出薄膜的厚度和折射率。
椭圆偏振光法是目前测量透明薄膜厚度和折射率时的常用方法,其测量精度高,特别是在测量超薄薄膜的厚度时其灵敏度很高,因此常用于研究薄膜生长的初始阶段,而且由于这种方法时非接触性的,测量过程中不破坏样品表面,因而可用于薄膜生长过程的实时监控。
本实验的目的是掌握椭偏法测量薄膜的厚度和折射率的原理和技术方法。
测量几种常用介质膜的折射率和厚度,以及金属厚膜的复折射率。
原理:1. 单层介质膜的厚度和折射率的测量原理(1)光波在两种介质分界面上的反射和折射,有菲涅耳公式:121122112112211122322323223223322233cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos p s p s n n r n n n n r n n n n r n n n n r n n ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ-⎧=⎪+⎪-⎪=⎪+⎪⎨-⎪=⎪+⎪-⎪=⎪+⎩(tp-1); (2)单层膜的反射系数图1 光波在单层介质膜中传播以上各式中1n 为空气折射率,2n 为膜层的折射率,3n 为衬底折射率。
1ϕ为入射角,2ϕ,3ϕ分别为光波在薄膜和衬底的折射角。
其中:这时需测四个量,即分别测入射光中的两分量振幅比和相位差及反射光中的两分量振幅比和相位差,如设法使入射光为等幅椭偏光,/ = 1,则tg ψ=|/|;对于相位角ip E is E rp E rs E ,有:∆因为入射光-连续可调,调整仪器,使反射光成为线偏光,即-=0或π,则ip βis βrp βrs βΔ=-(-)或Δ=π-(-),可见Δ只与反射光的p 波和s 波的相位差有关,可从ip βis βip βis β起偏器的方位角算出。
对于特定的膜,Δ是定值,只要改变入射光两分量的相位差(-ip β),肯定会找到特定值使反射光成线偏光,-=0或π。
is βrp βrs β2.椭偏法测量和的实验光路∆ψ1)等幅椭圆偏振光的获得,如图1-2。
2)平面偏振光通过四分之一波片,使得具有±π/4相位差。
3)使入射光的振动平面和四分之一波片的主截面成45°。
图 1-2反射光的检测将四分之一波片置于其快轴方向f 与x 方向的夹角α为π/4的方位,E0为通过起偏器后的电矢量,P 为E0与x 方向间的夹角。
,通过四分之一波片后,E0沿快轴的分量与沿慢轴的分量比较,相位上超前π/2。
在x 轴、y 轴上的分量为:由于x 轴在入射面内,而y 轴与入射面垂直,故就是,就是。
x E ip E y E is E图 1-3由此可见,当α=π/4时,入射光的两分量的振幅均为E0 / √2,它们之间的相位差为2P-π/2,改变P 的数值可得到相位差连续可变的等幅椭圆偏振光。
这一结果写成:实验仪器:本实验使用多功能激光椭圆偏振仪,由JJY型1'分光计和激光椭圆偏振装置两部分组成,仪器安装调试后如图19.6所示,其各部件功能如下:光源:包括激光管和激光电源。
激光管装在激光器座上,可以作水平、高低方位角调节和上下升降调节,发射632.8nm的单色光1.He-Ne激光管2.小孔光闸3.平行光管4.起偏器5.1/4 波片6.被测样品7.载物台8.光孔盘9.检偏器10.塑远镜筒11.白屏镜小孔光闸:保证激光器发出的激光束垂直照射在起偏器中心。
实验背景介绍椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。
椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。
结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。
实验原理在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。
通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1)图(1-1)这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ ,用r1p、r1s 表示光线的p分量、s分量在界面1、2间的反射系数,用r2p、r2s表示光线的p分、s分量在界面2、3间的反射系数。
由多光束干涉的复振幅计算可知:其中E ip和E is分别代表入射光波电矢量的p分量和s分量,E rp和E rs分别代表反射光波电矢量的p分量和s分量。
现将上述E ip、E is、E rp、E rs四个量写成一个量G,即:我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。
上述公式的过程量转换可由菲涅耳公式和折射公式给出:G是变量n1、n2、n3、d、λ、φ1的函数(φ2、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程:[tgψe iΔ]的实数部分=的实数部分[tgψe iΔ]的虚数部分=的虚数部分若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:由上式经计算机运算,可制作数表或计算程序。
椭偏仪测量薄膜厚度和折射率实验目的:1.了解椭偏仪测量薄膜参数的原理.2.初步掌握反射型椭偏仪的使用方法.实验原理:在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的.通常,设介质层为n 1、n 2、n 3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1)12 衬底n3 3ϕ 图 1-1这里我们用2δ表示相邻两分波的相位差,其中δ=λϕπ/cos 222dn ,用r 1p 、 r 1s 表示光线的p 分量、s 分量在界面1、2间的反射系数, 用r 2p 、r 2s 表示光线的p 分、s 分量在界面2、3间的反射系数. 由多光束干涉的复振幅计算可知:ip i p p i p p rp E e r r e r r E δϕ2212211--++=… (1) is i s s i s s rs E e r r e r r E δϕ2212211--++= (2)其中E ip 和E is 分别代表入射光波电矢量的p 分量和s 分量,E rp 和E rs 分别代表反射光波电矢量的p 分量和s 分量.现将上述E ip 、E is 、E rp 、E rs 四个量写成一个量G ,即: ∆==i isip rs rp e tg E E E E G ψ//=δϕ2212211i p p i p p e r r e r r --++·δϕ2212211i s s i s s er r e r r --++ …(3) 我们定义G 为反射系数比,它应为一个复数,可用ψtg 和∆表示它的模和幅角.上述公式的过程量转换可由菲涅耳公式和折射公式给出:G 是变量n 1、n 2、n 3、d 、λ、1ϕ的函数(2ϕ 、3ϕ可1ϕ用表示 ) ,即f tg 1-=ψ, f arg =∆ , 称ψ和∆为椭偏参数,上述复数方程表示两个等式方程:[∆i e tg ψ]的实数部分=[δϕ2212211i p p i p p e r r e r r --++δϕ2212211i s s i s s e r r e r r --++]的实数部分[∆i e tg ψ]的虚数部分=[δϕ2212211i p p i p p e r r e r r --++δϕ2212211i s s i s s er r e r r --++]的虚数部分 若能从实验测出ψ和∆的话,原则上可以解出n 2和d (n 1、n 3、λ、1ϕ已知),根据公式(4)~(9),推导出ψ和∆与r 1p 、r 1s 、r 2p 、r 2s 、和δ的关系:δδψ2cos 212cos 2[212212212212p p pp p p p p r r r r r r r r tg ++++=δδ2cos 22cos 21212212212212s s s s s s s s r r r r r r r r ++++⋅]1/2…(10) δδ2cos )1()1(2sin )1(1222211221p p p p p p r r r r r r tg +++--=∆-δδ2cos )1()1(2sin )1(1222211221s s s s s s r r r r r r tg+++----…(11) 由上式经计算机运算,可制作数表或计算程序. 这就是椭偏仪测量薄膜的基本原理.若d 是已知,n 2为复数的话,也可求出n 2的实部和虚部.那么,在实验中是如何测定ψ和∆的呢?现用复数形式表示入射光和反射光ip i ip ip e E E β= isi is is e E E β= rp i rp rp e E E β= rs i rs rs e E E β= …(12) 由式(3)和(12),得:G=∆i e tg ψ=)}(){(//is ip rs rp i isip rs rp eE E E E ββββ--- (13)其中: =ψtg isip rs rp E E E E // , ∆i e =)}(){(is ip rs rp i eββββ--- (14)这时需测四个量,即分别测入射光中的两分量振幅比和相位差及反射光中的两分量振幅比和相位差,如设法使入射光为等幅椭偏光,1/=is ip E E ,则=ψtg rs rp E E /;对于相位角,有:)()(is ip rs rp ββββ---=∆ ⇒ =-+∆is ip ββrs rp ββ- (14)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+-=+-=+-=+-=)9.....(..............................cos cos cos )8..(................................................../cos 42)7)......(cos cos /()cos cos ()6).......(cos cos /()cos cos ()5).....(cos cos /()cos cos ()4)......(cos cos /()cos cos (33221122332233222221122111322332232211221121ϕϕϕλϕπδϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕn n n dn n n n n r n n n n r n n n n r n n n n r s s p p因为入射光is ip ββ-连续可调,调整仪器,使反射光成为线偏光,即rs rp ββ-=0或(π), 则)(is ip ββ--=∆或)(is ip ββπ--=∆,可见∆只与反射光的p 波和s 波的相位差有关,可从起偏器的方位角算出.对于特定的膜, ∆是定值,只要改变入射光两分量的相位差)(is ip ββ-,肯定会找到特定值使反射光成线偏光, rs rp ββ-=0或(π).实际检测方法①等幅椭圆偏振光的获得(实验光路如图1-2),相位上超前2/π.⎪⎪⎩⎪⎪⎨⎧-=-=)4sin()4cos(02/0πππP E E P e E E s i f在x 轴、y 轴上的分量为:)4/(2/0224/sin 4/cos ππππ-=-=P i i s f x e e E E E E )4/(2/0224/cos 4/sin ππππ--=+=P i i s f y e e E E E E由于x 轴在入射面内,而y 轴与入射面垂直,故E x 就是E ip ,E y 就是E is .⎪⎪⎩⎪⎪⎨⎧==+0)4/(02222i is P i ip e E E e E E π图1-3由此可见,当4/πα=时,入射光的两分量的振幅均为2/20E ,它们之间的相位差为2/2π-P ,改变P 的数值可得到相位差连续可变的等幅椭圆偏振光.这一结果写成: 1/=is ip E E , 22πββ-=-P is ip同理, 当4/πα-=时,入射光的两分量的振幅也为2/20E ,相位差为)22(P -π.数据记录及处理:41波片置45+︒的位置:41波片置45-︒的位置: 将上面数据输入计算机内得到d 和n 如下:厚度为:d =122nm,折射率为:n=2.29误差分析:1.主观误差.此类误差在本实验中是引起误差的主要因素,因为在判断光斑亮度时完全依据人眼去判断而无具体可测指标,故在判断消光时,靠人眼分辨不是很准确,而实验中又多次要用观察,因此产生很大误差。