定义
文字语言 符号语言
设A⊆S,由S中不属于A的所有元素组成的集合 称为S的子集A的补集 ∁SA={x|x∈S,且x∉A}
图形语言
(1)A⊆S,∁SA⊆S; (2)∁S(∁SA)=A; 性质 (3)∁SS=∅,∁S∅=S; (4)A∪(∁SA)=S; (5)A∩(∁SA)=∅
题型探究
类型一 判断集合间的关系
解答
(2)若一个集合有n(n∈N)个元素,则它有多少个子集?多少个真子集? 验证你的结论. 解 若一个集合有n(n∈N)个元素,则它有2n个子集,2n-1个真子集. 如∅,有一个子集,0个真子集.
解答
反思与感悟
为了罗列时不重不漏,要讲究列举顺序,这个顺序有点类似于从1到 100数数:先是一位数,然后是两位数,在两位数中,先数首位是1的 等等.
本课结束
再见
2019/11/21
第1章 集合
1.2 子集、全集、补集
学习目标
1.理解子集、真子集、全集、补集的概念. 2.能用符号和Venn图,数轴表达集合间的关系. 3.掌握列举有限集的所有子集的方法,给定全集,会求补集.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 子集
思考
如果把“马”和“白马”视为两个集合,则这两个集合中的元 素有什么关系? 答案 所有的白马都是马,马不一定是白马.
12345
解析
答案
4.若A={x|x>a},B={x|x>6},且A⊆B,则实数a的取值范围是__[6_,__+__∞__).
12345
答案
5.设集合U={1,2,3,4,5,6},M={1,2,4},则∁UM等于_{_3_,_5_,6_}__.