第五章热水系统设计与计算
- 格式:doc
- 大小:253.00 KB
- 文档页数:13
建筑内部热水系统的计算:(1) 热水量按要求取每日供应热水的时间为24h,取计算用的热水供水温度为70C ,冷水温度为10C ,由表9-3取60C 的热水用水定额为200L/床.d.则4-6层客房部分的热水最高日用水量为:Q dr =120*200*10-3=24m 3/d (60C 热水) 其中120为4—6层客房部分总床位数,折合成70C 热水的最高日用水量为: Q dr =24*(60—10)/(70—10)=20 m 3/d 70C 时最高日最大小时用水量为:按120个床位计,K h 按表9—6可取7.5,则Q hmax =K h * Q dr /T=7。
5*20/24=6.25 m 3/h=1.74L/s 再按卫生器具1h 用水量计算:浴盆共48套,b=60%,K r =(t h -t l )/(t r -t l )=0。
5查表9—4,q h =300L/h (40C),代入公式9—2得:Q hr =ΣK r q h n 0b=0.5*300*48*0。
6=4320 L/h=4.32 m 3/h比较Q hmax 与Q hr 两者结果存在差异,为供水安全起见,取较大者作为设计小时用水量,即Q r =6.25 m 3/h=1.74L/s.(2) 耗热量将已知数据代入公式(9-4)Q=C B ΔtQ r =4190*(70—10)*1.74=437436w=437。
4kw 。
(3) 加热设备选择计算拟采用半容积式水加热器,设蒸汽表压为1。
96*105pa,相对应的绝对压强为2.94*105pa ,其饱和温度为t s =133C ,按公式(9-8(a ))可计算出Δt j Δt j =(t mc +t mz )/2—(t c +t z )/2=133-(10+70)/2=93C根据半容积式水加热器有关资料,铜盘管的传热系数为1047w/m 2.C ,ε取0。
7,α取1。
2. 代入公式(9-8)得:Fp=αQ/εK Δt j =1。
.太阳能热水系统设计计算.1基本参数(1) 用水人数404号楼共有住户21户,每户以2.8人计,用水人数共计约59人。
(2) 用水定额(热水定额)404号楼有集中热水供应和淋浴设备,每人每日用热水定额以60℃热水计算,取100L/人·d。
(3) 用水时间24小时全日供应热水2设计计算(1) 设计小时耗热量的计算式中:Qh—设计小时耗热量(W)m—用水人数qr—热水用水定额(L/人·d)Qh—水的比热,c=4187(J/kg·℃)tr—热水温度,tr=60(℃)tL—冷水温度,tL=10(℃)r—热水密度(kg/L),r=0.983kg/Lkh—小时变化系数,kh=5.12Qh=71951(W)(2) 设计小时热水量式中:qrh—设计小时热水量(L/h)h—设计小时耗热量(W)tr—设计热水温度(℃),tr=55(℃)tL—设计冷水温度(℃),tL=10(℃)r—热水密度(kg/L),r=0.986(kg/L)qrh=1394.32(L/h)(3) 全日供应热水系统的热水循环流量式中:qx—全日供应热水的循环流量(L/h)Qs—配水管道的热损失(W),取设计耗热量的5%△t—配水管道的热水温度差(℃),取5℃qx= 615.6(L/h)(4) 热水供水管的设计秒流量q(L/s)计算最大用水时卫生器具给水当量平均出流概率式中:Uo—生活给水管道的最大用水时卫生器具给水当量平均出流概率(%)qr—最高热水用水定额m—每户用水人数kh—热水小时变化系数Ng—每户设置的卫生器具给水当量数T—用水时数(h)0.2—一个卫生器具,给水当量的额定流量(L/s)Uo=0.012%查《建筑给水排水设计规范》(GB50015-2003)得系统热水供水管的设计秒流量为q=2.51(L/s)。
3 设备选取(1) 蓄水箱对于太阳能热水系统,由于受自然条件(太阳辐射一天之内随时间变化)的限制,太阳能集热系统,不可能全天24小时满足设计小时用水量(qrh)的要求。
家用太阳能供热课程设计一、课程目标知识目标:1. 学生能理解太阳能供热的原理,掌握家用太阳能供热系统的基本构成及其功能。
2. 学生能描述太阳能作为一种可再生能源的优势,并了解其在生活中的应用。
3. 学生能够解释影响太阳能供热效率的主要因素,如天气、温度、光照角度等。
技能目标:1. 学生通过小组合作,设计并绘制一个家用太阳能供热系统的简易模型。
2. 学生能够运用物理和数学知识,进行简单的太阳能供热效率计算。
3. 学生能够运用批判性思维,分析太阳能供热系统的优缺点,并提出改进建议。
情感态度价值观目标:1. 学生培养对可再生能源的积极态度,认识到太阳能等清洁能源在环境保护中的重要性。
2. 学生通过本课程的学习,增强对科技创新和可持续发展的兴趣,激发其探究精神。
3. 学生通过小组合作和讨论,培养团队协作意识,增强沟通能力,形成共享与尊重的价值观。
本课程针对初中年级学生设计,课程性质为科学探究与实践。
课程充分考虑了学生的认知水平、动手能力和探究兴趣,旨在通过家用太阳能供热系统这一主题,将物理知识与生活实际紧密结合,提高学生的科学素养和环保意识。
教学要求注重理论与实践相结合,鼓励学生主动参与、积极思考,通过实际操作来达成具体的学习成果,为后续的深入学习奠定基础。
二、教学内容本课程依据课程目标,紧密围绕以下教学内容展开:1. 太阳能基础知识:介绍太阳能的定义、来源、特点,以及太阳能转换为热能的原理。
- 教材章节:第三章“太阳能及其利用”2. 家用太阳能供热系统组成:详细讲解集热器、储热水箱、循环泵、控制器等组件的功能及工作原理。
- 教材章节:第四章“太阳能热水系统”3. 影响太阳能供热效率的因素:分析太阳辐射、环境温度、集热器安装角度等对供热效率的影响。
- 教材章节:第五章“太阳能热水系统设计与优化”4. 太阳能供热系统简易模型设计与绘制:指导学生分组设计并绘制家用太阳能供热系统简易模型。
- 教材章节:第六章“太阳能热水系统实践”5. 太阳能供热效率计算:教授学生运用物理和数学知识进行简单效率计算。
热水系统设计第一节热水用水定额及水温热水用水定额1.生活热水用水定额生活热水用水定额应根据水温、卫生设备完善程度、热水供应时间、当地气候条件和生活习惯等确定。
1)集中供应热水时,各类建筑的热水用水定额可按表1《热水用水定额》确定。
2)卫生器具一次和一小时热水用水定额及其热水温度可按表2《卫生洁具的一次用水量和一小时的热水用水定额》采用。
2.生产热用水定额生产热水用量和小时变化系数,应根据工艺要求或同类型生产实际数据确定。
表1 热水用水定额表2 卫生洁具的一次用水量和一小时的热水用水定额备注:一般车间是指《工业企业设计卫生标准》中规定的3、4级卫生特征的车间;脏车间是指1、2级卫生特征的车间第二节热水温度1.热水使用温度生活热水使用温度◆各种卫生器具的热水用水温度,见:表2《卫生洁具的一次用水量和一小时的热水用水定额》◆其中淋浴器的用水温度,应根据气候条件、使用对象确定,在计算热水用量和耗热量时,一般均按40℃计算。
◆洗衣机、厨房等热水使用温度与用水对象有关,见:表3《洗衣机、厨房器具用水温度》。
2.热水供水温度热水供应系统的热水供水温度视热水系统中配水点所要求的水温而定,见:表4《热水系统供水温度》。
表3 洗衣机、厨房器具用水温度表4 热水系统供水温度◆集中热水供应系统中,在加热设备和热水管道保温条件下,加热设备出口处与配水点的热水温差,一般不大于15℃。
◆在热水供应系统中,采用较高的热水供给温度,虽然可增加蓄热量,减小热水箱的容积,但过高的水温具有如下缺点:1)用水时容易发生烫伤事故。
2)加热设备和管道的热损失增大,增加能耗。
3)采用镀锌钢管时,管道的腐蚀和结垢严重,缩短管道使用寿命。
因此,热水系统加热器出口水温不应高于75℃。
人洗浴的最佳期温度在38℃-42℃之间,老人及儿童的最佳温度会不同,当然就舒适性而言,最佳温度因人而宜。
◆热水系统中,水加热器和管道的散热能耗与配水点要求的水温成正比。
居住建筑太阳能热水系统设计规范1.1 一般规定1.1.1 居住建筑太阳能集热器,应根据各种集热器的技术经济性能确定采用平板型集热器、真空管集热器或其它先进适用的集热器。
1.1.2 采用太阳能热水器供热水的居住建筑,应根据建筑类型及室内给水系统的条件,经综合技术分析选择太阳能热水系统的类型。
1.1.3 安装在建筑物屋面、墙面、阳台和其它部位的太阳能集热器、支架及连接管线,应预设预埋固定件和套管。
1.1.4 太阳能热水系统的垂直管线不应明敷在建筑外墙上,严禁敷设在建筑物的风道内。
1.2 集热器1.2.1 集热器的最佳安装方位应朝向正南或正南偏西,若受条件限制时,其偏差允许范围宜在正南±15°以内。
1.2.2 集热器的安装倾角,应根据热水的使用季节和地理纬度确定:1. 偏重考虑春、夏、秋三季使用效果时θ=φ(1.2.2-1)2. 偏重考虑夏季使用效果时θ=φ-(0~10)°(1.2.2-2)3. 偏重考虑冬季使用效果时θ=φ+(0~10)°(1.2.2-3)式中θ——太阳能集热器的安装倾角(°)φ——集热器安装地的地理纬度(°)。
1.2.3 集热器排间距以及集热器与前侧遮光物的距离:集热器的布置应避开建筑物的遮挡,建筑物的阴影长度即集热器距遮光物的水平最小净距(或集热器排间距),可按下式计算:D=H·cot Xs (1.2.3-1)式中D——集热器距离遮光物或前后排间的水平最小净距(m);H——遮光物最高点与集热器采光面最低点之间的垂直高差(m);X s——建筑物所在地冬至日上午10时的太阳高度角(全年性使用)(°)。
1.2.4 集中式的太阳能集热器可通过并联、串联或串并联相结合的方式连接成集热器组。
集热器组的串联和并联的管路布置应通过计算确定。
1.2.5 集中式的太阳能集热器阵列,应采用强制循环方式或定温放水的非循环方式。
建筑给水排水工程(建工版)教学设计3 课程单元教学设计5.4 热水用水量、耗热量的计算及加热设备的选择热水系统中,计算热水量、耗热量的目的在于选择系统所需要的设备。
其计算方法如下。
一、 热水量的计算生产用热水量根据生产工艺和生产规模确定。
生活用热水用水量的计算有下面两种方法。
1.对于居住建筑、医院、疗养院、休养所、旅馆等可按使用热水的单位数、用水量标准和小时变化系数计算,即24rhr mq K G = (5—1) 式中G r ——热水设计用水量,L/h ;m ——用热水单位数,人或床位数;q r -一热水用水量标准,L /d (按表6.2采用); K h ——小时变化系数,按表5-3,表5—4,表5—5采用。
表5—3住宅的热水小时变化系数K h 值表5—4旅馆的热水小时变化系数K h 值表5—5医院的热水小时变化系数K h 值2.对于工业企业生活间、剧院、体育馆、学校、公共浴室、专用浴室、平均人口≤4人的住宅等,可按卫生器具数,热水用水量标准与同时使用百分数计算。
100nbq G h r ∑= (5—2)式中 G r ——同上式:q h ——卫生器具一小时热水用水量(按表5-3采用),L /h ; n ——同类型卫生器具数;b ——卫生器具同时使用百分数,公共浴室、工业企业生活间、学校、剧院及体育馆(场)等浴室的淋浴器和洗脸盆按100%计,旅馆、客房卫生间内的浴盆按60~70%计,其它器具不计;医院、疗养院的病房内卫生间的浴盆按25~50%计,其它器具不计。
二、 冷热水混合的水量分配当使用与供应水温不一致时,需用冷热水混合使其达到使用温度,其冷热水量可根据热平衡关系求出,即h r h Lr Lh r G G t t t t G •=•--=ϕ (5—3)()h r h L r L h L G G t t t t G ϕ-=⎪⎪⎭⎫ ⎝⎛---=11 (5—4)h r h G G G += (5—5)式中G r 、G L 、、G h ——分别为热水水量、冷水水量、混合水量,L /s ;;t r 、t L 、t h ——分别为热水温度、冷水温度、混合水温度,℃;r ϕ——热水量占混合水量的百分数。
1.项目设计原则太阳能集热器设计项目应遵循以下几方面的设计原则,科学设计太阳热水系统,使其达到合理、可靠、先进。
(1)遵守国家相关法律、法规及太阳能、给排水、采暖和土建等专业的相关标准、规范。
(2)综合考虑产品、系统的技术先进性、运行可靠性、经济性、使用便利性和使用寿命等各方面因素,选择实用、经济的方案。
(3)系统设计应安全可靠,内置加热系统必须带有保证使用安全的装置,并根据不同地区采取防冻、防结露、防过热、防雷、防雹、抗风、抗震等技术措施。
(4)安装在建筑上或直接构成建筑围护结构的太阳能集热器,应有防止热水渗漏的安全保障措施;应设置防止太阳能集热器损坏后部件坠落伤人的安全防护设施;集热器不应跨越建筑变形缝设置。
(5)太阳能热水系统的给水应对超过有关标准的原水做水质软化处理。
(6)安装在建筑上的太阳能热水系统不得影响该部位的建筑功能,并应与建筑协调一致,保持建筑统一和谐的外观;应避免集热器的反射光对附近建筑物引起的光污染。
(7)太阳能热水系统的管线应有组织布置,做到安全、隐蔽、易于检修;为减少热损及循环阻力,循环管路尤其热水循环管路应尽量短而少弯;为了达到流量平衡和减少管路热损,绕行的管路应是冷水管或低温水管;管路的通径面积应与并联的集热器或集热器组管路通径面积的总和相适应。
(8)太阳能热水系统的结构设计应为太阳能热水系统安装埋设预埋件或其他连接件;轻质填充墙不应作为太阳能热水系统的支承结构。
储水箱和集热器的安装位置应使其在满载情况下分别满足建筑物上其所处部位的承载要求,必要时应请建筑结构专业人员复核建筑载荷。
2.项目设计要求鉴于该项目为连云港地区太阳能工程项目,并采用电辅助能源热水系统用于日常生活使用的特点,我认为,该项目设计要求有以下几点:(1)根据图纸的要求,在不影响楼房外观的情况下,合理设计太阳能热水系统,太阳能集热系统布置方式、色彩等应尽可能做到与建筑相协调。
(2)系统采用楼面太阳能集中集热方式,春、夏、秋、冬晴天以太阳能制热为主,以电辅助加热为辅。
空气源热泵热水系统计算
空气源热泵热水系统计算的重要性不言而喻。
对于建筑设计行业、能源利用等领域都有着广泛的应用。
那么该如何进行空气源热泵热水系统计算呢?
1. 确定设计需要:在进行空气源热泵热水系统计算之前,需要先确定该系统的具体设计需求。
包括每天用水量、用水温度、回水温度、热水储存量以及热负荷等方面。
只有明确了设计需求,才能够更加有效地进行计算。
2. 计算热负荷:在确定了设计需求之后,就需要进行热负荷的计算。
具体的计算方法是根据所选定的居住或者工作建筑的结构、内外围墙、门窗大小、绝热材料、暖气方式等方面因素,来对该空气源热泵热水系统的热负荷进行估算。
3. 设计热泵机组:在计算出热负荷之后,就需要根据热负荷来计算热泵机组的大小。
热泵机组的大小受到众多因素的影响,例如室内环境温度、换气量、用户需求等。
总的来说,应该选择适当的热泵机组以满足热负荷需求,但又避免机组容量的浪费。
4. 设计水回路:除了热泵机组之外,空气源热泵热水系统中的水回路也需要进行设计。
具体来说,需要确定回路的管道布置、管道长度、管道截面以及循环泵的流量等。
总之,回路设计应该满足用户需求,也应该考虑到管道本身的加热损失以及泵的效率等因素。
综上所述,空气源热泵热水系统的计算需要多方面的因素进行综合考虑,才能够得到合适的设计结果。
设计者在进行计算时,除了上述几个步骤之外,还需要特别关注环境因素以及用户需求,以便为客户提供更加高效、可靠、经济的热水供应系统。
室内热水供暖系统水力计算
首先,流量计算是确定系统中水的流量大小。
流量大小取决于所需的
供暖热负荷以及供暖设备的工作参数。
常用的热负荷计算方法有传统的经
验法和热负荷软件计算法。
计算完成后,可以得到所需的供暖流量。
其次,压降计算是确定系统中各个部分的压力降。
压力降会影响热水
在管道中的流动速度和流量分布。
通过压降计算,可以确定每段管道的压
力降以及连接部件如弯头、三通和阀门等对压力降的影响。
一般使用管网
分段法进行压降计算,将系统划分为若干段,分别计算每段管道的压力降。
最后,根据流量和压降的计算结果,可以确定所需的水泵功率。
水泵
功率计算需要考虑供水压力、供水流量以及管路的管径和长度等参数。
通
常可以根据水泵性能曲线和所需流量来确定合适的水泵型号和功率。
在进行水力计算时,还需要考虑一些其他因素。
比如,对于长距离管
道或有高度差的管道,需要考虑管道的波动防护和水锤的问题;对于系统
中的回水管道,需要考虑回水水流的阻力和回水温度的控制等。
室内热水供暖系统的水力计算是供暖工程设计的重要环节,合理的水
力计算可以确保系统正常运行、节能高效,并提供良好的供暖效果。
因此,设计人员需要对水力计算方法和相关规范进行熟悉和了解,同时结合实际
工程情况进行计算和选型。
五 热水供热系统的水力工况在热水供热系统运行过程中,往往由于种种原因,使网路的流量分配不符合各热用户要求的计算流量,因而造成各热用户的供热量不符合要求。
热水供热系统中各热用户的实际流量与要求的流量之间的不—致性,称为该热用户的水力失调。
它的水力失调程度可用实际流量与规定流量的比值来衡量,即,x=V s /V g (10-1)式中 X ——水力失调度,V s ——热用户的实际流量, V g ——该热用户的规定流量。
引起热水供热系统水力失调的原因是多方面的。
如开始网路运行时没有很好地进行初调节,热用户的用热量要求发生变化等等。
这些情况是难以避免的。
由于热水供热系统是一个具有许多并联环路的管路系统,各环路之间的水力工况相互影响,系统中任何一个热用户的流量发生变化,必然会引起其它热用户的流量发生变化,也就是在各热用户之间流量重新分配,引起了水力失调。
本章着重阐述热水供热系统水力工况的计算方法,分析热水供热系统水力工况变化的规律和对系统水力失调的影响,并研究改善系统水力失调状况的方法。
掌握这些规律和分析问题的方法,对热水供热系统设计和运行管理都很有指导作用。
例如:在设计中应考虑哪些原则使系统的水力失调程度较小(或使系统的水力稳定性高)和易于进行系统的初调节,在运行中如何掌握系统水力工况变化时,热水网路上各热用户的流量及其压力,压差的变化规律,用户引入口自动调节装置(流量调节器,压力调节器等)的工作参数和波动范围的确定等问题,都必须分析系统的水力工况。
第一节 热水网路水力工况计算的基本原理在室外热水网路中,水的流动状态大多处于阻力平方区。
因此,流体的压降与流量关系服从二次幂规律。
它可用下式表示:△P=R(l+l d )=sV 2 Pa (10-2) 式中 △P ——网路计算管段的压降,Pa ;V ——网路计算管段的水流量,m 3/h ;s ——网路计算管段的阻力数,Pa /(m 3/h)2,它代表管段通过1m 3/h 水流量时的压降; R ——网路计算管段的比摩阻,Pa /m :l 、l d ——网路计算管段的长度和局部阻力当量长度,m 。