数学物理方法大作业1
- 格式:doc
- 大小:7.58 MB
- 文档页数:23
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
基于分离变量法的波导中的电磁波研究1 空间当中的电磁波在迅变情况下,电磁场以波动形式存在,电磁场的基本方程是麦克斯韦方程组,对于在0==J σ情况下的迅变场,麦克斯韦方程组为]4[⎪⎪⎪⎭⎪⎪⎪⎬⎫=⋅∇=⋅∇∂∂=⨯∇∂∂-=⨯∇00B D t D H t B E (1)为了便于求解,通常将(1)式化为⎪⎪⎭⎪⎪⎬⎫=∂∂-∇=∂∂-∇010122222222t BcB t E c E (2) 必须指出的是,(2)式中第一式E 的三个分量X E ,y E ,z E 虽然是三个独立方程,但是其解却是相互关联的,因为(1)式到(2)式麦克斯韦方程变为二阶的麦克斯韦方程,故解的范围变大了。
为了使波动方程(2)的解是原方程(2)的解,必须是波动方程的解满足条件 0=⋅∇E 。
求解方程(1),即为求解⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂-=⨯∇=⋅∇=∂∂-∇t BE E t Ec E 0012222(3)(3)式在给定的边界条件下,可以求得定解. 对于定态电磁波,场量可以表示为t i e z y x E E ω-=),,( (4)考虑(4)式,(3)式可表示如下:⎪⎪⎭⎪⎪⎬⎫⨯∇-==⋅∇=+∇E iB E E k E ω0022(5)设电磁波为时谐波,并考虑到关系H B μ=,由(5)式可得到z y x ,,三个分量的6个标量方程:x y xH i E yE ωμγ-=+∂∂ (6) y x zH i E xE ωμγ-=-∂∂-(7) z xy H i yE xE ωμ-=∂∂-∂∂ (8) x y zE i H yH ωεγ=+∂∂ (9) y x zE i H xH ωεγ=-∂∂-(10) z xy E i yH xH ωε=∂∂-∂∂ (11) 以上6个方程经过简单运算,可以将横向场分量y x y x H H E E ,,,用两个纵向场分量z z H E ,来表示,即:)(12yE i x H k H zz cx ∂∂-∂∂-=ωεγ(12) )(12x E i y H k H zz cy ∂∂+∂∂-=ωεγ (13) )(12y H i x E k E z z cx ∂∂+∂∂-=ωμγ (14) )(12x H i y E k E z z cy ∂∂-∂∂-=ωμγ (15) 式中222k k c +=γεμω=kTM 波的纵向场分量与横向场分量关系[]1为:yE k i H zc x ∂∂=2ωε (12*) x E k i H zcy ∂∂-=2ωε (13*) xE k E zcx ∂∂-=2γ (14*)y E k E zcy ∂∂-=2γ (15*)TE 波的纵向场分量与横向场分量关系为[]1:xH k H zcx ∂∂-=2γ (12+)yH k H zc y ∂∂-=2γ (13+)yH k i E zc x ∂∂-=2ωμ (14+) x H k i E zcy ∂∂=2ωμ (15+) 2 波导内的电磁场 2.1波导的几个假设这里所讨论的波导,有以下假设:波导的横截面沿z 方向是均匀的,即波导内的电场与磁场只与坐标y x ,有关,与z 无关;构成波导壁的导体是理想导体,即∞=σ;波导内的介质各向同性,并且0=σ;波导内的电磁场为时谐场,角频率为ω。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
目录一.实际现象的描述 3二.问题的求解4(一)求弦振动泛定方程 4(二)解弦振动方程 (6)Ⅰ.达朗贝尔法求“无限和半无限的”弦振动函数 (6)Ⅱ.分离变量法求两端固定弦振动方程 (7)三.各种情形下的弦振动求解及图像 (9)四.总结21一·实际现象的描述演奏者在演奏弦乐器(如二胡、提琴)时,用弓在弦上来回拉动,并通过另一只手指在按不同弦的不同地位的协调作用,奏出各种不同的美妙的音乐。
演奏者所用的乐器不同,奏出音乐的悦耳度也就不同。
演奏者虽然用弓所接触的只是弦的很小一段,似乎应该只引起这个小段的振动,而事实上,振动总是传播到整根弦。
这振动是怎样传播的呢?如何利用数学方法来求解这种物理问题?如何通过直观的方程来说明不同乐器演奏出的音乐效果不同的原因?可否利用matlab来将这种振动直观表示出来?通过对于弦振动方程的学习,及对matlab的初步了解,我对于不同定解问题下弦振动方程的求解做了初级小结。
也尝试利用matlab 直观表述不同定解条件下的弦振动动态图像。
二·问题的求解(一)求弦振动泛定方程在求解时,我们不妨认为弦是柔软的,就是说在放松的条件下,把弦完成任意的形状,它都保持静止。
由于弦乐器所用的弦往往是很轻的,它的重量只有力的几万分之一。
跟拉力相比,弦的重量完全可以略去,这样,真实的弦就抽象为“没有重量”的弦。
把没有重量的弦绷紧,它在不振动时是一根直线,就取这直线作为x轴。
把弦上各点的横向位移记作u。
这样,横向位移u是x和t的函数,记作u(x,t)。
要求解弦振动,首先应找出u所遵从的方程。
把弦细分为许多极小的小段,拿区间(x,x+dx)上的小段B为代表加以研究。
B既然没有重量而且是柔软的,它就只受到邻段A和C的拉力和。
弦的每小段都没有纵向(即x方向)的运动,所以作用于B的纵向合力应为零。
弦的横向加速度记作。
按照,小段B的纵向和横向运动分别为式中时弦的线密度,即单位长度的质量。
数学物理方法习题及解答1试题1一、单项选择题1.复通区域柯西定理()(A )0)(=?dz z f l(B )0)(1=∑?=n i l idz z f (C )0)()(1=+∑??=ni l lidz z f dz z f (l 是逆时针方向,i l 也是逆时针方向)(D)0)()(1=+∑??=ni l lidz z f dz z f (l 是逆时针方向,i l 是顺时针方向)2.周期偶函数:,cos)(10为其中k k k a lxk a a x f ∑∞=+=π:()(A )?=lk d l k f l a 0cos )(1ξπξξ (B )?-=ll k d l k f l a ξπξξcos )(1(C ) ?=lk k d l k f l a 0cos )(1ξπξξδ (D )?lkk d lk f l a 0cos)(2ξπξξδ 3.柯西公式为:()(A )ξξξπd z f i n z f l ?-=)(2!)( (B) ξξξπd z f i z f l ?-=)(21)( (C) ξξξπd z f i z f l n ?-=)()(21)( (D) ξξξπd z f i n z f l n ?-=)()(2!)( 4.在00=z 的邻域上把()=z f 2zz )(sin 展开为()(A )+-+-!6!4!21642z z z(B) +-+-!7!5!31642z z z (C) +-+-6421642z z z(D) +-+-!7!5!31864z z z5.求()z z f sin 1=在z 0=πn 的留数为()(A )!1n (B )n (C )n )1(- (D )16.以下那一个是第一类边界条件()(A ))(),(t f t x u ax == (B ))(,()t f t x u ax n == (C ))()(t f H u ax n u =+= (D )lx ttlx xu Mg t x u ==-=),(7.下列公式正确的为:(A ))()()(0x f dx x x f t =-?+∞∞-δ (B )0)()(0=-?+∞∞-dx x x f t δ (C )∞=-?+∞∞-dx x x f t )()(0δ (D ))()()(0t t f dx x x f =-?+∞∞-δ8.勒让德方程为(A )0)1(2)1(222=++--y l l dx dy x dx yd x(B )0]1)1([2)1(22222=--++--y x m l l dx dy x dx y d x(C )0)(22222=-++y dx dy x dx ym x d x(D )0)(22222=+-+y dxdy x dx y m x d x9.m 阶贝塞尔方程为:(A )0)(22222=--+R m x dx dR x dx R d x (B )0)(22222=-++R m x dx dR x dx R d x (C )0)(22222=+-+R m x dxdR x dx R d x (D )0)(2222=-++R m x dxdR x dx R d x 上 10Z 0是方程W ‘’+P (Z )W ‘+Q (Z )W=0的正则奇点,用级数解法求解时,这个方程的“判定方程“为(A )0)1(21=++---q sp s s (B )0)1(21=++--q sp s s (C )0)1(11=++---q sp s s (D )0)1(22=++---q sp s s二、填空题1、已知解析函数22),()(y x y x u z f -=的实部,则这个解析函数为。
数学物理方法习题集第一章 复数与复变函数习题1,计算:(1),1)(1i ---。
(2),iii i 524321-+-+。
(3),5(1)(2)(3)i i i ---。
(4),4(1)i -。
(5),bi a +。
2,求下列复数的实部u 与虚部v ,模r 与幅角θ:(1),ii i i 524321----。
(2),1(2n+, 4,3,2=n 。
(3),i +1。
(4),3)i -。
(5),231i -。
3,设211i z +=,i z -=32,试用三角形表示21z z 及21z z 。
4,若21=+Z z θcos ,证明21=+m m zz θm cos 。
5,求下列复数z 的主幅角z arg :(1),iz 312+-=。
(2),6)z i =-。
6,用指数形式证明:(1),(1)2i i -+=+。
(2),i ii2125+=+。
(3),7(1)8(1)i i -+=-+。
(4),1011(12(1)--=-。
7,试解方程44(0)z a a +=>。
8,证明:(1),1212Re()Re()Re()z z z z +=+ ;一般1212Re()Re()Re()z z z z ≠。
(2),1212Im()Im()Im()z z z z +=+ ;一般1212Im()Im()Im()z z z z ≠。
(3),2121z z z z = ;一般2121z z z z +≠+。
9,证明:(1),2121z z z z +=±。
(2),2121z z z z ⋅=。
(3),1122(z zz z = (02≠z )。
(4),121212122Re()2Re()z z z z z z z z +==。
(5),()z z ≤Re ,()z z ≤Im 。
(6),2121212z z z z z z ≤+。
(7),222121212()()z z z z z z -≤+≤+。
杨立-201122050231-第1次作业-4班习题2.1.2长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆作自由振动。
试写出振动方向的定解条件。
解:由于x=0端固定,可知0|0x u ==,又L 端为自由端,知|0x L u ==。
t=0时刻杆上点的位移0|t b u kx x L===,又t=0时刻的速度为0,即0|0t t u ==。
习题2.2.1一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的均质园杆,如同界面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。
试导出杆上温度u 满足的方程。
解:如图所示通过两截面而留下的热量=微元段升 温吸热+与侧面交换所留下的热量因为 11[(,)(,)(,)(,)]()2x x t kdt u x dx t s x dx t u x t s x t c sdxu dt k u u rdxdt ρπ++-=+- 其中,k 为进入截面的系数;s 为横截面;x u 为沿轴温度的法向导数;2πrdx 为侧面。
所以 221()t xx u a u b u u -=--,2k a cp =,212k b c r ρ= 习题2.3.3由静电场Gauss 定理 1s V E dS dV ρε⋅=⎰⎰⎰⎰⎰ ,求证:E ρε∇⋅=,并由此导出静电势u 所满足的Poisson 方程。
解:因为 s VE dS EdV ⋅=⎰⎰⎰⎰⎰且 1s VE dS dV ρε⋅=⎰⎰⎰⎰⎰ 比较可得 E ρε∇⋅=即 ()E ερ∇⋅=可令 E u =-∇ 代入上式可得2u u ρε∇=∆=-0 x x+dx L X习题2.4.2求下列方程的通解(2)230xx xy yy u u u +-=;(5)161630xx xy yy u u u ++=;解:(2)230xx xy yy u u u +-=此方程式双曲型的第二标准型,将其化成第一标准型特征方程2230dy dy dx dx ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭解得12dy dx=± 令3x y x yζη=-⎧⎨=+⎩ 可得111212220880a a a a ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦10b =;20b =;0c =;0f =可得标准型0u ζη=因此 (3)()u f x y g x y =-++。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。