地下结构工程第2章地下结构计算基本理论
- 格式:ppt
- 大小:574.00 KB
- 文档页数:15
第 1 章绪论1、地下建筑结构是修建在地层中的建筑物。
它可以分为两大类:一类是修建在土层中的;一类是修建在岩层中的;广义上讲,任何结构物都是修建在相应的介质中的2、地下建筑结构的作用(1)地下建筑结构,即埋置于地层内部的结构。
修建地下建筑物时,首先按照使用要求在地层中挖掘洞室,然后沿洞室周边修建永久性支护结构——即衬砌结构。
而内部结构与地面建筑的设计基本相同(2)作用:衬砌结构主要是起承重和围护两方面的作用。
承重,即承受岩土体压力、结构自重以及其它荷载的作用;围护,即防止岩土体风化、坍塌、防水、防潮等。
3、地下建筑与地面建筑结构的区别(1)计算理论、设计和施工方法(2)地下建筑结构所承受的荷载比地面结构复杂。
(3)地下建筑结构埋置于地下,其周围的岩土体不仅作为荷载作用于地下建筑结构上,而且约束着结构的移动和变形。
所以,在地下建筑结构设计中除了要计算因素多变的岩土体压力之外,还要考虑地下结构与周围岩土体的共同作用。
这一点乃是地下建筑结构在计算理论上与地面建筑结构最主要的差别。
第 2 章地下建筑结构的荷载1、掌握地下建筑结构所承受的荷载类型及其组合原则。
按存在状态可分为:静荷载、动荷载和活荷载等静荷载:又称恒载。
是指长期作用在结构上且大小、方向和作用点不变的荷载,如结构自重、岩土体压力和地下水压力等;动荷载:要求具有一定防护能力的地下建筑物,需考虑原子武器和常规武器(炸弹、火箭)爆炸冲击波压力荷载,这是瞬时作用的动荷载;在抗震区进行地下结构设计时,应计算地震波作用下的动荷载作用活荷载:是指在结构物施工和使用期间可能存在的变动荷载,其大小和作用位置都可能变化,如地下建筑物内部的楼地面荷载(人群物件和设备重量)、吊车荷载、落石荷载等。
地面附近的堆积物和车辆对地下结构作用的荷载以及施工安装过程中的临时性荷载其它荷载:使结构产生内力和变形的各种因素中,除有以上主要荷载的作用外,通常还有:混凝土材料收缩(包括早期混凝土的凝缩与日后的干缩)受到约束而产生的内力;各种荷载对结构可能不是同时作用,需进行最不利情况的组合。
地下结构设计课程设计简介本课程设计旨在让学生了解地下建筑结构设计的基本原理、计算方法及应用技术,掌握地下结构设计的基本流程,培养设计思维和解决实际问题的能力。
课程目标1.掌握地下结构设计的基本原理和方法;2.熟悉地下结构设计的规范和标准;3.能够进行地下结构设计的计算和分析;4.能够根据实际情况进行地下结构设计;5.提高学生的设计思维和实际操作能力。
教学内容第一章简介1.1 地下结构设计的定义和概述1.2 地下结构设计的发展和应用第二章基础知识2.1 岩土力学基础知识2.2 基坑支护原理2.3 开挖法及其影响第三章地下结构类型3.1 地下建筑物类型及其特点3.2 地下环境条件的影响第四章设计基础4.1 大地工程基础制图4.2 地下水文地质勘察4.3 岩土勘察及其分析第五章地下结构设计5.1 地下结构设计的思路和流程5.2 线型结构5.3 离散结构5.4 圆筒形结构5.5 圆弧形结构5.6 多孔介质渗流问题第六章地下结构施工6.1 地下施工基本流程6.2 地下工程施工中的问题与解决方案6.3 输送系统施工技术6.4 井筒施工技术课程设计本课程设计要求学生按照所学知识,设计一个复杂的地下结构。
具体设计包括以下步骤:第一步:选定地下结构类型,如地下车库、地下商场等,完成初始设计。
第二步:进行支护计算和稳定性分析,确定支撑结构类型、深度和间距等参数。
第三步:进行地下排水设计,包括设计排水管道、关键位置安装水位计等。
第四步:进行地下空气调节设计,确定送风方式、通风量等。
第五步:进行安全分析,考虑潜在危险和可能发生的事故,制定预案。
第六步:进行施工方案设计,确定施工流程、备品备件等。
第七步:进行经济评估,评估地下结构建设前后经济效益。
评分标准1.课程设计报告内容完整,包括设计思路、计算过程、数据统计、结论及建议等;2.设计方法合理,结果可靠;3.设计报告文字表达清晰、简洁、易懂;4.设计报告格式规范,符合要求;5.操作技能扎实,能够独立完成设计任务;6.报告答辩表现积极,回答问题准确、清晰。
第一章1.简述地下结构的概念和特点。
概念: 地下结构是指在保留上部地层(山体或土层)的前提下, 在开挖出能提供某种用途的地下空间内修筑的建筑结构。
特点:(1)地下空间内建筑结构替代了原来的地层, 结构承受了原本由地层承受的荷载。
在设计和施工中, 要最大限度发挥地层自承能力, 以便控制地下结构的变形, 降低工程造价。
(2)在受载状态下构建地下空间结构物, 地层荷载随着施工进程发生变化, 因此, 设计时要考虑最不利的荷载工况。
(3)作用在地下结构上的地层荷载, 应视地层介质的地质情况合理概化确定。
(4)地下水状态对地下结构的设计和施工影响较大, 设计前必须弄清地下水的分布和变化情况。
(5)地下结构设计要考虑结构物从开始构建到正常使用以及长期运营过程的受力工况, 注意合理利用结构反力作用, 节省造价。
(6)在设计阶段获得的地质资料, 有可能与实际施工揭露的地质情况不一样。
因此, 地下结构施工中应根据施工的实时工况动态修改设计。
(7)地下结构的围岩既是荷载的来源, 在某些情况下又与地下结构共同构成承载体系。
(8)当地下结构的埋置深度足够大时, 由于地层的成拱效应, 结构所承受的围岩垂直压力总是小于其上覆地层的自重压力。
2.简述地下结构的分类与形式。
按断面形式分类: 1)矩形2)圆形3)拱形4)其他形式按使用功能分类: 可分为生活设施、城市设施、生产设施、储藏设施、输送设施和防灾设施等按结构形式及施工方法分类: (1)喷锚结构(2)复合衬砌结构(3)盾构结构(4)沉管结构(5)沉井结构(6)地下连续墙结构(7)其他结构按与地面结构联系情况分类(1)附建式结构(2)单建式结构按埋置深度分类1)浅埋地下结构2)深埋地下结构3.简述地下结构计算理论的发展阶段和代表理论1.刚性结构阶段: 压力线理论该理论认为地下结构是由一些刚性块组成的拱形结构, 所受的主动荷载是地层压力, 当地下结构处于极限平衡状态时, 它是由绝对刚体组成的三铰拱静定体系, 铰的位置分别假设在墙底和拱顶, 其内力可按静力学原理进行计算。
地下工程结构第一章绪论1简述地下建筑结构的概念及形式:地下建筑结构即埋置于地层内部的结构。
包括衬砌结构和内部结构两部分。
衬砌结构主要起承重和围护作用地下建筑结构的形式主要由使用功能、地质条件和施工技术等因素确定。
根据地质情况差异可分为土层和岩层内的两种形式。
土层地下建筑结构分为①浅埋式结构②附建式结构③沉井(沉箱)结构④地下连续墙结构⑤盾构结构⑥沉管结构⑦其他如顶管和箱涵结构。
岩石地下建筑结构形式主要包括直墙拱形、圆形、曲墙拱形,还有如喷锚结构、穹顶结构、复合结构。
2.地下建筑结构的工程特点:①建筑结构替代了原来的地层(承载作用)②地层荷载随施工过程是发生变化的③地质条件影响地层荷载④地下水准结构设计影响大④设计考虑施工、使用的整个阶段⑤地层与结构共同的承载体系⑥地层的成拱效应。
3.地下建筑地上建筑结构地上建筑区别:计算理论设计和施工方法不同,地下建筑结构所承受的荷载比地面结构复杂,因为地下建筑结构埋置于地下,其周围的岩土体不仅作为荷载作用于地下建筑结构上,而且约束着结构的移动和变形。
第二章地下建筑结构的荷载1.地下建筑荷载分哪几类:按其存在的状态,可以分为静荷载(结构自重,岩土体压力)、动荷载(地震波,爆炸产生冲击)和活荷载(人群物件和设备重量,吊车荷载)、其他荷载。
2.土压力可分为几种形式?其大小关系如何?土压力分为静止土压力E0、主动土压力力Ea、被动土压力Ep,则Ep>E0>Ea3.简述围岩压力的概念及影响因素:围岩压力就是指位于地下结构周围变形或破坏的岩层,作用在衬砌结构或支撑结构上的压力。
分为松散、膨胀、变形、冲击围岩压力。
影响围岩压力的因素很多,主要与岩体的结构、岩石的强度、地下水的作用、洞室的尺寸与形状、支护的类型和刚度、施工方法、洞室的埋置深度和支护时间等因素相关。
其中岩体稳定性的关键之一在于岩体结构面的类型和特征。
4.简述弹性抗力的基本概念?其值大小与哪些因素有关?地下建筑结构除承受主动荷载作用外(如围岩压力、结构自重等),还承受一种被动荷载,即地层的弹性抗力。
-地下建筑结构总复习第1章绪论1. 地下建筑结构:在地下开挖出的空间中修建的建筑物。
2.衬砌:与土层接触的永久性支护结构,起承重、维护作用。
3.地下建筑结构的初步设计内容:(1)工程等级和要求,以及静、动载标准的确定;(2)确定埋置深度与施工方法;(3)初步设计荷载值;(4)选择建筑材料;(5)选定结构形式和布置;(6)估算结构跨度、高度、顶底板及边墙厚度主要尺寸;(7)绘制初步设计结构图;(8)估算工程材料数量及财务概算。
技术设计内容:(1)计算荷载:求出作用在结构上的各种荷载值;(2)计算简图:拟定出恰当的计算图式;(3)内力分析:得出控制截面的内力;(4)内力组合:求出各控制截面的最大设计内力值;(5)配筋设计:得出受力钢筋,确定分布钢筋与架立钢筋;(6)绘制结构施工详图:结构平面图,结构构件配筋图,节点详图,内部设备的预埋件图;(7)材料,工程数量和工程财务预算。
第2章地下结构的荷载1.主动土压力:当挡土结构在土压力作用下,背后填土处于挤压平衡状态,则作用在结构上的侧向土压力称为静止土压力,并用P a 表示。
2.被冻土压力:当挡土结构在土压力作用下,结构发生背离填土的变形和任何位移(移动和转动)时,则作用在结构上的侧向土压力称为静止土压力,并用P p 表示。
3.静止土压力:当挡土结构在土压力作用下,结构不发生变形和任何位移(移动和转动)时,背后填土处于弹性平衡状态,则作用在结构上的侧向土压力称为静止土压力,并用P 0表示。
4.围岩压力:位于地下结构周围变形或破坏的岩层,作用在衬砌结构或支撑结构上的压力。
5.普氏压力拱理论:6.地层弹性抗力:结构变形使土体被动受力时,土对结构的产生的反作用力。
决定于结构的变形和地层的物理力学性质。
7.水土压力计算方法:郎肯土压力计算公式考虑地下水时水土压力计算方法、计算图式8.(了解)按松散体理论对浅埋结构与深埋结构的划分9.(了解)浅埋结构和深埋结构垂直围岩压力的计算方法10.土层弹性抗力的计算理论:局部变形理论要点:假设土体表面任一点的压力强度与该点的沉降成正比。
地下结构设计原理与方法地下结构设计是城市建设中至关重要的一部分,它包括地下管线、地下停车场、地下水污水处理设施等。
在城市发展和规划中,地下空间的合理利用对于提高城市的舒适度、满足居民需求、优化城市布局起到了至关重要的作用。
本文将介绍地下结构设计的原理和方法,以期为地下结构设计提供一定的指导和理论支持。
一、地下结构设计原理地下结构设计的原理是基于地下空间规划和地下工程技术的基础上进行的。
它主要涉及到以下几个方面的原理:1. 重力作用原理:地下结构设计需要考虑到地下的承载能力和重力作用。
在设计过程中,需要根据地下材料的承载能力和地下结构的荷载作用,合理选择地基类型和地基加固方式。
2. 安全原则:地下结构设计需要保证地下结构在承受外部荷载和地下环境变化时的安全性。
在设计中,需要进行地下结构的可靠性分析和安全评估,以及考虑到地下结构的抗震性能。
3. 经济性原则:地下结构设计需要综合考虑地下空间规划和经济性要求。
在设计中,需要合理选择施工材料和技术,以及考虑到地下结构的维护和管理成本。
二、地下结构设计方法地下结构设计的方法是根据地下结构的具体要求和设计目标来确定的。
下面给出几种常用的地下结构设计方法:1. 传统设计方法:传统的地下结构设计方法是根据经验公式和实践经验进行的。
这种设计方法简单易行,适用于一些常见的地下结构类型。
但是它缺乏理论支持和科学性,不能满足高要求的设计需求。
2. 数值模拟方法:数值模拟方法是近年来发展起来的一种地下结构设计方法。
它通过模拟地下结构的力学行为和地下环境变化,可以对地下结构进行全面准确的分析和设计。
3. 参数化设计方法:参数化设计方法是一种以参数化建模为基础的地下结构设计方法。
它通过建立地下结构的参数化模型,可以快速、灵活地对地下结构进行设计和优化。
4. 优化设计方法:优化设计方法是一种基于最优化理论和方法的地下结构设计方法。
它通过建立地下结构的数学模型,结合不同的约束条件和优化算法,可以得到满足设计需求的最优地下结构。
绪论:地下结构的定义:保留上部地层(山体或土层)的前提下,在开挖出能提供某种用途的地下空间内修建的结构物,统称为地下结构。
结构形式:断面形式:矩形、梯形、直角拱形、马蹄型、仰拱型、圆形。
影响因素:由受力条件来控制;结构型式也受使用要求的制约支护形式:1.防护型支护:以封闭岩面,防止周围岩体质量的进一步恶化或失稳为目的。
2.构造型支护:支护结构满足施工及构造要求,防止局部掉块或崩塌而逐步引起整体失稳。
3.承载型支护:承载型支护应满足围岩压力,使用荷载、结构荷载及其它荷载的要求,保证围岩与支护结构的稳定性。
发展的三个阶段:刚性结构阶段,弹性结构阶段,连续介质阶段现代支护理论的特征:(1) 对围岩和围岩压力的认识方面:传统支护理论认为围岩是荷载的来源,是支撑的对象。
现代支护理论则认为围岩具有自承能力。
围岩也是支护材料,可以通过加固围岩而保证结构的稳定。
(2) 在围岩和支护间的相互关系上:传统支护理论把围岩和支护分开考.围岩当作荷裁、支护作为承载结构,现代支护理论则将围岩和支护作为一个统一体,二者相互作用,共同变形。
(3)在支护功能和作用原理上:传统支护结构只是为了承受荷载,现代支护则是为了及时稳定和加固围岩。
保证围岩的稳定性。
(4)在设计计算方法上:传统支护主要是确定作用在支护上的荷载,而现代支护理论将围岩与支护作为共同的承载结构。
(5)在支护形式和工艺上:以加固围岩为主要支护手段:如锚杆、锚索、喷射混凝土、注浆等。
地下结构的计算特点:(1)必须充分认识地质环境对地下结构设计的影响;(2)地下工程周围的地质体是工程材料、承载结构,同时又是产生荷载的来源;(3)地下结构施工因素和时间因素会极大地影响结构体系的安全性;(4)与地面结构不同,地下工程支护结构安全与否,既要考虑到支护结构能否承载,又要考虑围岩的稳定性;(5)地下工程支护结构设计的关键问题在于充分发挥困岩自承力;(6)地下结构的开挖过程是卸载过程,而不是加载过程。