运筹学
- 格式:doc
- 大小:57.00 KB
- 文档页数:7
⏹运筹学:Operational Research,是一门应用科学。
从实际出发解决实际问题的方法。
⏹建模七步:第一步,定义问题;第二步,收集数据;第三步,构造模型;第四步,验证模型;第五步,计算结果;第六步,提交报告;第七步,投入使用⏹线性规划是由丹捷格(G. B. Dantzig)在1947提出的,并提出了求解线性规划的单纯形法,成为运筹学的标志性成就,被誉为「线性规划」之父。
⏹线性规划模型就是目标函数为线性函数,约束条件也是线性函数的最优化模型。
⏹线性规划模型包括三个部分:目标函数;决策变量;约束条件。
⏹满足所有约束条件的解称为该线性规划的可行解;线性规划问题可行解的集合,称为可行域。
⏹把使得目标函数值最大(或最小)的可行解称为该线性规划的最优解,此目标函数称为最优目标函数值,简称最优值。
⏹图解法只适合于二维线性规划问题⏹松弛量:对一个“≤” 约束条件中,没有使用完的资源或能力的大小称为松弛量(松弛或空闲能力)⏹剩余变量,约束方程左边为“≥”不等式时,变成等式约束条件⏹如果线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解;(一定可以在其顶点达到,但不一定只在其顶点达到,有时在两顶点的连线上得到,包括顶点)⏹唯一最优解:只在其一个顶点达到⏹无穷多个最优解:在其两个顶点的连线上达到⏹无界解:可行域无界。
缺少必要的约束⏹无可行解(无解):可行域为空集。
约束条件自相矛盾导致的建模错误⏹灵敏度分析:在建立数学模型和求得最优解之后,研究线性规划的一些系数ci、aij、bj变化时,对最优解产生什么影响。
或者是这些参数在什么范围内发生变化,最优解不变。
⏹对偶价格:在约束条件右边常量增加一个单位而使最优目标函数得到改进的数量称之为这个约束条件的对偶价格。
⏹对偶价格可以理解为对目标函数的贡献。
如果对偶价格大于零,则其最优目标函数值得到改进。
即求最大值时,变得更大;求最小值时,变得更小。
⏹如果对偶价格小于零,则其最优目标函数值变坏。
第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。
北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。
这是战国时期运筹学思想成功应用的典型实例。
孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。
形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。
运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。
运筹让生活得更有条理的艺术。
谈起运筹学,是否会想到很通俗的例子——沏茶水。
沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。
让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。
其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。
善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。
而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。
另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。
这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。
在人生大事的安排上,也同样需要下功夫好好运筹一番。
从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。
运筹学(Operation Research,又译为作业研究),是研究运用于策划的应用数学分支,利用统计学、数学模型和算法去辅助决策。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
“运筹”一词,本指运用算筹,后引伸为谋略之意。
“运筹”最早出自于汉高祖刘邦对张良的评价:“运筹帷幄之中,决胜千里之外。
”二次大战时,英军首次邀请科学家参与军事行动研究(operations research, 在英国又称operational research或OR/MS, management science),战后这些研究结果用于其他用途,这是现代“运筹学”的起源。
中国在1956年曾用过“运用学”的名字,于1957年正式定名为“运筹学”,于1980年成立中国运筹学会(ORSC),并于1982年加入国际运筹学联合会(IFORS)。
关键字:运筹学,简介,研究范围,历史,特点,研究方法,展望,应用,感悟运筹学简介英语全称为:Operational Research(英国)或者是Operations Research(美国)在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。
田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。
可见,筹划安排是十分重要的。
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。
前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。
也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。
运筹学研究范围运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。
运筹学综述运筹学的简介一:什么是运筹学?运筹学是Operations Research的英文单词缩写。
运筹学界的元老说运筹学是执行部门对所控制的业务做出决策提供数量上的依据的科学或利用所有应用科学执行部门对其所属业务作出决策提供数量上依据的一门科学;世界上最早的运筹学协会说运筹学是运用科学方法来解决工业、商业、政府、国防等部门里有关人力、机器、物资、金钱等大型系统的指挥或管理中所出现的复杂问题的一门学科,其目的是“帮助管理者以科学方法确定其方针和行动”。
二:运筹学的三个来源1、军事二战期间例一:在第二次世界大战期间,鲍德西雷达站的研究——“布莱克特马戏团”的出色工作,Bawdsey雷达站—Blackett杂技班专门就改进空防系统进行研究。
成员组成:心理学家3,数学家2,数学物理学家2,天文物理学家1,普通物理学家1,陆军军官1,测量员1。
研究的问题是设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力协调等获得成功,大大提高了英国本土的防空能力,不久以后在对抗德国对英伦三岛的狂轰滥炸中发挥了极大的作用,堪称运筹学的发祥与典范,展示了运筹学的本色与特色。
二战期间例二:大西洋反潜战——Morse小组的重要工作。
1942年麻省Morse教授应美国大西洋舰队反潜战官员Baker舰长的请求担任反潜战运筹组的计划与监督工作,其最出色的工作之一是协助英国打破了德国对英吉利海峡的海上封锁,研究所提出的两条重要建议是:将反潜攻击由反潜舰艇投掷水雷改为飞机投掷深水炸弹,起爆深度由100米改为25米左右,即当德方潜艇刚下潜时攻击效果最佳;运送物资的船队及护航舰艇的编队由小规模、多批次改为大规模、少批次,从而减少了损失率丘吉尔采纳Morse的建议,从而打破德国封锁;重创德国潜艇部队;Morse同时获得英国及美国战时最高勋章二战期间例三:英国战斗机中队援法决策。
运筹学涉及的数学知识
摘要:
一、引言
二、运筹学简介
三、线性规划
四、整数规划
五、动态规划
六、网络优化
七、总结
正文:
运筹学是一门运用数学和统计学方法对实际问题进行建模、优化和求解的学科。
它广泛应用于生产调度、交通运输、资源分配等领域。
本文将简要介绍运筹学涉及的数学知识。
首先,线性规划是运筹学的基础知识。
线性规划研究在一定约束条件下线性目标函数的最优化问题。
它可以用矩阵表示,并使用单纯形法等数学方法求解。
其次,整数规划是线性规划的特殊情况,要求部分或全部变量取整数值。
整数规划在运输、调度和选址等问题中具有重要意义。
常用的求解方法有分枝定界法、割平面法等。
动态规划是另一种重要的优化方法。
它将问题分解成相互联系的子问题,通过求解子问题并将结果存储起来,以避免重复计算,从而提高效率。
动态规
划广泛应用于最短路径、背包问题等领域。
网络优化是运筹学的另一个重要分支,研究在网络结构中的最优化问题。
这类问题可以描述为带权的有向图,通过求解最短路径、最大流等问题,可以有效地改善网络的性能。
总之,运筹学涉及的数学知识包括线性规划、整数规划、动态规划和网络优化等。
(名词解释)运筹学
运筹学是一门研究如何在有限资源下做出最佳决策的学科。
它
涉及数学、统计学和计算机科学等多个领域,旨在找到最优解决方
案以最大程度地满足特定目标或约束条件。
运筹学的应用范围非常
广泛,包括生产调度、物流管理、供应链优化、交通规划、金融风
险管理等诸多领域。
在运筹学中,常用的方法包括线性规划、整数规划、动态规划、排队论、模拟等。
线性规划用于解决线性约束条件下的最优化问题,整数规划则是在变量为整数时的最优化问题,动态规划通过分阶段
决策来解决多阶段问题,排队论则研究排队系统的性能指标,模拟
则是通过构建模型来模拟实际系统的运行情况。
运筹学的发展历史可以追溯到二战期间,当时运筹学被用于军
事决策和战争规划,随后逐渐应用于工业生产和商业管理领域。
如今,随着信息技术的发展,运筹学在大数据分析、人工智能和机器
学习等方面也得到了广泛应用。
总的来说,运筹学致力于通过科学的方法和技术手段,帮助人
们做出最佳决策,提高资源利用效率,降低成本,优化系统运行,对于提升生产效率和管理水平具有重要意义。
运筹学的概念运筹学是一种综合性学科,它在现代管理中起着至关重要的作用。
运筹学是一种运用数学、统计学、计算机科学以及其他相关领域的方法和理论来帮助制定最优决策的学科。
它的主要目标是通过通过信息分析和决策模型来使决策者在制定决策时更加合理、科学和精准。
下面是对运筹学概念的详细介绍。
一、运筹学的基本定义运筹学(Operations Research,简称OR)是一门科学,通过使用计算机和数学模型,研究如何最好地利用有限资源来达到预期目标,主要研究方法包括优化、数理统计、决策分析、模拟等。
二、运筹学的发展历程运筹学是在二战期间发展出来的,主要应用于军事后勤问题的解决。
之后,运筹学学科马不停蹄地在各个领域快速发展,至今已经成为了一门广泛的学科。
三、运筹学的应用范围运筹学在各个领域都有广泛的应用,例如生产制造、物流管理、金融风险管理、医疗管理、资源分配等。
它在实践中的应用能够使企业和组织在有限的资源下获得最大收益。
例如,电商企业可以利用运筹学和网络优化技术来解决配送问题。
医院可以利用运筹学与供应链的整合优化来提高采购成本的效率。
银行等金融机构则可以利用运筹学来建立风险管理模型,减轻市场波动造成的经济损失。
四、运筹学的关键技术该学科主要基于优化、数学建模、统计推断和计算机仿真等关键技术。
对于不同的问题,会采用不同的技术手段。
例如,对于线性规划问题,使用线性规划算法进行求解;对于决策树问题,可以使用决策树算法进行求解;对于复杂的大规模问题,可以使用数学建模与计算机仿真技术进行求解。
总之,运筹学是为了解决实际问题而产生的一种学科,它在生产、经济、政策等许多领域有广泛应用,发展迅速,使得成本降低、管理规范化、业务流程优化等问题得到了解决。
名词解释运筹学
运筹学是现代管理学的一门重要专业基础课,起源于20世纪30年代初。
其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。
该学科应用于数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业相关。
以上内容仅供参考,建议查阅运筹学书籍获取更全面和准确的信息。
绪论一、运筹学一词起源于20世纪30年代。
据《大英百科全书》释义,“运筹学是一门应用于管理有组织系统的科学”,“运筹学为掌管这类系统的人提供决策目标和数量分析的工具”。
我国《辞海》中有关运筹学条目的释义为:“运筹学主要研究经济活动与军事活动中能用数量来表达有关运用、筹划与管理方面的问题。
它根据问题的要求,通过数学的分析与运算,做出综合性的合理安排,以达到较经济较有效地使用人力物力”。
运筹学一词的英文原名,美国英语Operations Research,英国英语Operational Research (缩写为O.R.),可直译为“运用研究”或“作业研究”。
1957年我国从“夫运筹于帷幄之中,决胜于千里之外”这句古语中摘取“运筹”二字,将O.R.正式译作运筹学,比较恰当地反映了这门学科的性质和内涵。
由于运筹学涉及的主要领域是管理问题,研究的基本手段是建立数学模型,并且比较多地运用各种数学工具,从这点出发,曾有人将运筹学称作“管理数学”。
二、朴素的运筹学思想在我国古代文献中就有不少记载,例如齐王赛马和丁渭主持皇宫的修复等事。
二战后,运筹学的发展大致可分为三个阶段:1、从1945年到20世纪50年代初,被称为创建时期。
2、20世纪50年代初期到20世纪50年代末期,被认为是运筹学的成长时期。
3、自20世纪60年代以来,被认为是运筹学迅速发展和开始普及的时期。
国际上著名的运筹学刊物有:Management Science,Operations Research,Journal of Operational Research Society,European Journal of Operations Research等,国内运筹学的刊物或较多刊登运筹学理论和应用的刊物主要有:运筹学学报,运筹与管理,系统工程学报,系统工程理论与实践,系统工程理论方法应用,数量经济技术经济研究,预测,系统工程,系统科学与数学等等。
运筹学名词解释
1、可行解:满足约束条件的解
2、最优解:满足目标函数式的可行解
3、基本可行解:满足非负条件的基本解
4、可行基:对应于基本可行解的基
5、影子价格:单位资源在最优利用的条件下所产生的经济效果
6、策略:各阶段的决策所组成的决策序列
7、指标函数:评价动态规划决策结果的数量指标
8、初等链:在图中,任意两点之间由顶点和边相互交替构成的一个点不重复序
列
9、回路:在图中起点和终点相同的路称为回路
10、连通图:在一个图中如果任意两点之间都有一条链相连,则称此图为连通
图
11、树:不含圈的连通图称为树
12、最小生成树:指生成树中各边权总和最小的那棵树
13、欧拉圈:给定一个连通多重图G,若存在一个圈,过每边一次,且仅仅一次,则称些圈为欧拉圈
14、关键路线:是网络图始点到终点之间所有可能路线中周期最长的路线
15、转折概率:两个方案期望值相等的概率
16、零和对策:如果在任一局势中,全体局中人的得失相加总是等于零,这个对策就叫零和对策
17、混合策略:纯策略集合对应的概率向量
18、存储策略:何时订货,每次订货量为多少的决策方案
19、泊松流:同时具有平稳性、无后效性和普通性的流叫泊松流。
题目:就目标规划及其求解方法和在实践中的应用谈一下自己的认识和理解;求解方法不局限于书上介绍的方法。
姓名陈辉章学号 07082034摘要目标规划(Goal programming)是线性规划的一种特殊应用,能够处理单个主目标与多个目标并存,以及多个主目标与多个次目标并存的问题。
由美国学者查纳斯(A.Charnes)和库伯(W.W.Cooper)在1961年首次提出。
在科学研究、经济建设和生产实践中,人们经常遇到一类含有多个目标的数学规划问题,我们称之为多目标规划。
目标规划在实践中的应用十分广泛。
目标规划是实行目标管理的有效工具,它根据企业制定的经营目标以及这些目标的轻重缓急次序,考虑现有资源情况,分析如何达到规定目标或从总体上离规定目标的差距为最小。
目标规划的重要特点是对各个目标分级加权与逐级优化,这符合人们处理问题要分别轻重缓急保证重点的思考方式。
关键字:目标规划查纳斯(A.Charnes)和库伯(W.W.Cooper)多目标规划目录第一章绪论 ........................................................................................ 错误!未定义书签。
1.1绪论的目的.....................................................................................错误!未定义书签。
1.2论文页数要求 ...............................................................................错误!未定义书签。
1.3论文的编写格式..........................................................................错误!未定义书签。
第二章概述. (4)2.1论文正文..........................................................................................错误!未定义书签。
2.1.1 中英文摘要及关键词.....................................................错误!未定义书签。
2.1.2 目录..........................................................................................错误!未定义书签。
2.2论文的主体部分 .........................................................................错误!未定义书签。
第三章结束语..................................................................................... 错误!未定义书签。
参考文献 .................................................................................................... 错误!未定义书签。
附录 ................................................................................................................ 错误!未定义书签。
第一章绪论1.1 绪论的目的企业管理中经常碰到多目标决策的问题。
企业拟订生产计划时,不仅要考虑总产值,而且要考虑利润、产品质量和设备利用率等。
有些目标之间往往互相矛盾。
例如,企业利润可能同环境保护目标相矛盾。
如何统筹兼顾多种目标,选择合理方案,是十分复杂的问题。
应用目标规划可能较好的解决这类问题。
目标规划的应用范围很广,包括生产计划、投资计划、市场战略、人事管理、环境保护、土地利用等。
第二章论文正文目标规划模型的分类目标规划的模型分为以下两大类:1.多目标并列模型。
2.优先顺序模型。
目标规划与线性规划的差异目标规划是以线性规划为基础而发展起来的,但在运用中,由于要求不同,有不同于线性规划之处:①目标规划中的目标不是单一目标而是多目标,既有总目标又有分目标。
根据总目标建立部门分目标,构成目标网,形成整个目标体系。
制定目标时应注意协调各个分目标,消除分目标间的矛盾,以利总目标的实现;各分目标必须服从总目标的实现,不能脱离总目标。
②线性规划只寻求目标函数的最优值,即最大值或最小值。
而目标规划,由于是多目标,其目标函数不是寻求最大值或最小值,而是寻求这些目标与预计成果的最小差距,差距越小,目标实现的可能性越大。
目标规划中有超出目标和未达目标两种差距。
一般以Y+代表超出目标的差距,Y-代表未达目标的差距。
Y+和Y-两者之一必为零,或两者均为零。
当目标与预计成果一致时,两者均为零,即没有差距。
人们求差距,有时求超过目标的差距,有时求未达目标的差距。
目标规划的核心问题是确定目标,然后据以建立模型,求解目标与预计成果的最小差距。
目标规划可用一般线性规划求解,也可用备解法求解,还可用单体法求解,或者先用线性规划或备解法求解后,再用单体法验证有无错误。
目标规划有时还要用对偶原理进行运算,依一般规则,将原始问题转换为对偶问题,以减少单体法运算步骤。
在企业中,目标规划的用途极为广泛,如确定利润目标,确定各种投资的收益率,确定产品品种和数量,确定对原材料、外购件、半成品、在制品等数量的控制目标等。
目标规划在企业人力资源需求预测中的应用企业人力资源需求预测是人力资源管理是的一项重要工作,它可以帮助企业明确未来人力需求趋势,做好人才储备工作;同时也可以帮助企业合理预测未来各部门、各类职位人员的需求情况,做好企业的定岗定编工作。
面对日益复杂、变化更加剧烈的内外部环境,如何对动态环境中企业人力资源需求做出科学预测,是人力资源管理的重要课题。
本文运用案例研究法,探讨如何运用目标规划法预测企业在动态环境中的人力资源需求数量。
目标规划法是为了同时实现多个目标,为每一个目标分配一个偏离各目标严重程度的罚数权重,通过平衡各标准目标的实现程度,使得每个目标函数的偏差之和最小,建立总目标函数,求得最优解。
案例分析王某是某公司的人力资源部经理,为了预测未来一定时期人力资源需求数量,他召集员工主管张某、薪酬主管李某、培训主管陈某,研究如何科学预测未来三年的人力资源需求。
张某说:“甲类人员专业性强、培养周期较长,招聘、招募以及市场供给是有限的,甲类人员培养多了则增加了成本,培养少了又难以满足生产需要。
”李某说:“人工成本低了易造成人才流失,高了影响企业利润目标。
”陈某说:“培训费用按规定要控制在工资总额的一定比例范围内。
”因如何预测人力资源需求数量,他们之间产生了分歧。
本案例是正确预测人力资源数量问题,同时需要考虑完成利润最大化、人工成本最小化、人力资源结构最优化、产业结构优化、培训费用最小化等多个目标,而这些目标有着本质的差别。
因此,先列出需要达到的各项目标,建立一个目标规划模型,设P1、P2、 P3、P4作为甲、乙、丙、丁四个产业人力资源数量的决策变量,建立利润目标、人工成本目标、培训费用目标模型和约束条件,分别为:利润目标:0.92P1+1.02P2+1.32P3+1.1P4〈6000人工成本目标:0.82P1+0.73P2+1.5P3+1.2P4〈5000培训费用目标:0.2P1+0.1P2+0.15P3+0.22P4〈1000目标约束条件:利润、人工成本、培训费用三项主要目标分别为6000、5000、1000。
利润约束条件:根据企业各产业现状及未来发展趋势,结合内外部环境分析,甲、乙、丙、丁四个产业利润应分别不低于3500、1500、300、200。
人力资源约束条件:根据企业现有运力、市场走势和投资战略,未来一定时期,甲、乙、丙、丁四个产业人力资源数量应分别不大于4800、1500、400、300。
线性规划模型存在的局限性:1)要求问题的解必须满足全部约束条件,实际问题中并非所有约束都需要严格满足。
2)只能处理单目标的优化问题。
实际问题中,目标和约束可以相互转化。
3)线性规划中各个约束条件都处于同等重要地位,但现实问题中,各目标的重要性即有层次上的差别,同一层次中又可以有权重上的区分。
4)线性规划寻求最优解,但很多实际问题中只需找出满意解就可以。
目标规划怎样解决上述线性规划模型建模中的局限性?1. 设置偏差变量,用来表明实际值同目标值之间的差异。
偏差变量用下列符号表示:d+——决策值超出目标值的部分,称正偏差变量d-——决策值未达到目标值的部分,称负偏差变量正负偏差变量两者必有一个为0当实际值超出目标值时:d+>0, d -=0;当实际值未达到目标值时:d+=0, d ->0;当实际值同目标值恰好一致时:d+=0, d -=0;故恒有d+×d -=0目标规划比起线性规划来适应面要灵活的多。
目标规划适用于多个目标并且还可以带有从属目标的规划问题,而且目标的计量单位可以多种多样。
目标规划中约束的柔性,给决策方案的选择带来很大的灵活性。
由于目标函数中划分优先级并有权系数大小,使企业可根据外界条件的变化,通过调整目标优先级和权系数,求出不同方案以供选择。
注意:求解目标规划问题时,把绝对约束作为最高优先级考虑。
在大多数问题中会出现某些约束得不到满足,故将目标规划的最优解称为满意解。
目标规划的图解法:适用两个变量的目标规划问题,但其操作简单,原理一目了然。
同时,也有助于理解一般目标规划的求解原理和过程图解法解题步骤:1.将所有约束条件(包括目标约束和绝对约束,暂不考虑正负偏差变量)的直线方程分别标示于坐标平面上。
2. 确定系统约束的可行域。
3. 在目标约束所代表的边界线上,用箭头标出正、负偏差变量值增大的方向3. 求满足最高优先等级目标的解4. 转到下一个优先等级的目标,在不破坏所有较高优先等级目标的前提下,求出该优先等级目标的解5. 重复4,直到所有优先等级的目标都已审查完毕为止6. 确定最优解和满意解。
单纯形法基本原理定理1:若线性规划问题存在可行解,则该问题的可行域是凸集。
定理2:线性规划问题的基可行解X对应可行域(凸集)的顶点。
定理3:若问题存在最优解,一定存在一个基可行解是最优解。
(或在某个顶点取得)目标规划的数学模型,特别是约束的结构与线性规划模型没有本质的区别,只是它的目标不止是一个。