实验十二 智能调节仪温度控制实验
- 格式:doc
- 大小:96.72 KB
- 文档页数:4
温度控制的实验报告1. 引言温度是物体分子热运动的表现,是许多实验和工业过程中需要精确控制的一个变量。
本实验旨在研究温度控制的原理和方法,通过实验验证不同温控设备的性能,并对温度控制的误差进行分析。
2. 实验目的1. 了解温度控制的基本原理和方法;2. 掌握温度控制设备的操作方法;3. 分析温度控制的误差来源,并提出改进方案。
3. 实验装置和材料- 温度控制设备:恒温水浴器、温度计;- 反应容器:玻璃烧杯、烧杯夹;- 实验溶液:蒸馏水。
4. 实验步骤1. 将恒温水浴器放在实验台上,接通电源并调整温度设置;2. 在玻璃烧杯中加入适量蒸馏水;3. 将烧杯夹固定在温水浴器外壁上,并将玻璃烧杯置于夹子中,使其与恒温水浴器中的水接触;4. 等待一段时间,使烧杯中的水温稳定在设定的温度;5. 用温度计测量烧杯中水的实际温度,并记录下来;6. 根据测量结果,分析温度控制设备的误差和准确度。
5. 实验结果设置温度() 实际温度():: ::30 29.540 39.850 49.960 59.76. 结果分析通过实验结果可以看出,温度控制设备在大部分情况下能够实现较为准确的温度控制,但仍存在一定的误差。
可能的误差来源包括:1. 温度计的准确度:温度计本身存在一定的误差,会对实际温度测量结果产生影响;2. 温度控制设备的稳定性:恒温水浴器在调整温度过程中可能存在波动,导致实际温度与设定温度不完全一致;3. 烧杯和夹子的传热性能:烧杯与恒温水浴器之间的传热效果可能存在差异,影响实际温度的稳定性。
为减小温度控制误差,可以采取以下改进措施:1. 使用更加精准的温度计进行测量,减小温度计本身误差对实验结果的影响;2. 对恒温水浴器进行进一步调试,提高其温度控制的稳定性;3. 优化烧杯与夹子之间的接触条件,改善传热效果。
7. 结论通过本实验的探究,我们对温度控制的原理和方法有了更深入的了解,并掌握了温度控制设备的操作方法。
智能数字显示仪表实验实验目的:1.了解智能温度显示仪表的基本工作方法;2.掌握温度显示仪表的校验、数据分析;实验原理:仪表由单片机控制,具有热电阻、热电偶等多种信号自由输入,提供了四种报警方式;具有很强抗扰动性。
面板说明:(1)PV 显示窗:正常显示情况下显示温度测量值;在参数修改状态下显示参数符号。
(2)SV 显示窗:正常显示情况下显示温度给定值;在参数修改状态下显示参数值。
(3)ALM1 指示灯:当此指示灯亮时,仪表对应ALM1 继电器有输出。
(4)ALM2 指示灯:当此指示灯亮时,仪表对应ALM2 继电器有输出。
(5)AT 指示灯:当仪表自整定时此指示灯亮。
(6)OUT 指示灯:当此指示灯亮时,仪表OUT 控制端有输出。
(7)功能键:按键3S 可进入参数修改状态;按一下放开后进入给定值修改状态(上排显示窗显示符号SP)。
(8)移位键:在修改参数状态下按此键可实现修改数字的位置移动;按3S 可进入或退出手动调节。
(9)数字减小键:在参数修改、给定值修改或手动调节状态下可实现数字的减小。
(10)数字增加键:在参数修改、给定值修改或手动调节状态下可实现数字的增加。
(1)PV 显示窗:正常显示情况下显示温度测量值;在参数修改状态下显示参数符号。
(2)SV 显示窗:正常显示情况下显示温度给定值;在参数修改状态下显示参数值。
(3)ALM1 指示灯:当此指示灯亮时,仪表对应ALM1 继电器有输出。
(4)ALM2 指示灯:当此指示灯亮时,仪表对应ALM2 继电器有输出。
(5)AT 指示灯:当仪表自整定时此指示灯亮。
(6)OUT 指示灯:当此指示灯亮时,仪表OUT 控制端有输出。
(7)功能键:按键3S 可进入参数修改状态;按一下放开后进入给定值修改状态(上排显示窗显示符号SP)。
(8)移位键:在修改参数状态下按此键可实现修改数字的位置移动;按3S 可进入或退出手动调节。
(9)数字减小键:在参数修改、给定值修改或手动调节状态下可实现数字的减小。
温度控制系统实验报告温度控制系统实验报告一、引言温度控制系统作为现代自动化领域的重要组成部分,广泛应用于工业生产、家电和环境控制等领域。
本实验旨在通过搭建一个简单的温度控制系统,了解其工作原理和性能特点。
二、实验目的1. 了解温度控制系统的基本原理;2. 掌握温度传感器的使用方法;3. 熟悉PID控制算法的应用;4. 分析温度控制系统的稳定性和响应速度。
三、实验装置本实验使用的温度控制系统由以下组件组成:1. 温度传感器:用于测量环境温度,常见的有热敏电阻和热电偶等;2. 控制器:根据温度传感器的反馈信号,进行温度控制;3. 加热器:根据控制器的输出信号,调节加热功率;4. 冷却装置:用于降低环境温度,以实现温度控制。
四、实验步骤1. 搭建温度控制系统:将温度传感器与控制器、加热器和冷却装置连接起来,确保各组件正常工作。
2. 设置控制器参数:根据实际需求,设置控制器的比例、积分和微分参数,以实现稳定的温度控制。
3. 测量环境温度:使用温度传感器测量环境温度,并将测量结果输入控制器。
4. 控制温度:根据控制器输出的控制信号,调节加热器和冷却装置的工作状态,使环境温度保持在设定值附近。
5. 记录数据:记录实验过程中的环境温度、控制器输出信号和加热器/冷却装置的工作状态等数据。
五、实验结果与分析通过实验数据的记录和分析,我们可以得出以下结论:1. 温度控制系统的稳定性:根据控制器的调节算法,系统能够在设定值附近维持稳定的温度。
但是,由于传感器的精度、控制器参数的选择等因素,系统可能存在一定的温度波动。
2. 温度控制系统的响应速度:根据实验数据,我们可以计算出系统的响应时间和超调量等参数,以评估系统的控制性能。
3. 温度传感器的准确性:通过与已知准确度的温度计进行对比,我们可以评估温度传感器的准确性和误差范围。
六、实验总结本实验通过搭建温度控制系统,探究了其工作原理和性能特点。
通过实验数据的分析,我们对温度控制系统的稳定性、响应速度和传感器准确性有了更深入的了解。
实验1 铂热电阻温度特性测试一、实验目的:了解铂热电阻的特性与应用。
二、实验仪器:智能调节仪、PT100(2只)、温度源、温度传感器实验模块。
三、实验原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
当温度变化时,感温元件的电阻值随温度而变化,这样就可将变化的电阻值通过测量电路转换电信号,即可得到被测温度。
四、实验内容与步骤1.学会用智能调节仪来控制温度:1)在控制台上的“智能调节仪”单元中“输入”选择“Pt100”,并按图1-1接线。
将“+24V输出”经智能调节仪“继电器输出”,接加热器风扇电源,打开调节仪电源。
图1-1 智能调节仪温度控制接线图2)按键,进入智能调节仪设置菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。
按“”可改变小数点位置,按或键可修改靠下窗口的设定值。
再按回到初始状态。
2.调节智能调节仪,将温度控制在500C,在另一个温度传感器插孔中插入另一只铂热电阻温度传感器PT100。
3.将±15V直流稳压电源接至温度传感器实验模块。
温度传感器实验模块的输出Uo2接实验台直流电压表。
4.将温度传感器模块上差动放大器的输入端Ui短接,调节电位器Rw4使直流电压表显示为零。
5按图2-2并将PT100的3根引线插入温度传感器实验模块中Rt两端(其中颜色相同的两个接线端是短路的)。
图2-2 铂热电阻测试5.拿掉短路线,将R6两端接到差动放大器的输入Ui,记下模块输出Uo2的电压值。
6.改变温度源的温度每隔50C记下Uo2的输出值。
直到温度升至1200C。
并将实验结果填入下表。
三、实验报告根据表1实验数据,作出U O2-T曲线,分析PT100的温度特性曲线,计算其非线性误差。
实验2 K型热电偶测温实验一、实验目的:了解K型热电偶的特性与应用二、实验仪器:智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。
实验1 铂热电阻温度特性测试一、实验目的:了解铂热电阻的特性与应用。
二、实验仪器:智能调节仪、PT100(2只)、温度源、温度传感器实验模块。
三、实验原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
当温度变化时,感温元件的电阻值随温度而变化,这样就可将变化的电阻值通过测量电路转换电信号,即可得到被测温度。
四、实验内容与步骤1.学会用智能调节仪来控制温度:1)在控制台上的“智能调节仪”单元中“输入”选择“Pt100”,并按图1-1接线。
将“+24V输出”经智能调节仪“继电器输出”,接加热器风扇电源,打开调节仪电源。
图1-1 智能调节仪温度控制接线图2)按键,进入智能调节仪设置菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。
按“”可改变小数点位置,按或键可修改靠下窗口的设定值。
再按回到初始状态。
2.调节智能调节仪,将温度控制在500C,在另一个温度传感器插孔中插入另一只铂热电阻温度传感器PT100。
3.将±15V直流稳压电源接至温度传感器实验模块。
温度传感器实验模块的输出Uo2接实验台直流电压表。
4.将温度传感器模块上差动放大器的输入端Ui短接,调节电位器Rw4使直流电压表显示为零。
5按图2-2并将PT100的3根引线插入温度传感器实验模块中Rt两端(其中颜色相同的两个接线端是短路的)。
图2-2 铂热电阻测试5.拿掉短路线,将R6两端接到差动放大器的输入Ui,记下模块输出Uo2的电压值。
6.改变温度源的温度每隔50C记下Uo2的输出值。
直到温度升至1200C。
并将实验结果填入下表。
三、实验报告根据表1实验数据,作出U O2-T曲线,分析PT100的温度特性曲线,计算其非线性误差。
实验2 K型热电偶测温实验一、实验目的:了解K型热电偶的特性与应用二、实验仪器:智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。
上海电子信息职业技术学院《计算机控制系统实现与调试》课程实训报告系部:电子工程系专业:计算机控制技术班级:学号:姓名:小组:指导教师:日期:2014年5月一、系统概述1.系统原理图2.参数说明和设置低值报警AL=高值报警AH=输出下限值OL=输出上限值OH=输入类型LN=9。
工作方式(恒值控制、PI控制、加热、无冷端补偿、报警、报警)OP=3.操作步骤二、恒值控制1.要求(包括参数的设定值):设定值:60o C,水量一半;(在实验中有同学的温度按照实际实验时的值更正)比例系数P1= ;积分参数P2= ;控制周期P3=1;OF超调限定值= ;每30S记录一次测量温度,共记3个波峰3个波谷。
2.目的:观察恒值控制的控制效果。
3.现象:5.曲线图(指出系统的超调量、上升时间和稳态误差)6.实验结论(实验中的问题记录、产生问题的原因,如何解决这些问题、建议等)三.带有扰动的恒值控制(加冷水、重新设定温度)1.要求(包括参数的设定值)设定值:60o C,水量一半;(在实验中有同学的温度按照实际实验时的值更正)Op参数的设定:恒值控制、PI控制、加热、无冷端补偿、低值报警、高值报警;每20S记录一次测量温度,共记3个波峰3个波谷。
2.目的:观察带有扰动的恒值控制效果。
3.现象:4.得到的数据:(用表格列写数据)5.曲线图(指出系统的超调量、上升时间和稳态误差)6.实验结论(实验中的问题记录、产生问题的原因,如何解决这些问题、建议等)四、PI控制参数整定1.要求:设定值:60o C,水量一半;(在实验中有同学的温度按照实际实验时的值更正)用试凑法整定Pk和Ti参数,直至得到良好的控制曲线。
每20S记录一次测量温度和OU值,共记6个波峰6个波谷。
2.目的:掌握整定PI参数的方法,通过实验理解PI参数对控制性能的影响。
3.具体设定参数如下:(在实验过程中,每次获得的曲线所对应的Pk和Ti)表Pk和Ti参数整定记录表4.现象:5.得到的数据:(用表格列写数据)6.曲线图(指出系统的超调量、上升时间和稳态误差)7.试验结论(实验中的问题记录、产生问题的原因,如何解决这些问题、建议等)五、带扰动的PI控制参数整定(加入冷水或重新设置SV)1.要求:设定值:60o C,水量一半;(在实验中有同学的温度按照实际实验时的值更正)每20S记录一次测量温度、OU值,共记3个波峰3个波谷,然后加入()ml 的冷水或把设定值改为70o C,再记3个波峰3个波谷。
温度控制实验报告温度控制实验报告引言:温度控制是现代科技中的一个重要领域,涉及到许多实际应用,如工业生产、环境保护和生物医学等。
本实验旨在探索温度控制的原理和方法,并通过实验验证不同控制策略的效果。
通过这个实验,我们将更深入地了解温度控制的重要性和应用。
实验目的:本实验的目的是研究不同温度控制策略对温度稳定性的影响,并找到最佳的控制方法。
通过实验数据的分析和对比,我们将评估不同控制策略的优劣,并探讨其适用范围和局限性。
实验装置:本实验使用了一个温度控制系统,包括温度传感器、控制器和加热装置。
温度传感器用于测量环境温度,控制器根据传感器的反馈信号调整加热装置的输出,以达到设定的目标温度。
实验步骤:1. 实验前准备:a. 搭建温度控制系统,确保各部件连接正确并工作正常。
b. 设置实验参数,包括目标温度和控制策略。
2. 实验一:比例控制器a. 将控制器设置为比例控制模式。
b. 将目标温度设定为25摄氏度,并记录实际温度的变化。
c. 分析实验数据,评估比例控制器的控制效果。
3. 实验二:积分控制器a. 将控制器设置为积分控制模式。
b. 将目标温度设定为25摄氏度,并记录实际温度的变化。
c. 分析实验数据,评估积分控制器的控制效果。
4. 实验三:比例积分控制器a. 将控制器设置为比例积分控制模式。
b. 将目标温度设定为25摄氏度,并记录实际温度的变化。
c. 分析实验数据,评估比例积分控制器的控制效果。
实验结果与讨论:通过对实验数据的分析,我们得出以下结论:1. 比例控制器能够在一定程度上稳定温度,但存在超调和震荡的问题。
这是因为比例控制器只根据当前误差进行调整,无法预测未来的变化。
2. 积分控制器能够消除比例控制器的超调和震荡问题,但可能导致温度的调整速度较慢。
这是因为积分控制器会根据过去的误差进行调整,以消除累积误差。
3. 比例积分控制器结合了比例和积分控制的优点,能够在一定程度上稳定温度并提高调整速度。
一、实验目的1. 了解智能仪器的原理和功能。
2. 掌握智能仪器的操作方法和使用技巧。
3. 学会使用智能仪器进行实验数据的采集和处理。
4. 提高实验技能和创新能力。
二、实验原理智能仪器是一种集传感器、微处理器、执行器和通信接口于一体的智能化设备。
它能够自动检测、测量、处理和传输信息,实现对各种物理量、化学量、生物量等参数的实时监测和智能控制。
本实验主要介绍智能仪器的原理、操作方法和应用。
三、实验仪器与设备1. 智能仪器:温度传感器、湿度传感器、光照传感器、声波传感器等。
2. 信号采集与处理系统:数据采集卡、计算机等。
3. 电源:直流稳压电源。
4. 其他辅助设备:导线、连接器、实验台等。
四、实验步骤1. 实验准备(1)将智能仪器按照实验要求连接到信号采集与处理系统。
(2)检查电源电压,确保仪器正常工作。
(3)熟悉实验仪器的操作方法和注意事项。
2. 实验操作(1)打开信号采集与处理系统,设置采样频率、采样点数等参数。
(2)启动智能仪器,开始采集实验数据。
(3)观察实验数据的变化,分析实验现象。
(4)根据实验需求,调整智能仪器的参数,进行多次实验。
3. 数据处理(1)将采集到的实验数据导入计算机,进行初步分析。
(2)使用统计软件对实验数据进行处理,求取平均值、方差等统计量。
(3)绘制实验数据的图表,分析实验结果。
4. 实验总结(1)对实验过程进行总结,记录实验数据。
(2)分析实验结果,得出结论。
(3)提出改进意见,为后续实验提供参考。
五、实验结果与分析1. 实验结果(1)通过实验,我们成功采集了温度、湿度、光照和声波等实验数据。
(2)实验数据经过处理,得到了相应的统计量。
(3)绘制了实验数据的图表,直观地展示了实验结果。
2. 实验分析(1)温度、湿度、光照和声波等参数的变化对实验结果有一定影响。
(2)通过调整智能仪器的参数,可以实现对实验数据的精确采集。
(3)实验数据表明,智能仪器在实验过程中具有较好的稳定性和可靠性。
实验4:温度源的温度调节控制实验一、实验目的:了解温度控制的基本原理及熟悉温度源的温度调节过程,学会智能调节器和温度源的使用(要求熟练掌握),为以后的温度实验打下基础。
二、基本原理:当温度源的温度发生变化时温度源中的P t100热电阻(温度传感器)的阻值发生变化,将电阻变化量作为温度的反馈信号输给智能调节仪,经智能调节仪的电阻--电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)或继电器触发信号(冷却),使温度源的温度趋近温度设定值。
温度控制原理框图如图4-1所示。
图4-1温度控制原理框图三、需用器件与单元:主机箱中的智能调节器单元、转速调节可调直流稳压电源;温度源、P t100温度传感器。
四、实验步骤:温度源简介:温度源是一个小铁箱子,内部装有加热器和冷却风扇;加热器上有二个测温孔,加热器的电源引线与外壳插座(外壳背面装有保险丝座和加热电源插座)相连;冷却风扇电源为+24V(或12V) DC,它的电源引线与外壳正面实验插孔相连。
温度源外壳正面装有电源开关、指示灯和冷却风扇电源+24V(12V)DC插孔;顶面有二个温度传感器的引入孔,它们与内部加热器的测温孔相对,其中一个为控制加热器加热的传感器P t100的插孔,另一个是温度实验传感器的插孔;背面有保险丝座和加热器电源插座。
使用时将电源开关打开(o为关,-为开)。
1.设置调节器温度控制参数:在温度源的电源开关关闭(断开)的情况下,按图4-2示意接线。
检查接线无误后,合上主机箱上的总电源开关;将主机箱中的转速调节旋钮顺时针转到底,再将调节器的控制对象开关拨到R t.V i位置后再合上调节器电源开关,仪表上电后,仪表的上显示窗口(PV)显示随机数或HH;下显示窗口(SV)显示控制给定值(实验值)。
按SET键并保持约3秒钟,即进入参数设置状态。
在参数设置状态下按SET键,仪表将按参数代码1~20依次在上显示窗显示参数符号[参数代码及符号见附表],下显示窗显示其参数值,此时分别按、▼、▲三键可调整参数值,长按▼或▲可快速加或减, 调好后按SET键确认保存数据,转到下一参数继续调完为止,长按SET 将快捷退出, 也可按SET + 直接退出。
温度控制器实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (2)3. 实验原理 (3)二、实验内容与步骤 (4)1. 实验内容 (5)1.1 温度控制器的基本操作 (6)1.2 温度控制器的参数设置与调整 (7)2. 实验步骤 (8)2.1 安装温度控制器 (9)2.2 校准温度计 (9)2.3 设置温度控制器参数 (11)2.4 观察并记录实验数据 (13)2.5 分析实验结果 (13)三、实验数据与结果分析 (14)1. 实验数据 (15)1.1 温度控制器的温度读数 (17)1.2 温度控制器的设定温度 (18)1.3 温度控制器的实际输出温度 (19)2. 结果分析 (19)2.1 温度控制器的性能评价 (20)2.2 温度控制器在不同条件下的适应性分析 (21)四、实验结论与建议 (22)1. 实验结论 (23)2. 实验建议 (24)一、实验概述本实验旨在通过设计和制作一个温度控制器,让学生了解温度控制器的基本原理、结构和工作原理,并掌握温度控制器的制作方法。
学生将能够熟练掌握温度控制器的设计、制作和调试过程,为今后从事相关领域的工作打下坚实的基础。
本实验的主要内容包括,在实验过程中,学生将通过理论学习和实际操作相结合,全面掌握温度控制器的相关知识和技能。
1. 实验目的本实验旨在探究温度控制器的性能及其在实际应用中的表现,通过一系列实验,了解温度控制器的控制原理、操作过程以及性能特点,验证其在实际环境中的温度控制精度和稳定性。
本实验也旨在培养实验者的实践能力和问题解决能力,为后续相关领域的深入研究和实践打下坚实的基础。
2. 实验设备与材料温度控制器:作为实验的核心设备,本实验选择了高精度数字式温度控制器,具备较高的稳定性和精确度,能够确保实验结果的可靠性。
恒温箱实验箱:为了模拟不同的环境温度,采用了具有温控功能的恒温箱或实验箱。
通过调节箱内的温度,可以观察温度控制器在不同环境下的表现。
实验十二智能调节仪温度控制实验
一、实验目的:
了解PID智能模糊加位式调节温度控制原理。
二、实验仪器:
智能调节仪、PT100、温度源
三、实验原理:
1.位式调节
位式调节(ON/OFF)是一种简单的调节方式,常用于一些对控制精度不高的场合作温度控制,或用于报警。
位式调节仪表用于温度控制时,通常利用仪表内部的继电器控制外部的中间继电器再控制一个交流接触器来控制电热丝的通断达到控制温度的目的。
2.PID智能模糊调节
PID智能温度调节器采用人工智能调节方式,是采用模糊规则进行PID调节的一种先进的新型人工智能算法,能实现高精度控制,先进的自整定(AT)功能使得无需设置控制参数。
在误差大时,运用模糊算法进行调节,以消除PID饱和积分现象,当误差趋小时,采用PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化,具有无超调、高精度、参数确定简单等特点。
3.温度控制基本原理
由于温度具有滞后性,加热源为一滞后时间较长的系统。
本实验仪采用PID智能模糊+位式双重调节控制温度。
用报警方式控制风扇开启与关闭,使加热源在尽可能短的时间内控制在某一温度值上,并能在实验结束后通过参数设置将加热源温度快速冷却下来,可节约实验时间。
当温度源的温度发生变化时,温度源中的热电阻Pt100的阻值发生变化,将电阻变化量作为温度的反馈信号输给PID智能温度调节器,经调节器的电阻-电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)和继电器触发信号(冷却),使温度源的温度趋近温度设定值。
PID智能温度控制原理如图12-1所示。
图12-1 PID智能温度控制原理框图
四、实验内容与步骤:
1.在控制台上的“智能调节仪”单元中“输入”选择“Pt100”,并按图12-2接线(注意:PT100的两根同色线接在试验台上的同色接口中)。
2.将“+24V输出”经智能调节仪“继电器输出”,接加热器风扇电源,打开调节仪电源。
3.按住键3秒以下,进入智能调节仪A菜单,仪表靠上的窗口显示温度设定“”,靠下窗口显示待设置的设定值。
当LOCK等于0或1时使能,设置温度的设定值,按“”可改变小数点位置,按或键可修改靠下窗口的设定值。
否则提示“”表示已加锁。
再按3秒以下,回到初始状态。
4.按住键3秒以上,进入智能调节仪B菜单,靠上窗口显示“”,靠下窗口显示待设置的上限偏差报警值。
按“”可改变小数点位置,按或键可修改靠下窗口的上限报警值。
温度达到设定温度值+上限偏差报警值时仪表右上“AL1”指示灯亮。
(参考值0.5)
5.继续按键3秒以下,靠上窗口显示“”,靠下窗口显示待设置的自整定开关,按、设置,“0”自整定关,“1”自整定开,开时仪表右上“AT”指示灯亮。
6.继续按键3秒以下,靠上窗口显示“dP”,靠下窗口显示待设置的仪表小数点位数,按“”可改变小数点位置,按或键可修改靠下窗口的比例参数值。
(参考值1)7.继续按键3秒以下,靠上窗口显示“P”,靠下窗口显示待设置的比例参数值,按“”可改变小数点位置,按或键可修改靠下窗口的比例参数值。
8.继续按键3秒以下,靠上窗口显示“I”,靠下窗口显示待设置的积分参数值,按“”可改变小数点位置,按或键可修改靠下窗口的积分参数值。
9.继续按键3秒以下,靠上窗口显示“d”,靠下窗口显示待设置的微分参数值,按“”可改变小数点位置,按或键可修改靠下窗口的微分参数值。
10、继续按键3秒以下,靠上窗口显示“T”,靠下窗口显示待设置的输出周期参数值,按“”可改变小数点位置,按或键可修改靠下窗口的输出周期参数值。
11、继续按键3秒以下,靠上窗口显示“SC”,靠下窗口显示待设置的测量显示误差修正参数值,按“”可改变小数点位置,按或键可修改靠下窗口的测量显示误差修正参数值。
(参考值0)
12、继续按键3秒以下,靠上窗口显示“UP”,靠下窗口显示待设置的功率限制参数值,按“”可改变小数点位置,按或键可修改靠下窗口的功率限制参数值。
(参考值100%)
13、按照上述步骤将温度控制在50度。
图12-2 实验接线
五、实验报告:
PID调节中各参数(比例、积分、微分系数)对控制效果的影响
1.积分速度(积分常数)的大小对调节过程影响
增大积分速度
调节阀的速度加快,但系统的稳定性降低
当积分速度大到超过某一临界值时,整个系统变为不稳定,出现发散的振荡过程。
S0愈大,则调节阀的动作愈快,就愈容易引起和加剧振荡,而最大动态偏差则愈来愈小。
减小积分速度
调节阀的速度减慢,结果是系统的稳定性增加了,但调节速度变慢
当积分常数小到某一临界值时,调节过程变为非振荡过程。
无论增大还是减小积分速度,被调量最后都没有残差
2.余差(或静差)是指:
被调参数的新的稳定值与给定值不相等而形成的差值。
余差的大小与调节器的放大系数K或比例带δ有关
放大系数越小,即比例带越大,余差就越大;
放大系数越大,即比例带越小,比例调节作用越强,余差就越小。
比例带对于调节过程的影响
3.比例调节的特点:
(1)比例调节的输出增量与输入增量呈一一对应的比例关系,即:u = K e
(2)比例调节反应速度快,输出与输入同步,没有时间滞后,其动态特性好。
(3)比例调节的结果不能使被调参数完全回到给定值,而产生余差。
4.微分调节的思想:
微分调节只与偏差的变化成比例,偏差变化越剧烈,由微分调节器给出的控制作用越大,从而及时地抑制偏差的增长,提高系统的稳定性。
微分调节的特点
微分调节只对偏差的变化做出反应,而与偏差的大小无关。