火山热液矿床
- 格式:pptx
- 大小:7.90 MB
- 文档页数:45
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
热液矿床(1)成矿溶液的来源:成矿溶液或称成矿气液、成矿热液是在一定深度(几至几十千米)下形成的,具有一定温度(一般为50-600℃)和一定压力(一般为n-250MPa)的气态、液态和超临界流体。
其成分以H2O为主,有时CO2占很大比例,常含有CH4、H2S、CO、SO2等挥发性气体成分和K+、Na+、Ca2+、Mg2+、F-、Cl-、SO42-、HCO3-等离子成分。
成矿溶液中还有W、Sn、Mo、Au、Ag、Cu、Pb、Zn等多种成矿元素。
成矿溶液和成矿物质来源是矿床学界长期争论的问题之一,目前认识一般有四种:a.岩浆热液:岩浆在侵入和喷发过程中,随着温度和压力的下降,硅酸盐熔体不断地结晶,H2O等挥发分就从岩浆中分离出来,形成高温气液。
一些成矿元素倾向富集于气液中,这种含矿气液在岩体边缘和围岩的裂隙中运移,当物理化学条件发生变化时,就可在有利的地段形成矿床。
b.地下水热液:从地表渗透到地下深处的大气降水,可在地下环流中受热并与流经的岩石发生相互作用,溶解岩石中的有用成矿元素,运移至有利的地质环境中沉淀形成各种热液矿床。
c.海水热液:在海洋扩张中心、火山岛弧、大陆边缘及海洋岛屿地区,下渗的海水可沿裂隙到达地壳深部受热形成环流。
环流过程中也可萃取流经围岩中大量的成矿物质,然后通过断裂、火山口或海底扩张脊再流入海中,与海水作用形成热液矿床。
矿物生成顺序辨别标志矿物生成顺序的标志矿物是地球上的宝藏,它们以各种形式存在于地壳深处。
与地球的演化过程紧密相连,矿物生成顺序也成为了研究地质学的重要内容之一。
下面,我将从不同角度来描述矿物生成顺序的标志。
一、岩浆活动标志1. 火山喷发:火山是地球深部岩浆活动的直接表现。
火山口喷出的岩浆冷却后形成岩浆岩,其中含有矿物质。
2. 火山岩:火山岩是由火山喷发产生的岩浆凝固而成,其中包含着富含矿物质的矿脉。
3. 玄武岩:玄武岩是一种含铁镁的火山岩,其中的橄榄石和辉石是火山活动的标志。
二、沉积作用标志1. 河流冲刷:河流冲刷岩石时,会将矿物颗粒带到下游,形成河床沉积物。
其中的砂砾和沙粒中含有多种矿物质。
2. 河流沉积:当河流流速减慢时,会形成河流沉积物,其中的粘土和泥沙中含有矿物质。
3. 沉积岩:沉积岩是由沉积过程中沉积物堆积形成的,其中的矿物质主要来自于沉积物中的颗粒和溶解质。
三、变质作用标志1. 片麻岩:片麻岩是由高温和高压作用下形成的,其中的矿物质经过变质作用而形成。
2. 片岩:片岩是一种由变质作用形成的岩石,其中的矿物质在高温和高压下发生了化学反应。
3. 花岗岩:花岗岩是由岩浆在地壳深处冷却形成的,其中的矿物质经过长时间的变质作用而形成。
四、热液作用标志1. 热液矿床:热液矿床是由地壳深部的热液活动形成的,其中的矿物质是由热液中的溶解物沉淀而成。
2. 硫化物矿床:硫化物矿床是一种重要的热液矿床,其中的矿物质主要是由硫化物矿物组成的。
3. 氧化物矿床:氧化物矿床是由氧化物矿物沉淀形成的,其中的矿物质主要是由氧化物矿物组成的。
总结起来,矿物生成顺序的标志主要包括岩浆活动、沉积作用、变质作用和热液作用等方面。
通过观察和研究这些标志,我们可以更好地了解矿物的生成和分布规律,为矿产资源的开发提供科学依据。
第六章热液矿床各论四火山-次火山热液矿床(一)概述1、概念:在火山喷发作用的晚期或间歇期,喷气和热液活动非常强烈,气液中通常含有大量的重金属化合物,在一定的地质条件和物化条件下,这些气液与围岩、与海水或气液之间发生作用,使其中的有用组分聚集和沉淀,形成火山热液矿床。
2、火山-次火山热液矿床的特点:(1)矿床常产于火山岩地区,在矿区内或其附近常有同期的火山岩、次火山岩或侵入体分布,矿化主要发生于火山活动的晚期或间歇期;(2)矿化主要发生于地表、海底或地下浅处(<1~2km=,成矿温度范围较大(50-500℃);(3)成矿介质复杂多样,有喷气、热液,或火山口附近被烤热的湖水、地表水、海水等;(4)火山机构控矿明显,如火山口、火山颈、角砾岩筒、环状裂隙、放射性裂隙等,因此矿体常具复杂独特的形态和产状特征;(5)多数矿床围岩蚀变强烈,既有高温蚀变(如钾化、云英岩化、黑云母化、钾长石化等),又有中低温蚀变(如硅化、绢云母化、绿泥石化、碳酸盐化等),蚀变范围广,与矿化关系密切;(6)矿石物质成分复杂,组构多样,主要的金属矿物主要有元素单质(Cu、Ag、Au 等)、氧化物(磁铁矿、锡石、黑钨矿等)、金属硫化物(黄铁矿、磁黄铁矿、黄铜矿、方铅矿、闪锌矿、辉钼矿等)。
3、火山-次火山热液矿床的工业意义:火山-次火山热液矿床分布很广,规模较大,矿种多,矿石质量好。
主要矿产有Fe、Cu、Mo、Sn、Pb、Zn、Au、Ag、U等金属矿产、稀有分散元素(Be)以及萤石、明矾石、硫等非金属矿产。
(二)火山热液矿床的成矿作用和主要类型矿床的地质特征火山热液矿床的成矿作用有三:(1)火山喷气作用(2)火山热液作用(3)次火山热液作用。
据此,并根据产出的环境,将该类矿床分为四个亚类:(1)陆相火山喷气矿床(2)陆相火山热液矿床(3)陆相次火山热液矿床(4)海相火山热液-沉积矿床。
1、陆相火山喷气矿床此类矿床仅限于火山活动区,数量不多,规模有限,形成温度高(600~1100℃)。
热液矿床中成矿热液的来源、运移及沉淀一、成矿热液的的来源:含矿热液的来源一直存在争论,但根据多种数据和资料分析,大多数研究者已经接受含矿热液主要有下列几种类型:1、岩浆成因热液:指在岩浆结晶过程中从岩浆中释放出来的热水溶液,最初是岩浆体系的组成部分。
由于岩浆热液中常含有H2S、HCl、HF、SO2、CO、CO2、H2、N2等挥发组分,故具有很强的形成金属络合物并使其迁移活动的能力。
岩浆存在水有人多证据,如:快速冷却的火山岩水量一般为0.2%-5%,最高可达12%,岩浆中的大量含水硅酸盐矿物也是岩浆含水的最好证据。
对热液矿床中矿物及其中流体包裹体氢氧同位素成分分析结果,也证明热液矿床形成的早期,确实有岩浆流体存在。
2、变质成因热液:指岩石在进化变质作用过程中所释放出来的热水溶液。
岩石遭受进化变质时,总伴随着矿物的脱水反应,而且脱水同变质的强度成正比。
对某些热液矿床矿物中流体包裹体和同位素成分的研究,也证明有的热液矿床主要是在变质水参与下形成的。
变质成因热液也具有很强的溶解迁移金属络合物的能力。
3、建造水:指沉积物沉积时含在沉积物中的水,因此又称封存水。
这种水最初来自地表,与沉积物一起沉积,并与矿物颗粒密切接触,长期埋藏于地下,并与其周围的矿物发生反应,使其丧失了原有地表水的性质,形成了自己独有的特征,并在氢氧同位素组成方面也与地表水不同。
建造水广泛见于油田勘探过程中。
很多资料数据表明,有的低温铅锌矿床主要与建造水构造的热液活动有关。
4、大气水热液:包括雨水、潮水、海水、河水、冰川水和浅部地下水。
大量的岩浆岩及其相关流体的氢氧同位素研究表明,在岩浆流体成矿系统中早期成矿以岩浆流体为主,但中晚期通常有不同比例的大气水的混入,即使是发育于斑岩体内外接触带的斑岩型铜矿也都显示成矿后期有大气水的加入,甚至在一些热液矿床中成矿流体以大气水为主。
5、幔源初生水热液:指幔源挥发分流体,其最初来源可以是核幔脱气,也可以是大洋岩石圈俯冲到上地幔中脱气,是在地幔中形成的一种高密度的超临界流体。
浅层火山热液金银矿床成矿模式成矿地质特征浅层火山热液金银矿床主要与复式火山体及火山碎屑岩相关,常伴有不同程度的热液蚀变带。
矿床分布于次火山岩或火山碎屑岩岩体顶部或侧缘浅部,深度一般小于1公里。
成矿流体矿床形成所需的流体主要来自火山活动。
火山岩浆体释放出大量的挥发分和热液,流体主要以水为主,伴有二氧化碳、氢硫化物、氯化物等多种气体。
流体上升的过程中,受到围岩制约,发生相变分离,形成液态和气态两个相。
热液蚀变流体进入围岩后,与围岩发生化学反应,形成一系列蚀变带。
常见的蚀变类型包括:硅化:流体中二氧化硅的沉淀和交代作用,形成硅化岩。
绢云母化:流体中钾的交代作用,形成绢云母化的围岩。
碳酸盐化:流体中碳酸钙的沉淀,形成碳酸盐蚀变带。
绿泥石化:流体中镁和铁的交代作用,形成绿泥石化的围岩。
成矿过程成矿过程主要分为以下几个阶段:火山作用阶段:岩浆侵入和喷发,释放出热液。
热液活动阶段:热液上升、流动,与围岩发生反应,形成蚀变带。
矿物沉淀阶段:金银等矿物从热液中沉淀,形成矿脉和浸染矿体。
矿物组合浅层火山热液金银矿床中常见的矿物组合包括:金、银、硫化矿物(如黄铁矿、闪锌矿、方铅矿)、氧化矿物(如赤铁矿、菱铁矿)和石英、方解石等脉石矿物。
矿床类型根据矿床形态和成矿背景,浅层火山热液金银矿床可分为以下类型:矿脉型矿床:矿体呈脉状产出,位于蚀变带中或蚀变带外围。
浸染型矿床:矿体呈浸染状分布,广泛存在于围岩中。
混合型矿床:矿体既有矿脉也有浸染状产出,是矿脉型和浸染型矿床的过渡类型。
成矿控制因素浅层火山热液金银矿床的成矿受多种地质因素控制,包括:火山活动规模和类型:复式火山体、破火山口型喷发等,有利于热液活动和矿床形成。
围岩性质:围岩的渗透性和可交代性影响流体的流动和矿物沉淀。
构造环境:断裂破碎带和构造活动有利于流体的上升和矿床的富集。
区带性分布:浅层火山热液金银矿床常沿一定构造带或火山带分布,呈带状或群状产出。
勘探与评价浅层火山热液金银矿床的勘探主要包括地质勘查、地球物理勘查和地球化学勘查等方法。
产于钙质、炭质沉积岩中的,金呈次显微—超显微的浸染状赋存于含金黄铁矿中的一类金矿床,因20世纪60年代初最早发现于美国内达华州卡林地区而得名。
典型矿例:美国:Carlin,Getchell,Gold Quarry等;中国:东北寨、桥桥上、马脑壳、阳山、板其、牙他等.(小区域中的大资源)矿床特征:21。
陆缘地壳减薄拉张区.2。
矿床常呈群呈带出现,构成巨大的矿集区。
3.含矿主岩为各种不纯的(泥质、粉砂质、炭质)碳酸盐岩、细碎屑岩(钙质、炭质粉砂岩、页岩)和硅质岩。
4.成矿受构造控制明显,尤其是高角度正断层与有利岩性层位交切部位是成矿的有利场所。
5.常发育不同的围岩蚀变,蚀变带较宽,但蚀变较弱,矿体与围岩渐变过渡。
6。
矿体多呈似层状、透镜状和脉状,形态产状受高角度断层及其旁侧褶皱构造控制。
7。
中低温热液矿物组合:矿石矿物主要为黄铁矿、含砷黄铁矿、毒砂,次为辉锑矿、雄黄、雌黄、辰砂、白铁矿、磁黄铁矿等;脉石矿物为石英、玉髓、方解石、铁白云石、绢云母、重晶石、钠长石。
矿石构造以浸染状、细脉状、网脉状、角砾状构造为主。
金以次显微-超显微形式出现(含砷硫化物中—不可见次显微金,中晚期硫化物与石英等脉石矿物中—显微金和明金)。
8。
矿石中金品位一般低而分散,矿石储量一般在100万—1亿吨,品位1—15g/t.金储量一般为几吨至几十吨,个别达100t以上。
9.成矿流体具中低温、低盐度特征,含较高的CO2和一定量的H2S。
成矿深度一般在1—3Km。
成因:1。
含矿流体的来源:水主要来自下渗的大气降水,部分来自沉积物成岩压实过程中释放出的同生水;金属组分和硫主要来自沉积地层。
2。
含矿流体的迁移:含矿热液主要在重力(密度差)和构造应力等驱动下发生对流循环,并沿高角度断层向上运移,到达浅部后沿孔隙度和渗透率高的有利岩性层位渗透交代-充填成矿;金主要以硫氢化物络合物的形式搬运。
3。
矿质沉淀机制:成矿流体由于温度降低、流体成分改变以及与近地表含氧酸性溶液的混合而使金络合物分解,导致金沉淀富集。
中国的主要金矿类型中国的主要金矿类型来源:一、岩桨一热液金矿床本类金矿床分布于古地块周围断陷盆地的边缘,或两个构造单元之间的深断裂带附近。
滨太平洋构造岩浆活动带控制了本类型的矿床,如密山一清源深断裂,郯城一庐江深大断,裂浙闽沿海的丽水一海丰深断裂带等。
混合岩化一交代重熔、同熔型花岗岩类与含金建造变质岩系有着内在联系,所形成的含金花岗岩或偏碱性的花岗岩类小侵入体,岩株对岩浆期后热液金矿床有直接的控制作用,本类型金矿床可分3个亚类:(一)重熔岩浆热液金矿床成矿母岩为含金的重落型花岗石。
在燕山期,它们沿着深切基底的断裂构造侵入到不同时代的盖层中。
金矿化多沿台、槽分界断裂私隆起区的边缘断裂展布。
在隆起区以金矿化为主,伴有多金属矿化,在凹陷区以多金属矿化为主,而在过渡带则为金一多金属矿化。
在侵入体内为石英细脉浸染型金矿化,含金黄铁矿石英细脉带产于岩体的边缘或其顶部,而含金石英脉带赋存于接触带和围岩的构造裂隙中。
河北峪耳崖金矿床实例:燕山期花岗杂岩体居于矿区中心。
同位素年龄1.4亿年。
呈北东一南西向分布,岩体的长轴方向与区域构造线一致,长2 km,宽0.7km,平面上中间膨大两端狭小,呈一菱形状(图1一4)侵入于长城系高于庄组白云岩中,接触带局部有矽卡岩化现象。
侵入杂岩体主要由同源不同阶段侵入的似斑状斜长花岗岩和黑云母花岗岩组成。
金矿化带主要分布于内接触带附近和岩体中,仅极少数分布于自云岩或岩枝边部的断裂构造中,白云岩中的矿体,一般距接触带50-100m。
成矿断裂主要有两组,一组走向北40o一80o东,倾向北西,倾角400-80o,贯穿全区,规模较大,破碎带发育,另一组走向为2900-280o倾向北东,倾角40o一60o,仅在若休内部发育,与第一组斜交,规模小。
已查明地表矿带有14条,深部盲矿带10余条,每一矿带由1一6条矿体组成。
大多数矿带平行于岩体长轴方向,呈平行脉状,雁行排列,地表规模较大,长几百米,厚度不足1 m,最厚5 -10M。