高中化学选修3物质结构总结
- 格式:doc
- 大小:4.03 MB
- 文档页数:6
高中化学《选修三物质结构与性质》知识归纳选修三《物质结构与性质》是高中化学课程中的一本重要教材。
本书主要介绍了物质的结构与性质的关系,以及有机化合物、配位化学、无机材料等内容。
下面是关于该教材的知识归纳。
第一章物质的结构和性质1.物质的微观结构:原子、离子和分子是物质的微观结构。
2.物质的宏观性质:密度、熔点、沸点、导电性、导热性、溶解性等是物质的宏观性质。
3.物质的宏观性质与微观结构的关系:物质的性质与其微观结构相关,如金属的导电性、晶体的硬度等。
第二章有机化合物的结构和性质1.有机化合物的元素组成:有机化合物主要由碳、氢和少量氧、氮、硫等元素组成。
2.有机化合物的结构:有机化合物由分子构成,分子由原子通过共价键连接。
3.有机化合物的性质:有机化合物具有燃烧性、酸碱性、氧化还原性、流动性、挥发性等特性。
4.有机物的分类:根据分子中所含的官能团,有机物可分为醇、酮、醛、酸、酯、醚、芳香化合物等不同类型。
第三章有机反应与有机合成1.有机反应的定义:有机反应是指有机化合物在适当条件下发生变化,形成具有新性质的有机化合物。
2.脱水反应:脱水反应是指有机化合物中的水分子与有机分子发生反应,生成新的有机化合物。
3.氢化反应:氢化反应是指有机化合物中的氢气与有机分子发生反应,生成新的有机化合物。
4.酸碱催化:酸碱催化是指在酸碱存在的条件下,有机化合物的反应速率增加。
第四章金属配合物1.配位化合物的概念:配位化合物是指由一个或多个给体与一个或多个受体之间通过配位键结合形成的化合物。
2.配位键:配位键是指由配体中的一个或多个电子对与金属离子形成的共价键。
3.配位数:配位数是指一个金属离子周围配位体的数目。
4.配位化合物的性质:配位化合物具有明显的颜色、溶解度、稳定性等特性。
第五章无机材料1.无机材料的分类:无机材料可分为金属材料、非金属材料和无机非金属材料。
2.无机材料的性质:金属材料具有导电性、延展性、塑性等特性;非金属材料主要用于绝缘材料、陶瓷材料等;无机非金属材料具有耐高温、耐腐蚀等特性。
高中化学选修3物质结构与性质全册知识点总结一、物态变化1.固体、液体和气体的特点和微观结构。
2.相变的概念及其条件。
3.气体的压力、体积和温度的关系(气体状态方程)。
4.确定气体的压强、体积和温度的实验方法。
二、物质的分子结构1.分子的结构和性质的关系。
2.分子的极性与非极性。
3.分子的键型及其特点。
4.共价键的键能和键长的关系。
三、化学键的性质1.同种键和异种键的定义和举例。
2.键能的概念及其在化学反应中的表现。
3.键长的测定方法及其在化学反应中的影响。
4.共价键的极性和电性的概念及其与键型的关系。
四、物质的热稳定性1.温度和物质的热稳定性的关系。
2.物质的热分解与热合成的条件和特点。
3.确定物质的热分解和热合成的方法。
五、物质的电解性1.电解质和非电解质的区别和举例。
2.电解质的导电性及其与离子的浓度和动力学的关系。
3.强电解质和弱电解质的区别和举例。
六、分子与离子的形成1.分子化合物和离子化合物的区别和举例。
2.确定分子和离子的产生与存在的条件。
七、氢键和离子键1.氢键的特点和举例。
2.氢键的性质和应用。
3.离子键的特点和举例。
4.离子键的性质和应用。
八、离子晶体和共价晶体1.离子晶体的特点和举例。
2.确定离子晶体的特性和存在的条件。
3.共价晶体的特点和举例。
4.确定共价晶体的特性和存在的条件。
九、化学键的杂化1.杂化的概念和种类。
2.方向性杂化的概念和应用。
3.确定方向性杂化的条件和特点。
十、分子结构的测定1.确定分子结构的方法。
2.确定分子结构的仪器。
3.确定分子结构的实验步骤和原理。
综上所述,以上是高中化学选修3《物质结构与性质》全册的知识点总结。
通过对这些知识点的学习,我们可以了解物质的分子结构和性质的关系,从而深入理解化学反应的本质和原理。
希望对你的学习有所帮助!。
高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
高中化学物质结构与性质知识点总结化学是一门研究物质结构与性质的科学,它揭示了物质的本质和变化规律。
高中化学中,物质结构与性质是一个重要知识点,通过对此进行总结可以帮助我们更好地理解化学世界。
本文将对高中化学物质结构与性质的知识点进行总结,希望能对大家的学习有所帮助。
1. 原子结构在高中化学中,原子是构成一切物质的基本粒子。
原子由质子、中子和电子组成,质子和中子位于原子核中,电子绕核运动。
质子的电荷为正,中子不带电,电子的电荷为负。
原子的核外电子层数决定了元素的性质,元素周期表中的主量子数n表示了电子的能级,核外电子个数与元素周期数相对应。
2. 元素周期表元素周期表是按原子序数排列的化学元素表格,具有一定规律性。
元素周期表包含了所有元素的基本信息,如元素符号、相对原子质量、原子序数等。
周期表中的元素按周期和族排列,周期数代表了元素的电子最外层能级数,族数代表了元素最外层电子种类。
元素周期表中的元素具有周期性规律,比如原子半径、电负性等特性会随周期和族数的变化而变化。
3. 共价键与离子键原子间的化学键可以分为共价键和离子键两种。
共价键是由电子的共享形成的化学键,通常形成在非金属原子之间,如氧气分子中的O=O键。
离子键是由正负电荷吸引形成的化学键,通常形成在金属和非金属原子间,如氯化钠中的Na+与Cl-离子间的键。
共价键和离子键的形成涉及电子的轨道重叠和电子的转移,决定了物质的性质。
4. 分子结构分子是由原子通过共价键结合形成的小团体,分子的结构直接影响了物质的性质。
分子的几何构型决定了分子的极性和反应性,比如水分子的角形结构使其具有极性,导致其具有高的溶解度和独特的氢键结构。
分子的键的性质也会影响化合物的热力学性质,如键能决定了分子的热稳定性和反应活性。
5. 晶体结构晶体是由周期排列的离子、分子或原子通过化学键结合形成的有序固体,具有规则的晶格结构。
晶体结构决定了物质的宏观性质,比如硅晶体的周期性排列决定了硅材料的导电性和光学性质。
物质结构与性质知识点大全原子核外电子排布原理1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。
这种电子云轮廓图称为原子轨道。
【特别提示】(1)任一能层的能级总是从s能级开始,而且能级数等于该能层序数。
(2)以s、p、d、f……排序的各能级可容纳的最多电子数依次为1、3、5、7……的二倍。
(3)构造原理中存在着能级交错现象。
由于能级交错,3d轨道的能量比4s轨道的能量高,排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。
(4)前四周期的能级排布(1s、2s、2p、3s、3p、4s、3d、4p)。
第一能层(K),只有s能级;第二能层(L),有s、p两种能级,p能级上有三个原子轨道p x、p y、p z,它们具有相同的能量;第三能层(M),有s、p、d三种能级。
(5)当出现d轨道时,虽然电子按ns,(n-1)d,np顺序填充,但在书写电子排布式时,仍把(n-1)d放在ns前。
(6)在书写简化的电子排布式时,并不是所有的都是[X]+价电子排布式(注:X 代表上一周期稀有气体元素符号)。
2.基态原子的核外电子排布(1)能量最低原理电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。
如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图。
注意:所有电子排布规则都需要满足能量最低原理。
(2)泡利原理每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
(3)洪特规则。
一.晶体常识
1 .晶体与非晶体比较
2 .获得晶体的三条途径
①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3 .晶胞
晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4 .晶胞中微粒数的计算方法 —— 均摊 法
如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞
立方晶胞中微粒数的计算方法如下:
注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状
二.四种晶体的比较
晶体熔、沸点高低的比较方法
(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体
由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅
(3)离子晶体
一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体
①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体
金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
三.几种典型的晶体模型。
高中化学物质结构知识点总结高中化学中的物质结构涉及到分子结构、晶体结构和材料结构等方面的知识。
下面将对高中化学的物质结构知识点进行总结:1.原子和分子结构:-原子由原子核和围绕其运动的电子组成。
原子核由质子和中子组成,电子具有负电荷。
-元素是由相同原子数目的原子组成的纯物质。
-分子是由原子通过化学键连接而成的。
-分子式是用来表示分子中原子种类和个数的符号表示法。
2.分子的空间构型:-分子的空间构型指的是原子在空间中的排列方式。
-分子的空间构型主要由电子排布和化学键的构型决定。
-键角、键长、键能等是描述分子空间构型的重要参数。
3.分子间相互作用力:-分子间相互作用力是分子之间的吸引力和排斥力。
-范德华力是由于分子极化引起的吸引力,是分子间最普遍的相互作用力。
-静电力是由于带电粒子之间相互作用产生的力。
-氢键是特殊的静电相互作用力,存在于氢原子与电负性较大的原子之间。
4.晶体的结构:-晶体是由原子、离子或分子按照一定的方式排列而成的固体。
-晶体结构由晶胞、晶格和晶面组成。
-晶体结构可以通过X射线衍射进行表征。
5.材料的结构和性质:-材料的结构决定了其性质。
-学习材料结构可以有助于设计和制备新材料。
-材料的结构可以通过扫描电子显微镜和透射电子显微镜等仪器进行观察和分析。
6.非晶态:-非晶态是指没有明显的长程有序结构的固态物质。
-非晶态常见于一些金属、硅和玻璃等物质中。
-非晶态具有特殊的物理和化学性质。
7.生物大分子的结构:-生物大分子包括蛋白质、核酸、多糖和脂类等。
-蛋白质具有复杂的空间结构,包括一级、二级、三级和四级结构。
-核酸是由核苷酸组成的,包括DNA和RNA两种。
-多糖是由单糖分子通过糖苷键连接而成的。
-脂类主要由脂肪酸和甘油组成,具有亲水性和疏水性。
以上是高中化学物质结构知识点的简要总结。
学习和理解这些知识对于化学学科的深入学习和应用具有重要意义。
高中化学选修三物质结构与性质简答题总结一、物质熔沸点问题1、氯化铝的熔点为190℃,而氟化铝的熔点为1290℃,导致这种差异的原因为【答】AlCl3是分子晶体,而 AlF3是离晶体2、P4O10的沸点明显高于 P4O6,原因是:【答】都是分子晶体,P4O10的分子间作用力高于 P4O63、H2S 熔点为-85.5℃,而与其具有类似结构的 H2O 的熔点为 0℃,极易结冰成固体,二者物理性质出现此差异的原因是:【答】H2O 分子之间极易形成氢键,而 H2S 分子之间只存在较弱的范德华力。
4、二氧化硅的熔点比 CO2高的原因:【答】CO2是分子晶体,SiO2是原子晶体。
5、CuO 的熔点比 CuS 的高,原因是:氧离子半径小于硫离子半径,所以 CuO 的离子键强,晶格能较大,熔点较高。
6、邻羟基苯甲醛的沸点比对羟基苯甲醛的沸点低,原因是:【答】邻羟基苯甲醛形成分子内氢键,而对羟基苯甲醛形成分子间氢键,分子间氢键使分子间作用力更大。
7. 乙二胺分子(H2N—CH2—CH2—NH2)中氮原子杂化类型为 SP3,乙二胺和三甲胺[N(CH3)3]均属于胺,但乙二胺比三甲胺的沸点高得多,原因是:【答】乙二胺分子间可以形成氢键,三甲胺分子间不能形成氢键。
8、丙酸钠(CH3CH2COONa)和氨基乙酸钠均能水解,水解产物有丙酸(CH3CH2COOH)和氨基乙酸(H2NCH2COOH),H2NCH2COOH中N原子的杂化轨道类型为SP3杂化,C原子的杂化轨道类型为s p3、sp2 杂化。
常温下丙酸为液体,而氨基乙酸为固体,主要原因是:【答】羧基的存在使丙酸形成分子间氢键,而氨基乙酸分子中,羧基和氨基均能形成分子间氢键。
9、NH3常用作制冷剂,原因是:【答】NH3分子间能形成氢键,沸点高,易液化,汽化时放出大量的热,所以能够做制冷剂。
10、比较下列锗卤化物的熔点和沸点,分析其变化规律及原因:【答】GeCl4、GeBr4、GeI4的熔沸点依次上升。
高中化学物质结构知识点总结化学是一门以实验为基础的自然科学。
门捷列夫提出的化学元素周期表大大促进了化学的发展。
如今很多人称化学为“中心科学”。
下面是整理的高中化学物质结构知识点,仅供参考希望能够帮助到大家。
高中化学物质结构知识点质子(Z个)原子核注意:中子(N个) 质量数(A)=质子数(Z)+中子数(N)1. 原子序数=核电荷数=质子数=原子的核外电子(Z个)★熟背前20号元素,熟悉1~20号元素原子核外电子的排布:H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca2.原子核外电子的排布规律:①电子总是尽先排布在能量最低的电子层里;②各电子层2最多容纳的电子数是2n;③最外层电子数不超过8个(K层为最外层不超过2个),次外层不超过18个,倒数第三层电子数不超过32个。
电子层:一(能量最低) 二三四五六七对应表示符号:K L M N O P Q3.元素、核素、同位素元素:具有相同核电荷数的同一类原子的总称。
核素:具有一定数目的质子和一定数目的中子的一种原子。
同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素。
(对于原子来说)如何学好化学1在化学课堂上提高学习效率上课前一天,一定要抽出时间自觉地预习老师第二天要讲的化学内容。
以便于能强化听课的针对性,有利于发现问题,抓住重点和难点,提高化学听课效率;同时还可以提高记听课笔记的水平,知道该记什么。
听课是学习化学过程的核心环节,是学会和掌握知识的主要途径。
特别是化学,很多知识都是下节课的基础,如果这一节没有掌握到下节就可以成为学习的障碍,所以说课堂上能不能掌握好所学的知识,是决定学习效果的关键。
2吃透化学课本联系实际以化学课本为主线,认真吃透课本,这是学好化学的根本。
为此同学们必须善于阅读课本,做到课前预读、课后细读、经常选读等。
既重视主要内容也不忽视小字部分、一些图表、资料及选学内容。
化学内容与生活、生产联系紧密。
原子结构模型(结构)玻尔原子结构模型
量子力学对核外电子运动状态的描述
排布原则:构造原理、能量最低原理、 洪特规则、泡利原理
原子结构与元素周期表(位置)
排布顺序:构造原理1-36号元素的原子核外电子排布基态原子的核外电子排布核外电子排布与元素周期表
核外电子层数决定周期的划分价层电子的数目与排布决定族的划分核外电子排布与原子半径电子层数和核电荷数决定了原子半径的
大小以及变化规律原子结构与元素性质(性质)原子结构
第一电离能:气态电中性基态原子失去一个电子转化为气
态基态正离子所需要的最低能量电负性:描述不同元素的原子对键合电子吸引力的大小
原
子
光谱
N 轨道能级图电子排布图
1s 22s 22p 31s 2s 2p 电子排布式泡利原理
洪特规则
2s 22p 3外围(价层)电子排布式2个能层,3个能级,2对成对电子3个未成对电子,7种运动状态的电子7个电子层7个周期
7个能层K Cu 1s 22s 22p 63s 23p 64s 1构造原理
1s 22s 22p 63s 23p 63d 104s 1
M 能层全满
3d 空轨道原子轨道图18个列,16个族(主族、副族、0族、VIII 族)、5个区3d 104s 1
4s 1
Cu :Ar
K :Ar 轨道表示式
二氧化碳
金钢石
电子对数目电子对
的空间
构型
成键电
子对数
孤对
电子
对
数
电子对的
排列方式
分子
的
空间
构型
实例
中心
原子
杂化
轨道
类型
2 直线
形
2 0
直线
形
CO2、C2H2sp
3
三角形3 0
三角
形
BF3、SO3
HCHO
sp2 2 1 V形
SnCl2、
PbCl2
sp2
4
四面体
形4 0
四面
体形
CH4、SO42-
CCl4、NH4+
sp3 3 1
三角
锥形
NH3、PCl3
H3O+
sp3 2 2 V形H2O、H2S sp3
….
A H B
A、B为N、O、F、“”表示共价键,
“”表示形成的氢键
H 2H 2H 2
2+。